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The set of automorphisms of B(H)
is topologically reflexive in B{B(H))

by

LAJOS MOLNAR (Debrecen)

Abstract. The aim of this paper i3 to prove the statement announced in the title
which can be reformulated in the following way. Let 5 be a separable infinite-dimensional
Hilbert space and let ¢ : B(H) — B(H) be a continuous linear mapping with the prop-
erty that for every A € B(H) there exists a sequence (&) of antomorphisms of B{H)
(depending on A) such that $#{A) = limn $n{A4). Then @ is an automorphism. Moreover,
a similar statement holds for the set of all surjective isometries of B{H).

Introduction. If X is a Banach space, then we denote by L(X) and
B(X) the algebras of all linear and bounded linear operators on X, re-
spectively. F{X) and C(X) stand for the ideals of B(X) consisting of all
finite-rank and compact operators, respectively. A subset £ C B(X) is called
topologically [algebraically] reflexive if T € B(X) belongs to £ whenever
Tz € £z [Tx ¢ £z for all z € X. This concept has proved very useful in
the analysis of operator algebras.

The study of algebraic reflexivity of the subspace of derivations on op-
erator algebras has been begun by Kadison [Kad2] and Larson and Sourour
[LS] from a different point of view. Since then the problem of algebraic re-
flexivity of the sets of derivations and automorphisms has been investigated
in full detail and the preliminary results have been improved significantly
[Bre, BS1, BS2].

The notion of topological reflexivity is due to Loginov and Shul’man
[LoS], although they defined it only for the case of subspaces. Neverthe-
less, surprisingly enough, from the two fundamental concepts of derivations
and automorphisms, the problem of topological reflexivity has so far been
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treated only for the former one. Namely, Shul'man proved that the subspace
of all derivations of a C*-algebra is topologically reflexive [Shu, Corollary 2].
Our aim is to consider the same problem for automorphisms. Plainly, the
topological reflexivity does not hold true for the automorphism group of any
(*-algebra. One can get an casy counterexample by considering the func-
tion algebra Cla, b]. In fact, choosing a sequence () of homeomorphisms
of [a,b] onto itself which converges uniformly to a not injective function
v : [a,b] — [a,b], we obtain a continuous endomorphism & of Cla,b] de-
fined by &(f) = fo ¢ {f € Cla,b]) which is the pointwise limit of a se-
quence of automorphisms but is not itself an automorphism. Consequently,
a Shul'man-type general theorem cannot be expected for the set of automor-
phisms. However, we present a positive result for the case of the operator
algebra B(H) on the Hilbert space H equipped with the usual operator
norm.

The starting point of our investigations is the result obtained by Bresar
and Semr! in [BS2]. They proved that, in our language, the group of auto-
morphisms of B(H) is algebraically reflexive in L{B(H)) provided that H
is separable and infinite-dimensional. In Theorem 2 below we show that this
group is topologically reflexive in B(B{H)), a result which can be consid-
ered stronger in some sense. Finally, we conclude the paper with a similar
result for the set of all surjective isometries of B{H).

Results. In what follows we need the concept of Jordan homomorphism.
A linear mapping ¢ from an algebra A into another algebra B is called
a Jordan homomorphism if ¢(2*) = ¢(z)? (z € A). These mappings are
extensively studied in ring theory and have important connection to the
mathematical foundations of quantum theory. It is easy to see that every
Jordan homomorphism ¢ : A — B satisfies

¢lzy + yz) = d(z)d(y) + d(y)é(z),
P(zyz) = ¢(z)dly)d(x),

for every z,y € A (see [Pal, 6.3.2 Lemma)).

Our key theorem that follows can be considered as an automatic surjec-
tivity result for Jordan endomorphisms of B(IT} and hopefully has indepen-
dent interest. It states that the inclusion of merely two extremal operators
{one being rank-one and the other having dense range) in the range of a
Jordan endomorphism & of B(H) assures that @ is automatically bijective.
This result provides a unifying frame in which our reflexivity theorems will
be easy to obtain.

(1)

THEOREM 1. Let H be a separable infinite-dimensional Hilbert space and
$ : B(H)— B(H) a linear mapping. If & is a Jordan homomorphism whose
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range contains a rank-one operotor and an operator with dense range, then
& is either an automorphism or an antiautomorphism.

For the proof we need the following two lemmas.

LeMMA 1. Let H be as above. Then any Jordan homomorphism & :
B(H) — B(H}) is continuous.

Proof. We first show that there exists a projection (i.e. a selfadjoint
idempotent) P € B(H) with infinite rank and corank for which the mapping
A — P(PAP) is continuous. Suppose that & # 0. Since the kernel of @ is
a Jordan ideal, by [FMS, Theorem 3] it is also an associative ideal. Let
P be an infinite-dimensional projection. If #(P) = 0, then using the ideal
property of ker &, we easily see that I € ker &, yielding ker & = B(H), which
contradicts & s 0. Thus &(P) # 0.

Now, let (F,) be a sequence of pairwise orthogonal infinite-dimensional
projections and assume, on the contrary, that for every n € N there is an
operator A, € B(H) such that | 4,] =1 and

1B(Prdn Pa}ll = n2™|1B(P)|I".
Define 4 =3 4 P,A,P, € B(H). Then

n an
S(E)IPIE(A)] 2 |18(PuAP)| = %;il!ﬁ(PnAnPn)ll > nl|B(Fn)|*.

Since | #(P,)| # 0 and the inequality above holds for every n € N, we arrive
at a contradiction.

So, let P € B(H) be a projection with infinite rank and corank for
which A +— &(PAP) is continuous. Write P = > >7 | e, ® ey, where (e,)
is an orthonormal sequence. Let {f,,) be a complete orthonormal sequence
which extends (e,). Consider the operators '

T=) fa®en 5= en®fn

It follows that TPS = I and SPT = (@ is a projection with infinite-
dimensional range. Since
P(AQ) = B(TPSASPT) = &(T)B(P(SAS)P)S(T)

and the mapping A — S(P(SAS)P) is obviously continuous, so is A —
P(AQ), and similarly for A — $(QA). Therefore, if Q' = I — @, then we
have the continuity of the linear mappings

A 3((QA)Q) = H(QAQ),

A $(QAQ) = 8(Q'AQ),

A B(QAQ) = B(QAQ).
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Tet @ =Y oo, el ® e, with some orthonormal sequence (el). Bxtend {e],)
by (f.) to a complete orthonormal sequence and define

R=Y fi®e,+) cn®fn
i n

Plainly, RQR = @' and hence the mapping
A $(QAQ") = $(RQRARQR) = P(R)F(Q(RAR)Q)P(R)
is continuous. Finally, since
5(4) = B(QAQ) +B(QAQ') + B(Q'AQ) + B(Q'AQ) (A€ B(H)),
we obtain the continuity of &. m

LEMMA 2. Let H be as above. If & : B(H) — B(H) is o Jordan ho-
momorphism, then there exists an idempotent E € B(H) such that for any
mazimal family (P,) of pairwise orthogonal rank-one projections, the se-
quence {3 n_, B(Py)) converges strongly to E. Moreover, E commutes with
the range of &.

Proof. Some steps of the argument below have been motivated by ideas
from the proof of [PS, 2.2 Lemmal.

Call two idempotents P, Q € B(H) (mutually) orthogonal if PQ = QF
= (). Observe that & maps idempotents to idempotents and preserves crthog-
onality between them. Indeed, if P, &) are mutually orthogonal idempotents,
then by {1) we have 0 = &(PQ + QP) = ${P}P(Q) + $(Q)P(P), which
readily implies the orthogonality of the idempotents $(P) and $(Q).

Now, let (£,) be a maximal family of pairwise erthogonal rank-one pro-
jections in B(H). Let S,, = Y _; ®(Ps) and define E(P) as the idempotent
having range R = §panjmg S, : n € N} and kernel K = ) ker S,. To
verify that E{P) is well defined, we have to prove that R@ K = H.

We first show that RN K = {0}. Let (z,) be a sequence in span{rng Sy, :
n € N} which converges to an r € K. From Lemma 1 we learn that & is
bounded. Let M dencte the norm of @. For every € > (0 there exists an
ng € N such that |jr — z,|| < e/M (n > ng). Since @, is in the range of an
idempotent Sy and r is in its kernel, it follows that ||0 — 2, || < & for every
1 > ng. Thus z, — 0 and we have r = 0.

We next prove that R+ K = H. Let A € H. For every n € N we have
h = Sph+ (I — Sy)h. Since (S, k) is a bounded sequence in a Hilbert space,
it has a weakly convergent subsequence, which we still denote by (S,h).
Since closed subspaces of H are weakly closed, the first term in the sum h =
w-lim Sph + w-Um{I — S,k belongs to R. Moreover, SnSm = SmSn = Sy
for every n < m. Since bounded operators on H are weakly continuous, we
conclude that the second term above is in K.
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So, E{P) € B(H) is the idempotent corresponding to the decomposition
R®K = H.1tis easy to see that S,h — E(P)h whenever h € span{rng S, :
n € N} or b € K. By the Banach-Steinhaus theorem, (S, ) converges strongly
to E(P).

Let us now show that E(P) is independent of the choice of (F,). Let
(Qn) have the same properties as (P,) has and denote by T, the nth partial
sum of the series 3 (Q,). Clearly, 3%y Pe@i + @i Y f—y P — 2Q; in

the operator norm. By the continuity of &, STk + T%S, — 2T} also in
the operator norm. Since S, — FE(P) strongly, it follows that E(P)T% +
Ty E(P) = 2Ty {k € N). We then conclude that E(P)E(Q) + E(Q)E(P) =
2B(Q). Similarly, E(Q)E(P) + E(P)E(Q) = 2E(P). Hence E(P) = E(Q)
as claimed. Set B = E(P).

We prove that BES(A) = S(A)E for every A € B(H). Let Q be a pro-
jection of arbitrary rank. Choose a maximal family (F,) of pairwise or-
thogonal rank-one projections in such a way that for every n € N either
P.Q = QP,=0o0r P.Q = QP, = P,. In the first case P,Q@+ QF, =0 and
hence $(P,)B(Q) + $(Q)P(F,) =0, while in the second case H(Fr)P(Q) +
B(QVB(P,) = 20(F,,). Since #(P,) and #(Q) are idempotents, an easy ar-
gument proves that $(P,)}8(Q) = #(Q)P(P,) (n € N} in both cases. We
now have B#(Q) = ¢(Q)E. Since (Q was an arbitrary projection, using the
spectral theorem for selfadjoint operators and the continuity of @, we get
the last assertion. m

Now, we are in a position to prove our first theorem.

Proof of Theorem 1. By Lemma 1 and [FMS, Theorem 3|, ker &
is a closed ideal. We intend to prove that ker & = {0}, that is, @ is injective.
A classical theorem of Calkin states that every nontrivial ideal of B(H) is
included in C(H) and contains F(H). Hence, supposing ker$ # {0}, we
have ker® = C(H). We have already learnt that ¢ maps idempotents to
idempotents and preserves their orthogonality. It is well known that there
exists an uncountable family I of infinite subsets of N with the property
that any two different members of I have finite intersection. Therefore, we
have an uncountable family of projections in B{H) such that the product
of any two of them is a finite-rank projection. Taking images under &, we
see that B(H) contains an uncountable family (F,) of pairwise orthogonal
nounzero idempotents. But this is a contradiction. To see this, for every ¢,
pick a vector m, from the range of P, for which ||za[ = [|Pal. We then
have o

1Pl - [2a = 3l > [1Paga — Pazll = |7l = |[Pal

and thus ||2,—2s| = 1 whenever & # 3. But this is impossible in a separable
metric space, and we get the injectivity of €. : ‘
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We next assert that there is a rank-one idempotent whose image under
@ is also rank-one. Let T' = z @ ¥ be a rank-one operator in the range of
@. Suppose that (z,y) # 0. In this case, multiplying T by an appropriate
constant, we get a rank-one idempaotent P in rng @ and ene can easily verify
that the idempotent $~*(P) is also rank-one. Now, suppose that (z,y) = 0.
Then T2 = 0. Let A be such that #(4) = T". Consider a rank-two projection
P with PAP # 0. We infer that 0 # $(PAP) = $(P)T'é(P). Since the
operator ®(P)T'®(P) is also rank-one, we can assume that it is square-zero.
Consequently, we have a rank-one, square-zero operator S and an operator
B with rank not greater than 2 for which ¢(B) = S. Suppose that the
square-zero operator B has rank two. Then there are independent vectors
{z,z'} and {y,y"} such that

B=z@y+z' ®y.

Using the property that B? = 0, it is elementary to show that {z,z'} L
{y,9'}. Let A,y € Chesuchthat 2’ — Az =3¢ Loand ¢ —py =y Ly
Let z, 2’ be orthogonal unit vectors such that {z, z'} L {z,2’,y,%'}. Consider
the operator

1 1, 1 1 ,

O= e @7 & 7 @50ty @2 e ® ¢ 42
One can easily check that CBC = z ® z + 2’ ® #’ and hence #(C)S®(C) =
S(CBC) # 0 is a rank-one operator which is the sum of two orthogonal
nonzero idempotents. But this is a contradiction. Therefore, B is of the
form B = ¢ ® y and defining

O ! 2@z + L
EE Pl
with a unit vector z L {z,y}, it follows just as above that #(z ® z) =
#(CBC) is a rank-one idempotent.

We now claim that @|r(z) is either a homomorphism or an antihomo-
morphism. In fact, this follows from a classical theorem of Jacobson and
Rickart [JR, Theorem 8] stating that every (additive) Jordan homomor-
phism on a locally matrix ring is the sum of an (additive} homomorphism
and an {additive) antihomomorphism. Using this theorem we have addi-
tive functions ¥1,%, : F(H) — B(H) such that $|pz) = ¥1 + ¥a, ¥ is
a homomorphism and ¥ is an antihomomorphism. Let P € F(H) be an
idempotent for which (P} is rank-one. Since $(P) = ¥, (P) + ¥,(F) and
the terms of this sum are also idempotents, we see that either ¥y (P) = 0
or Wa(P) = 0. By the simplicity of the ring F'(H) this shows that either
¥y =0 or ¥y = 0. Plainly, this is equivalent to what has been stated above.
In what follows, with no loss of generality, we can assume that P pm) s a
homomorphism.

icm

The sel of automorphisms of B(H) is reflexive 189

Now, let y,z € H be such that $(y @ y)z # 0. Define a linear operator
T on H by

Te=¢z®y)z (zel).
Then T is bounded and, by the multiplicativity of & on F(H), it is very easy
to see that TA = (AT (A € F(H)). B Tz =0, then TAx = $(A)T'z = 0
for every A € F(H). Obviously, this implies 2 = 0 and hence T is injective.
We claim that T is surjective as well. To show this, we first prove that
the idempotent E given in Lemma 2 is the identity on H. In fact, since E
commutes with the range of @, the mapping

V. A~ 9(A)I - E)

is a Jordan homomorphism. Moreover, as can be easily verified, ¥ vanishes
on every finite-rank projection and hence on the whole F(H). Examining
the kernel of ¥ and applying the argument used in the first part of the proof
in connection with the cardinality of any set of pairwise orthogonal nonzero
idempotents in B(H), we have (I — E)$(A) = &(A)(I ~ E) = 0 for every
A € B(H). Taking A with $(A) having dense range, we infer that E = I.

We are now in a position to show that the range of T'is dense. Let (7%,)
be a maximal family of pairwise orthogonal rank-one projections. We know
that & maps rank-one operators into rank-one operators. Indeed, this follows
from the fact that there exists a rank-one idemnpotent whose image under &
is also rank-one and from the assumption that & zz) is a homomorphism.
Since this implies that every #(P,) has rank one and the series 3 @(Fy)
converges strongly to I, we have vector sequences (ex) and (f,) in H for
which f,, ® e, = $(Pn) and

Z(m:enxfmy} = (E:y> (z,y € H).
n
This immediately implies that the subspace generated by {fn :mn € N} is
dense, But every f, is in rng T Indeed, since TP, = frn®e, T = fn®@I™e,
and, by the injectivity of T, we have TPy £ 0, it easily follows that f, €
g T,

We next prove that 7' is in fact surjective. Let v € H and (@) a8 sequence
in H such that Tw, — y. Since TA = $(A)T (A € F(H)), we find that
(T Az,,) is convergent for every finite-rank operator A. Thus, for every u € H
and for a fixed nonzero v € H the sequences {{(Tn, w)Tw) = (Tv ® u)(zx))
and, consequently, ({xn,u)) are convergent. Plainly, this shows that (z,)
converges weakly to some z € H. By the weak continuity of T, we have
Ty =y and this proves the surjectivity of 1.

It is now apparent that #(4) = TAT™! (A € F(H)). In particular, the
range of ¢ contains every finite-rank operator. Following the proof of a well-
known theorem of Herstein [Her| given in [Pal, Lemma 6.3.2, Lemma 6.3.6
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and Theorem 6.3.7] stating that every (additive) Jordan homomerphism of
an algebra onto a prime algebra is either a homomorphism or an antihomo-
morphism, one can verify that #(H) C rng & implies that & is either a homo-
morphism or an antihomomorphism. If @ is an antihomomorphism, then for
every A, B € F(H) we have TAT'TBT ! = T(BA)T™', i.e. AB = BA.
Therefore, @ is a homomorphism and one can check that 7'4 = #(A)T and
hence $(A) = T AT~} for every A € B(H). This completes the proof of the
theorem. w

Remark, One could be interested in the question of whether only one
operator in the range of a Jordan homomorphism can be enough to inoply
a similar automatic surjectivity result. The answer is easily seen to be af-
firmative. Indeed, consider a rank-one operator z @ y with (z,y) = 2. If
A=1—-z®yis in the range of a Jordan homomorphism of B(H), then its
square A% = I also belongs to it and hence the same is true for 7 & y. Our
theorem above now applies.

THEOREM 2. Let H be a separable infinite-dimensional Hilbert space.

Then the set of all automorphisms of B(H) is topologically reflexive in
B(B(H)).

Proof We use a quite standard argument. Let & : B(H) — B(H)
be a bounded linear operator with the property that for every A € B(H)
there is a sequence (%,) of automorphisms (depending on A) such that
®(A) = lim, $,,(A4). Clearly, # maps idempotents to idempotents.

We assert that & is a Jordan homomorphism. If P, Q are orthogonal
idempotents, then P + @ and hence $(P + Q) are also idempotents. From
(P + Q)* = B(P + Q) we infer that S(P)B(Q) + #(Q)S(P) = 0. This
shows that @ preserves orthogonality between idempotents. Let P,..., P,
be pairwise orthogonal projections and Ay, ..., A, € C. We compute

@(i)\km)z - (i)\k@(Pk))Q = i)\ﬁdB(Pk) - @((i,\kpkf).
k=1 k=1 F=1 k=1

Using the continuity of ¢ and the spectral theorem for selfadjoint operators,
we obtain $(A?) = (A4)2 for every selfadjoint A € B(H). Lincarizing this
equality, i.e. replacing A by A+ B (B is also selfadjoint), we have G{AB -
BA) = $(A)$(B) + ¢(B)B(A). Then it follows that
(A +iB)*) = $(A?) — B(B?) +iB(AB + BA)
= 3(A) — B(B)* + i(B(A)P(B) + (B)B(A))
=(8(4) +i9(B))?,
which implies that @ is a Jordan homomorphism. Since the limit of a con-
vergent sequence of rank-one idempotents is a rank-one idempotent and ob-
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viously (1) = I, the conditions of Theorem 1 are fulfilled. Consequently, &
is either an automorphism or an antiautomorphism. If & is an antiautomor-
phism, then for a unilateral shift I/ € B(H) we infer I = &(I) = (U)d(U™),
which means that $(U) has a right inverse. But @({7) is the limit of a se-
quence of operators all similar to U. Therefore, neither the elements of this
sequence nor its limit @(U) have right inverses. This contradiction shows
that & is an automorphism and the proof is complete. m

Remark. It seems natural to ask what happens in the finite-dimensional
case. In this case any nonzero Jordan homomorphism is injective and thus
surjective as well. Thus, Theorem 1 remains valid. This is not true for The-
orem 2. In fact, its proof shows that if we have a linear mapping on a
finite-dimensional B(H') which can be approximated at every operator by a
sequence of automorphisms, then this mapping is either an automorphism
or an antiautomorphism. However, nothing more can be stated as shown
by the example of the mapping A ++ AT (transpose of A with respect to a
fixed complete orthonormal system). This antiautomorphism has the above
mentioned property of approximation since in the finite-dimensional case A
and AT are similar for every A € B(H).

OprEN PROBLEM. In connection with Theorem 2 and the result of Bregar
and Semrl {BS2] mentioned in the introduction we conjecture that the topo-
logical reflexivity of the automorphism group holds true also in L{B(H)),
i.e. the approximated mappings should not have been assumed to be con-
tinuous.

In our last theorem we apply our key result to get the topological reflex-
ivity of another very important set of transformations on B(H).

TusoreM 3. Let H be o separable infinite-dimensional Hilbert space.
Then the set of all surjective linear isometries of B(H) is topologically re-
Hezive in B{B(H)).

Proof. It is a folklore result that, by Kadison’s fundamental theorem
on the structure of surjective linear isometries of a unital C*-algebra Kadl,
Theoram 7], every surjective isometry of B(H) is of the form either A —
UAV or A — UATV with some unitaries U, V.

Let & : B{H) — B(H) be a linear mapping with the property that for
every A € B(H) there exists a sequence ($,) of surjective isometries such
that $(A) = lim, &.{A). Plainly, € is an isometry. Our aim is to show that &
is surjective. Since surjective isometries of B{H) map unitaries to unitaries,
go does @. Of course, we may suppose that &(7) = I. Then the well-known
Russo-Dye theorem [RD, Corollary 2] on the structure of the unitary group
preserving mappings assures that @ is a Jordan *-homomorphism. Since ¢
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ig easily seen to preserve the rank-one operators, Theorem 1 applies again
to yield the surjectivity of &. m

Remark. We give a further example in order to emphasize how the
topological reflexivity of the sets of all automoerphisms as well as surjective
isometries of B(H) should be considered exceptional even among the cases
represented by some “nice” operator algebras. In fact, we feel that, to some
extent, this property characterizes B{H) among its subalgebras.

Consider the C*-algebra C'(H). Let (ey,) be a fixed complete orthonormal
sequentce in H. Choose unitary operators U, such that

(neN, 1<k<n).
If U denotes the unilateral shift corresponding to the sequence (e}, then
it is obvious that Unep —> Uep, {k € N). The Banach-Steinhaus theorem
shows that (U,) converges strongly to U. Let

P(A) =UAU*, &,(A) =U,AU; (neN).
Clearly, &, is a *-automorphism and hence a surjective isometry of C{H)
(n € N). Moreover, $,(4) — #{A) for every rank-one operator A and
consequently, by the Banach-Steinhaus theorem again, for every 4 € C(H).
However, ¢ is not surjective.

OPEN PROBLEM. Does there exist a proper C*-subalgebra of B(H)
which contains every finite-rank operator and has the property that the set
of all its automorphisms or surjective isometries is topologically reflexive?

Usen = epy1
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