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L? and LF estimates for oscillatory integrals
and their extended domains

by

YIBIAO PAN (Pittshurgh, Penn.), GARY SAMPSON (Auburn, Ala.)
and PAWERE SZEPTYCKI (Lawrence, Kan.)

Abstract. We prove the LP boundedness of certain nonconvolutional oscillatory inte-
gral operators and give cxplicit description of their extended domains. The class of phase
functions considered here inciudes the function jz|*[y|®. Sharp boundedness results are
obtained in terms of o, B, and rate of decay of the kernel at infinity.

0. Introduction. Our purpose in this paper is to study the {L?,LF)
mapping properties of oscillatory integrals, or more cornmonly referred to
as non-couvolution operators of the form

oc
(0.1) Kf(z) = | ke,y)f ) dv,
0

z >0,

the kernel k is of the form
(0.2) k(z,y) = p(z,y) expl(ig(z, y))

and g is a real-valued function. Conditions on g and ¢ are formulated in
Section 1. It is clear that we can obtain similar type results for such operators
defined on (=~o0, o¢). ‘

Such problems have a long, but somewhat uneven. history; see for exam-
ple [9t] and the references there.

They come about in studying convergence questions for Fourier series,
in solving boundary value problems for PDEs, for example as in [Hol, [S3],
[Wal], and in other settings as well, see [St], [Pan].
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202 Y. Pan et al.

‘We also consider operators
(0.3) Sf(z) = Kf(z*"), z>0,

where b > a > 1.

This is the beginning of a program to obtain the complete (L?, LP) map-
ping properties for the operator K (as well as its (—00, 00} version) with
1 <p< oo, A similar program was carried out in the convolution case (see
[7s]).

In this paper, we obtain some of the mapping properties for these oper-
ators. In fact, we establish sharp results. For the {2, 2) results, see Theorem
2.1. For the (p, p) results, see Corollary 3.2.

In Section 5, we consider K in function spaces other than LP. We describe
explicitly the extended domain of K in the sense of [AS]. Not surprisingly,
this turns out to be a compressed weighted amalgam space of I and L'.
The description of the extended domain of K generalizes previous work of
[Sz] and [LS].

It would be desirable to find in thig context a description of the range of
K more precise than that given by our estimates.

We sometimes write § f(u)du to mean {3 f(u) du. C indexed if neces-
sary will denote a positive constant depending only on the kernel k. It is
understood that even in the same string of formulas, C in different places
may stand for different such constants.

1. Preliminary estimates and conditions on k. We now formulate
the conditions on k in (0.2): for b > a > 1,

(1.1) gz, y) = B(=z) afy)®
where o, 3 : [0, 00) — [0, o0) satisfy:
(a) For some m, M >0, m < §/(z), a'(y) < M for all z,y >0,
(1.2) (b) a(0) = B(0) =0, and
(¢) B’ is absolutely continuous with 8"(z)/z% € L*(2, c0)
for some £ > 0.
The actual value of £ will be determined in the next section.

With this choice of g, we can consider ¢ satisfying the following condi-
tions:

(a) lp(z,9)] < Clz —y|™,
- 6 et Zeia e
where 0 <y < (b—a)/(2b) and b > a > 1 are as in (1.1).

In the case when v = 0 we also need the following version of (1.2), (1.3)
with the roles of z,y and «, 3 reversed:

(1.3") {a” € L}(0,2), .
Oyo({z,y)| < Clz —y|™t for |z —y| > 2.

iom
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Our I? estimates in the next section will be based on the following
proposition.

PROPOSITION 1.1, Forreal £, 0> 1, and —1 < c < b—1 we have
141

(1.4) [ e exp(it’e) dt| < CiEm0+, o<ty < b,
)
ta

(1.5) { t° explit®e) dt‘ SOlEHet 0 <y <ty

i1
We also have the conver combinations (1.4)'~9(1.5)¢:

t3

S £° explit®¢) dt‘ < CIE'(l+c)(9—1)/b—9t§c+1~b)6, 0<6<1.
t

(16)

Proof. Notice (using contour integration) that the integrals Stce“b dt
are convergent for b —1 > ¢ — 1 and hence integrals over finite intervals
are uniformly bounded. This is also the case when ¢ = b~ 1,5 > 1 and
b=1,¢=0. For (1.5) just write

tceitbf - (ibtb-—-c—lg)—lateitbg
and integrate by parts.

In some of the estimates in the forthcoming sections, we shall use the
following version of Schur’s lemma (see [G]).

ProrosiTION 1.2, If U,V are (o-finite) measure spaces and w{u,v) >0
18 measurable on U X V, then the integral operator

f— S wlu, v} fF(v)do
v

is bounded from LP(V) into LP(U) if and only if there exist functions

AU — (0,00), p:V —(0,00)
and constants Cy,Co > 0 so that

S K, v)A(w) du < Cyp(v)P/?’

U
and

S k(u, v)p(v) do < CoA(u)? /P,

v
If p = 2 and the conditions are salisfied, then the norm of the operator is

bounded b'y YV 6102.

The following special cases are useful in what follows.



204 Y. Pan et al.

COROLLARY 1.3i. Let £ : (0,00) x (0,00) — [0,00) be positive homoge-
neous of degree —1 and such that
S[ra(l, v) + kv, 1)Jp ™ dv < o0
for some € € (0,1). Then the integral operator
f— S w(u,v)f(v)dv
is hounded in L*(0, 00).
Denote by 1z the characteristic function of the set E.

COROLLARY 1.3ii. Let k(u,v) = (u+v) " 2lu —v| "1 7 (|lu — v|) where
T>0,0<0<1,0>0and p+ o < 1. Then the operator with the kernel
K is bounded in L*(0,00).

A result which we use to lift (2,2) mappings to (p, p) mappings is well
known in the context of Fourier series (see p. 125 of [Zyg, Vol. II}).

PrOPOSITION 1.4. Let S be a sublinear operator in the space of func-
tions on (0,0c) and suppose that the domain of S, D(S), contains all step
functions. If (1) |$Fllec < Cllflx and (i) [|Sfll2 £ Cllfliz, f € D(S), then

(L) {15f()Par2de < CY|fPdy 1<p<2,
and in case S is linear (and S* denotes its adjoint), we get
(1.8) {5 fl2dz < CIf1%* P dy  if 2<g<cc.

Proof. Consider Tf(z) = xS f(z) with dv(z) = %. Now T'is a sublinear
operator and

ITF(@)| < o] 15 flleo < Claf - 1| £]l2
by (i). Therefore,
{z:|Tf(2)| > A} {z: Clz| - | f]ln > A} = B,
thus ' c
vl : [Tf(=)] >} < | dv s SCAEE
B
Also by (i) we get
VT (@)* dv() < CYIF1P dy.

Then (1.7) follows from the Marcinkiewicz interpolation theorem. Also, (1.8)
follows by duality.

2. L? estimates. In this section, we shall discuss (L%, L?)-estimates for
the operator K f defined in (0.1) and (0.2) and the companion operator S f
defined in {0.3). We will prove the following three theorems:

icm
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THEOREM 2.1. Suppose that v = (b — a)/(2b), that either b > a0 > 1 or
b>a =1, (1.2), (1.3) are satisfied and that o and i satisfy (1.3") when
a = b. Then the operator K is bounded in L2(0, c0)

THEOREM 2.2. In addition o (1.2), (1.3) assume thai
lele,y) < C for |z —y| < 5,
(2.1) S g, £lE, el v)
max{ e/, |z—v|} <5 ﬂl(m)
and let ¢ = ()(1 ~ 2v) - a)/a. Suppose that either 5> a > 1 orb>a > 1
and v > 0, and that o end ¢ satisfy (1.3') when v = 0. Then K is a
bounded operator from L*{0, 00) to L*(0, c0; z%dx), i.e., §o 1K flz)|Pzedz <
i <
Clo (fW)I® dy.

For d > 0 define the operator Sf(£) = Kf(¢4).

de < C,

THEOREM 2.3. If the assumptions of Theorem 2.2 are satisfied and if

d=a/(b(1—2v)), then § is o bounded operator in L*(0, 00). If v = 0, then
d=a/b.

Remark 1. Theorem 2.3 is an immediate conseqtience of Theorem 2.2:
letting = = £ we get

oo o0 oo

_ 1 _
| 1B ()P de= - | IKf(@)Pa s < € [ |£()P ay,
0 0 0
provided (1 — d)/d = c.
Remark 2. If a > 1 then (2.1) can be replaced by _
(2.17 | 10:io(, w)p(@, v)B'(2) ]|z < C'max{u®,v%,1},
ek [@—ul,lw—v|}<5
where £ < (a — 1)(1 +¢)/b.
It is easy to translate (2.1) and (2.1") into {sufficient) conditions on ¢ and

A: (2.1) corresponds to the condition that 47 € L' and (2.1') corresponds
tox ¢3¢ L.

Remark 3. Let x be a smooth cutoff function, () = 1 for 0 < ¢ < 4,
x(t) =0 for £ > 5 and let
(2.2) ke, y) = x(lo — y)k(,y) + (1= x(lz — y) k=, y)
= k(@ y) + ka(2,y)-

We will obtain the relevant estimates separately for the operators K
and Ky corresponding to the kernels k; and k;. We have ||ki(z,y)|dy,
§ [k (z,9)| dx < C by (1.3) and Theorem 2.1 is immediate for K7 (which is
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actually a bounded operator in L? for 1 < p < oc). It is not so for Theo-
rem 2.2 and here the condition (2.1) is needed. As concerns K3, Theorem
2.1 is the special case of Theorem 2.2 with v = (b — a}/(2b).

The conclusion of this remark is that it is sufficient to prove Theorem 2.2.

Remark 4. The case when a = 1 and v = 0 is excluded in Theorem 2.2
and will be dealt with in Section 4.

We now proceed with the proof of Theorem 2.2 (and according to Remark
3, of Theorem 2.1).

We decompose K3 by letting By = [0,2], E» = [2,00} and consider the
operators Kyj = Ko : L*(E;) — L?(B;,z¢dz), 1,f = 1,2. Clearly K13 = 0
and we will show, in this order, that the operators K, Kis, Koy, Kqy are
bounded.

Because of (1.2) we have m°z¢ < 8{x)® < M*°x°, with the corresponding
inequalities between integrals with weights z° and 8{z)°.

For Hf(x) =\ hiz,y)f(v)dy we can write

(2.3) | Blo)lH f () de < | § Au, v) f(w) F(v) dudo,
E FF

where

(2.4) Alu,v) = S B{z)h(z, ulh{z,v) dx.

The desired estimate {, [H f(2)|?0(z)°dz < §,{f(y)*dy is equivalent to
HAllza¢ry,z2(Fy < C where A is the operator with the kernel A(u,v).

In all four cases we use variants of the same approach based on Propo-
sition 1.2, on inequalities (1.4)-(1.6) and integration by parts to estimate
fAll-

1) Estimate of Ki. We recall that ¢ satisfies (2.1) and vanishes for
Iz —y] > 5. The kernel in (2.4} can be written in the form

Alw,v) = ﬁ(m) oz, w)p(z, v) exp{if(e) [x(u)® — a(v)]} do
Blz)
S t° exp{it®[oe(u)® ~
0

ple u)cp(:n ’u)d a(v)*]} dtdz.

0
(e 0]
0

Also A{u, v} = 0if ju—v| > 10. Integrate by parts denoting by [z;, 23] the
interval outside of which ¢(x, u)p(,v) vanishes (zy > max{0,u —5,v ~ 5},
Tz < minfu + 5,v + 5}).

icm
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The modulus of the resulting first term,
Blzz)
Pl u)pls, v)8'{(z2) ™ | explit’(a(u)® — a(v)} dt,
0

is dominated by {using (1.4} and || < C)
(2.5) Jor{u)®* — a(v)“l“(lﬂ)/blm,mi (Ju — v}).

The same estimate {(using (2.1)) is valid also for the second term

B(=)
x, wpp(x,
S wa 5 i exp{it®[e(1)® - a(v)*|} dtdz,
B'{z) 5

with the extra factor max{1, u*, v°} in case of the condition (2.1’ ).

We use the inequality

H a"?“izﬂf“‘?ﬂ( a.—1+na.~—1) 61”209 ‘1213

and (1.2) to get
(2.6) lor(u)® — o] 70+ < Of(ut 4 v2 Y — wf] I,
which together with (2.5} yields the corresponding bound of Afu, ).

We now use Corollary 1.3ii with ¢ = (a ~ 11+ ¢)/b, 0 = (1 +¢)/b (if
a > 1 we could use o = (a — 1){1 + ¢)/b — ¢ in the case (2.1’)) to conclude

that A(w, ) is the kernel of a bounded operator in L2(0, oc).
This completes the estimate of K.

T

From now on, as explained above we assume that p(z,y) = 0 for |z — ¥l
< 4. Also, by a suitable change of the variable x which should be done before
splitting & as in (2.2), we may assume that 3(2) = 2.

2) Estimate of K. According to (2.4) we need to find a suitable estimate
for

(2.7) Alu,v) = | 8(z)°0(z, u)e(z, v) exp{if(z)]a(u)® ~ a(v)?]} dz
B(=)

el 0,

7(z) ) £ exp{it’leus)* — o(v)“]} dt dv

|
!

for u,v > 2.
Since @{z,y) =0 for |z — y{ < 4, we have, for 0 <z <2 <y,

folz, )l S Cy™ |1l —~max{az/y: 0< 5 <2< 4 <y} = Cy Mg oy
and similarly
[Ozip(z, y) < Cy_'yﬁll[e;,oo}“
(1.2) implies that 8" is integrable over {0,2].
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Integration by parts in {2.7) produces two terms which can be estimated
using (1.4) and (2.6) by
Olp(2,u)ip(2,v)] - [a(2)® — a(v)?| O+

and

dz |afu)® — a(v)a|~(Fe)/t,

By the preceding remarks both terms can be estimated by
Cu~ o (™ + 2 1)y — o] ~Fe/E,

Since 2y +a(l+ ¢)/b =1 (this implies (14 ¢)/b < 1) it follows that the
last bound satisfies the conditions of Corollary 1.3i with any € € (v,1 )
# (, and is the kernel of a bounded operator in L*(0, 00).

This concludes the estimate of Kia.

3) Bstimate of Koy, We write

[+ T

{ Bl2)| K f(2)? do = Jim | §(x)°|K f(=)* da

2
and as in (2.4) we are led to estimating the kernel

T
(2.8)  Ar{u,v) = Sﬁ(m)“k(m,u)k(:c,v) dz

T oz e "
Sm‘%d | trep{fla(@) - o)} dtds, 0suvs2
2 B{z)

The boundary term appearing in integration by parts in (2.8) contains
the factor ¢(2, u)e(2,v) =0 for 0 < u,v < 2 and drops out.
The second term. is of the form

{ o, £ welz)
gam-"?_’”(_)) S ¢ exp{t*[a(w)® — a(v)*|} dt de.

2 B=)

Also, for 0 <y <2 < =z, |@(z,y)| < Cz™Y and |Hp0(z,y)| < Cz~v~L. Using
these, (1.6) and (2.6) we get the estimate of the form

|Az(u, )] £ [(u®! 4 0%y — of|7BFe =000

Y

x| @7 @)+ 2 (2))a’ e da
2

icm
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The last integral is finite as long as

142
Bb—1—c)+y= 21127 a+ Voo 42y > ¢

where ¢ is the parameter appearing in (1.2).

The factor [(u® ! +v%~ 1) u—w|]~(+H1=6)/4=0 is the kernel of a bounded
operator in L2(0,2) provided the exponent —(1 +¢c)(1—8)/b—08 is > ~1/a
(this is a consequence of Proposition 1.2 with A = g = 1). If v > 0, this can
be accornplished by choosing 6 < 2v/(a — 1 + 2v).

We obtain a bound for ||A7|| independent of T

When 7 = 0 we use the following duality argument. Instead of the oper-
ator Kp; we consider its adjoint K3, : L%(2,00;2°dz) — L?{0,2), given by
the formula K3 9(y) = {5 k(z,y)9(z)zdz = | k(z,y)g(z)z/ dz where
g(z) = z*?g(z).

The desired estimate is S; 15 k(z, y)g(z)z* 2 dz? dy < C 15 |5(x)|? de,
which as before leads to consideration of the kernel

A (u,v) = (uv) C/ZSLP Joolv, v) exp{io{z)*[B(u)" — B(v)*]} dy

0
c/2§ P(u, y ‘P(’U y) %U) exp{is”‘{ﬁ(u)b .

0

B(v)"} ds.

We integrate by parts and use (1.3) to arrive at the estimate
|A*(u, v} < Cluw)¥F(ub™t +0° ) |u - of]7Ye for w,w > 2.

In the present case ¢ = (b—a)/a and the last expression is a kernel
satisfying conditions of Corollary 1.3i. We obtain a bound for | A*|| and the
estimate of K5 is complete.

4) Estimate of K. We add now, to the procedure used in the preceding
three cases, a dyadic partition of the quadrant [2,00) x [2, c0):

o

[ 8)|| ko)) dy]

2 2

o 2MmF! oo oo

”Z { |ZS (zuhallz —y) flv) dy‘ (z) de

am =2 2
< Z (i(w{l ¢ OSOk(m:y)f(y) dylzdw)1/2)2,

where x; = Ly 2141 is the characteristic function of the interval [2¢, 21,
Again we have used the fact that k(z,y) =0 for [z —y| < 4.
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The integrals inside the sum are of the form (2.4) with the kernels
gmvi«l
Alu,v) = A, v) = S Blz)k(z, w)k(z, v)xi(lz — u))xi(lz ~ v]) dz.
2m
Our objective now is to find estimates of the norms of the corresponding
operators in L2(0,00) which would insure that

(2.9) i (i ||Am;|!:"/2)2 < 0.

m=1 =2
We write the kernels A,,; in the form
Ami(u,v) = | B(2)%k(z,u)k(z, v) do
Sml
where 5,,; 18 the interval

Sint = Spu(u,v) = {z € [2™, 2™ ] lz—ul,|z—v|le [2£,2"‘“"1]}
We observe that if S, # 0, then
() ju— o] < 247,

2.10
(210) (if) 2,0 > 2medmll =1 f g o211 4 1.

Indeed, if z € Sy then fu—v| < Ju—2z|+ |z —v| < 284+ 2¢ = 2441 which
is (i). Also, with y = u or v we have y > z — |y — z| > 2™ — 2t+1 > gm-1
fm>1+2 Similarly y > |y —2| ~2z > 2" — 2™+ > 2=l 4f | > 4 2
If m = -1, then y > =, for the reverse inequality would imply that
2<y <z —2' <0, and it follows that y > z + 2! > 2!, This proves (if)

Set S = [Z1,22] in order to write

T ela,u)gle,v)  *1
Am = § 22000 | exp it [o(u)® — ov)®)} di de
@1 p (x) B(x1)

and integrate by parts.

The modulus of the boundary term is estimated using (1.2), (1.3), (1.6),
(2.6} and (2.10) by

Clzg — u| T|ag — v]~Tgy tebH1)E

e e L L e

< 027w — v Mg grray (Ju — o),
where
Ot = 270+ (b— e = 1)0m + [(1 + c){1 — 8)/b+ 6](a - 1) max{m,l}
with the term max{m, !} omitted if m =1 orm =1+ 1.

icm

Estimates for vscillatory integrals 211

The modulus of the second term (in the integration by parts formula) is
estimated by
.

|

xy

o(z, u)o(z, v)
Op
B (x)
with the same # as in the previous estimate.
We observe that

da [(ua——l + Ua—l)m _ vE]—(l—l—c)(l—G)/b—B’

Lo Ty
S |Outp(z, w)ip(z, v)|dz < C271 ‘ lz —u|~7" de < G277
L1 T1

for v > 0 and < Cllog|%=%|| < C'log2 when v = 0, with the same estimate
when » and v are interchanged.
The term

§ lo(z, v)el@,v)8" (z)] d=

is estimated using (1.2) by C272712™%, This together with the estimate of
the boundary term results in the inequality

‘Aml (?L,'U)l < Cig—emt |u — Ul_n1[0=2:+2] (I’U; — ‘UD

with = (1 +¢)(1 —8)/b+ 6 and gmy = 0),,; — Mme.
By Corollary 1.3ii (with ¢ = (0 and ¢ = n) the norm in L%(2,c0) of the
operator with the kernel

| — w71 aree)(Ju — )
can be estimated by C2"*~") provided 0 < 5 < 1. Thus we arrive at the
estimate
Amull < C277m
where, using the definition of ¢,

Tt = Ot — (1 — )1
= [27w(1~9)(1—%+2§)]l+ [6—3(1—27)8——5 m
(L=2(1-0)

a

+ (a— 1}[ + 9} max{m, l},
with the same proviso as before concerning the last term. The point is now
to choose f (which may depend on m, {) so as to produce a lower bound for
the last expression of the form C max{m,{} with C > 0.

Consider first the case when v = 0. Then e > 1 and for m # [,I + 1 we
can choose ¢ sufficiently near to 1 so that {a — 1)8 > 2(1 —8(1 — 1/a)). We
then get the desired estimate provided & < b — b/a.
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The cages m = | or m = 1 4 1 differ only by the factor 2 in the bound
for |A.n| and we consider only the case when m =1 (again v = 0). Then

e [-afs- 2+ (- Y- - -4

for # < 1 sufficiently near to 1 and & < (b - b/a). We end up with the
restriction that £ < (b — b/a), with which we arrive again at an estimate
of the desired form.

If v > 0, then we can choose # < 1 so that 2y~ (1—-601{1-1/a+2v/a) > 7.
Then b—{b/a)(1-2v)8—& > 2yb—e > ~yb provided £ < vb. We drop the term
max{m, !} which appears with a nonnegative coefficient. We thus arrive at
a lower bound for 7, which implies (2.9).

This completes the estimate of K»o and the proof of Theorems 2.1-2.3.

3. The necessary conditions and LP estimates. In Theorem 3.1,
we show that the operators defined in {0.1) map L? into itself where p =
(b+a)/b. Next we consider the special case where a(z) = G(z) = = and
@(z,y) = |z —y|*". In Corollary 3.2, we show that for p = (b -+ a)/b, (p,p) is
an endpoint for this cperator. We also show that for some relevant operators,
(2,2) is a one-sided endpoint; this is done in Theorem 3.3.

We begin with the following result.

THEOREM 3.1. Let b > a > 1. If @(z,y) satisfies (1.3) with v =0 and
(13"} and o and § satisfy (1.2) then

K fllp < Cllflly  for p={(b-+a)/b.
Proof. It is clear that the operator

81 (@) = {p(a™/?,y)e? =" 0" £y dy

satisfies (1) of Proposition 1.4. By Theorem 2.3, S also satisfies (ii) of Propo-
sition 1.4. But

|KFE = C{a®/*YSf (@)l du < O FII5,
where the last inequality follows from Proposition 1.4 if p — 2 = a/b~ 1,
ie,p=(b+a)/b

In Section 4, we prove that the operator

oo il |?
eilzl Iylf(y)
we= 1 T

—0o
maps L into itself for p = (b + 1)/b. As an immediate consequence of
Theorem 3.1 along with this result, we get
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COROLLARY 3.2. Let 6> a > 1 and set

0o ilz]®lul*
T i) = | S—0F |$_yf:£y)

— o0

dy.

Then Ty is a bounded operator in L? if and only if
p=(b+a)/b.
If this is the case, then ||T; ||y p is bounded polynomially wn 7.

Proof. The sufficiency follows from Theorem 3.1 in case b > a > 1 and
b=a=11fb>1and a =1 we employ Theorem 4.1 from Section 4.
In order to see the necessity, consider

oo < il flyy 19
T2 = dx ——2
|71 _Soo _Sw o Y
co o9 ilx|fy 1/a 1/a-1 q
1/b-1 € Syl )yl
=C | dzlo|t*) | IO dy| .

—od — o0

Take fau(y) =1 N/2<y <N, and fnx(y) = 0 elsewhere. Thus (/)
=1 if (N/2)* < y < N° Suppose that T maps L? into [¢. That implies
(3.1) ITfwvlly < Cllfavlly-

Thus (3.1} implies that
g

S eimyylfq-wlfN(yl/a)

1/b-1
(3.2) S drz G170 gl ]

1/(2N*)<Lx<1/ N>

<C{lfn(w)® dy.
First suppose that N 3 1. Then since zy < 1, from (3.2) we get

1 N4
Nl N < CN
or
(3.3) Nal-n-alb=l < @ for N L.
Letting N — oo we see that (3.8) is violated if g(1 —r) ~a/b—1> 0O or
b+ a
(3.4) q > W

In our case 7 = 0, thus from (3.3) and (3.4} we conclude that ' does not
map L? into itself if ¢ > (b + a}/b.
Next suppose N < 1. This time from (3.2) we get, again using 2y < 1,
N9 . Nla/brg
e SO,
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or

(3.5) Netla/tlra=a/b-1 « v for N < 1.

Letting N — 0% we see that (3.5) is violated if ¢+ (a/b)rg—a/b—1 <0, or
b+a

(3.6) ¢<3 T

By (3.3)-(8.6) with r» = 0, we conclude that Ty does not map L9 into itself
if ¢  (b+ a)/b. This completes our proof.

The next result pertains to an operator corresponding to 7 = r =
(b~ a)/(2b) in (1.3).

COROLLARY 3.3. Let p> 2. Let b>a > 1, 7 € R and set

T f(z) = | %ﬁ% dy,

where v = (b~ a)/(2b). Then T, is a bounded operator in L2, but is not a
bounded operator in LP for any p > 2.

Proof The boundedness in L? follows from Theorem 2.1. For the re-
raaining part, we employ (3.3) and (3.4) withr = (b~a)/(2b). This completes
our proof,

4. The case where b > 1 and o = 1. Here we study the L? mapping
properties of the operator

(4.1) Tf(m)zswdy, TER, £>0,

‘(L‘ —- ylm’
forp=(b+1)/b
This complements the result in Theorem 2.2 in the special case when
a=1and v=0.
Rather than dealing directly with the operator T' we show that the dual
operator

=’ fly)
42 T*f(a) = | S— L g
(42) o) = Tt
maps LF into itself for p = b+ 1.

By using a method due to Phong and Stein ([PS]) and weighted norm
Inequalities we shall prove the following:

THEOREM 4.1, Let b > 1. There is a constant ¢ so that
(4.3) IT*fllp <Cilfll, forp=b+1.
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Remarks. (i) Let 9 be a C* function so that (z) = 1 for [z| > 1 and
n(z) = 0 for || < 1/2. To prove (4.3), we show that the operator

. b

e n{x —

Fy ——n(h—y)f(y) dy
|z -yl

is bounded in L1,

o (ii) /Let @ € C§° be such that supp{p) C [-1,1] and ¢(z) = 1 for

z| €£1/2. For any A > 1, define

k- 22(3)

- |$Ei'r

Let
(4.4) T\ flz) = SeimbeA(a: -y)fly}dy forzeR
Then {4.3) follows from the following

THEOREM 4.1'. Let b > 1. There exists o constant C independent of A
such that

(4.5) 1T flly < Clifll,  forp=5b+1.
We denote by Ky (£) the Fourier transform of K, i.e.,

B = | e Ks(2) da.

Then we have

LeEMMA 4.2, There are constants C1, Ca, Oy independent of A so that

(a) IEM(&) S Cilé™? for£eR,
(b) [Kx(8)] < Calé|™ for €] < 2, and

(45) o6
© 'd—ffs@)| < Colel* for ] < 2.

Remarlk. {4.6)(a) implies that (4.6)(b) holds for [£] > 2 as well, but
we use (4.8)(b) and (c) for small |¢| only. .
The proof of Lemma 4.2 uses standard arguments, such as integration
by parts, ete. Let Ty be given as in (4.2). Then we have
o
LFQ = | e fe™ Kz - ) f ) dy do

-—00

i

Seiy(yf’—a ) B ==, (2 — 4) dm] dy

= [ OR, (€~ ") (y) dy
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= [ 0K, (€ — y")ple — v*) F () dy
+{ e O, (6 — )1 - @) (¢ - ¥")F (v) dy
=P f(€) + QuflE)
We also define Sy and R, by
Sy f(§) = | Ba(t — " )6 — ") fly)dy, and

Raf(€) = {16 =1 - |BA(E = ")0lE = 9")F (W) dy.
PROPOSITION 4.3. There is a constant C > 0 independent of A so that

@7 VU fFOP + | Baf@P) g2 e < ClIfw)lPdy  forp=b+1.
Proof. Using (4.6)(a) we have

1
1@ F(6)| < § WU(@/N dy,
and from (4.6){b) we have

€= 1 1BAE = 9")el6 - )] S Clople — o)),
therefore we get

IRAF(E)1+ 10370 = O (lote -8 + T3 ) o0l
where

(4.8) g(t) = { (1/b) F(E/2)/0-1 for ¢ > 0,
0 elsewhere.
Hence we get

[ RAf(E)+ |@xF(€)] < CMg(£)
where Mg denotes the Hardy-Littlewood maximal function of g. Since

[z|*"* € A,, where A, denotes the weight class of Muckenhoupt [M], we
get

o]

§ (RAF(©1 + @) 1P~ de < O (a1g(€))PIelP~2 de
< OfloPleP2dt = C |17 a
for p = b+ 1. This completes our proof.
Next we show that similar estimates hold for the operator S,.

PROPOSITION 4.4. There is a constant C independent of ) so that
oo

V ISsr@IPIer—2de < o1 £ ()P dy

—0a

with p=b+ 1.

icm

Estimates for oscillatory integrals 217

Proof Let 2)(x) = Ky(z)p(z). Then we have

Sxf(z) = 2y * g(z)
with g(t) as in (4.8).
Next we prove that {2, is a Calderén-Zygmund kernel, i.e. there is a
constant C independent of A so that

(a) [2(z)| < Clal 7,
(4.9 { (b) |E'i’:;£9)\($)| < Clzi=?, and
(C) “Q)\“oo < C.

Clearly (4.9)(a), (b) follow from Lemma 4.2. In order to see (4.9)(c), we note
that for z € R,

22| = (B (=2)] = |Ex * 9" (—2)] < [Ealloolle¥ ]2 < C.
Therefore (4.9)(c) holds and since [z|°~! is an A, weight with p =b+ 1, we
have

{1S2f(@)PlafP~?dz = {025 * glP|af dz
< Cllg(e)P (=2 dt = C {117 dy
for p = b+ 1. This completes the proof.
Next we need to obtain weighted L estimates of Py f(£).
PROPOSITION 4.5. There exists a constant C independent of A such that

o

V1P foPIEP2de < ClIf)IPdy  withp=1b+1.

— 0

Proof Let I[; = [{*°,(j + 1) and f;(y) = f(y)x1,(y). We have

=]

Pif(g) =Y [V -OR (€ - y"ple — ") i) dy
=0
=Y (&) + 65(9)]
=0

where _
Fy(e) = [[ef@9"0" -0 1] =07 Ry (¢ — Yool — ") f5(w) dy,
and P N b b iybjl/b
G(€) = e * T Ba(e — vPol€ ~ ) T fi(y) dy.
We observe that if y € I; and i€ —y°| <1, then j—1 < € < j +2. Therefore,
both
(4.10) ' supp Fy,supp Gy C [ — 1,7+ 2].
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Also note that
EAO < Sy — 3] [yb = € 1BaE —4De(€ —4")] - |f5 (w)l dy
<\ =&l 1Ba(E - v")ele - ) - 1F5(w)l dy
(since [y — /%] < 1)
= Rxf;(€)-
Also,
G5} = [[RAlE = )l —v9)e™ " £w) dy| = 13 T3 ©)

where fi(y) = """ f;(y).
By (4.10) and since {[j—1, j-+2]}32 have the finite overlapping property,
we get

JIEs@PIEP~2ae = {3 (B 8) + Gyt lef e
i=0

< CY VURS QP + ISaF(OF)ieP2 dg

J=0

<oy (J1f)Pdy +{I5 )P dy)
i=0

by Propositions 4.3 and 4.4, and this now completes our proof for p == b+ 1.
Finally, we are in a position to prove Theorem 4.1'.

Proof of Theorem 4.1, Let p=08+1,b> 1. Then

o oo oaQ

| IDf@Pde= | (T @Fde<C | ITnFE)FIEP2 de
=C | [P+ Quf()IPlefr2de
<CO| | IBF@PIEP2de+ | |Qar(@ler-? a]

< CIFw)Pdy
by Propositions 4.3 and 4.5. This completes our proof.

By Fatou’s lemma we get

ooy oo

] e 2=t ) gy

S |z — yiir

by Thecrem 4.1', and thus we get our proof of Theorem 4.1.
By duality we see that 7' maps boundedly L+1/® into itself.

P
dr < Climinf | T2 < O)|fI,
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5. Extended domains. In this section we describe the extended do-
mains of some of the integral operators considered in the preceding sections.

The general construction, properties of extended domains of integral
operators and references to the subject can be found in [AS] and [LS]. We
list here some of the relevant facts.

For a measure space (X,dz) (usually o-finite) we denote by L°(X) the
space of all scalar-valued, measurable, a.e. finite functions on X. LP(X) is
furnished with the topology of convergence in measure on all subsets of X
of Anite measure. A subset A C LO(X) is solid if with every function f, 4
contains the order interval consisting of functions a.e. dominated in absolute
value by f. A topological vector subspace of L9 is solid if it is solid as a
subset of L and if its topology can be defined by a base of neighborhoods
of 0 which are solid.

‘We now consider two measure spaces, (X,dz), (V,dy), a function & €
L9(X xY) and the integral operator K f{z) = {y k(z,v}f(y) dy with domain
Dg = {f € L2Y) : |, |k(z,4)f(¥)|dy < oo a.e.} acting from LO(Y") into
LY(X). The extended domain of K is a solid metric complete vector subspace
Dx of LO(Y), with the following properties:

(1) Dg is dense in Dy and K : Dg D Dy — L%X) is continuous.
Hence K can be extended by continuity to D i) this exiension i3 denoted
by K.

(i) (Maximality property) If V C LO(Y) is a solid topological vector
space such that K : V D Dx NV — L°(X) is continuous, then the closure
Dy nN VV is contained in Dy and the extension by continuily of K to this
closure is the restriction fo it of K.

The space Dy is described by the following condition:

(iii) f e Dy if and only if for every sequence {gn} of functions in Dx
with disjoint supports and such that |gn| < |f| a.e. we have 3, | K gn ()2
< 00.

It is not known how the last condition can be used to define the topology
on Dy (an F-norm defining this topology can be found in the references
above but will not play any role in what follows).

The following special cases will be useful:

(iv) If k>0, then 51{ = Dy,

(") If X, Y are compact, k(z,y} % 0 for el z,ye X xY and if & is
continuous, then Dg = Dg. B

(vi) If X and Y are locally compact and if k is as above, then Dy
DK‘,loc-

The following are some obvious consequences of (iii).
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(vii) Let ki(z,9) = v(2)k(o(2),y) where y(z) # 0 for a.e. z € Z is
in L%(Z), end @ : Z — X is a measurable bijection preserving sets of
measure 0. Then D Ky = D -

(viii) Let B : Z — Y be a measurable szeclwn preserving sets of measure
0, let 8’ denote the Radon~Nikodym derivative of df with respect to dz, and
let kg(z,2) = k(z, B(z)). Then f € Dy if and only if B'feofB € Dxﬂ

Properties (ii) and (iii) can be tsed to justify the following argument to
determine Dx. We use the necessity part of (iii) to find an upper bound,
say V, for D K Dy C V. If V has some natural solid topology such that K
is continuous as an operator from V to L° then (ii) can be used to establish
the reverse inclusion and thus to show that D x=V.

We now consider the concrete case where X =Y = R;; furthermore, we
lock at a model case and consider various examples which can be reduced
to the model case using one or both of the remarks (vii) and (viii).

In the model case, using notation from the preceding sections, write the
kernel in question in the form ‘

k(z,y) = p(z,y) explizy) = [¢(z, y)| exp[i{zy -+ ¥ (z, y))},
where- the functions ¢, 1 are subject to the following conditions:

(6.1) 1 is real, continuous and bounded relative to the term zy in the
following sense: maxp<y<ni1 [9¥(2,¥) — ¥(z,n)] — 0 as n — oo uni-
formly in z in any bounded interval.

(5.2)  @(z,y) #0 for all z,y, is continuous and there exist positive func-
tions m(z) < M (z), an increasing function w(z) and a continuous
positive function A(y) on [0,c0) such that a) p(z,y) = m(z)A(y)
and b) 85¢(z,9)] < M(2)A(y) for k= 0,1,2, and y > w(z).

(5.3) For every T > 0 the function Ry 3 y — ¢(y,-) € L'0,T) is
bounded.

We can now, according to the general scheme outlined above, describe
an upper bound for Dy.

PROPOSITIO}}I 5.1. Suppose that the kernel k as above satisfies (5.1) and
(5.2)(a). Then Dg C {f: Af € B(LY(R}))}, where
oo ne-l 5
PR ={geLhe: Y[ | low)ldy] < oo}
n=0 =n
is the usuel amalgam space with the obvious norm.
Proof. (5.2)(a) implies that Dy = L*(Ry, A), the L1-space with weight
A, in particular, by (vi), Dx c LL(Ry). Suppose now that f € Dy. Since
Dy is solid we may replace f by |f| and thus assume that f > 0. We
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use the necessity of the condition in (iii) with conveniently chosen sequence
{gn}: we take an integer N sufficiently large and let gn = XiN4n—-1,N4n]F>

n=1,2,... Then {g,} C Dx is a candidate to be used in (iii) to the effect
that 3 ", [Kgn(z)® < 0o a.e. We restrict z to the interval [0,a] and write
N4n
Kon(@)| =] | expliy + (o, w)llp(e, 0l ) dy
N+tn—~1

= ‘exp[z’u:(N +n—1}+¢(z, N +n-1)]
1

x Sexp{z’zt-}—i[’tb(m,N-&-TL ~ 14t — 9z, N +n—1)]}
0

X lp{z, N +n—-1+8)|f(N+n-1+t)dt].

We now choose N so that for z in the interval [0,4] for ¢ € [0, 1] and for

- all n > 1 we have

zt+ 9z, N+n-—1+41t)—p(z,N+n-1) €[—n/4,n/4]

Then N+mn N-+n
|1 ez | Relke 90 dy
N4n-1 N+4n—1
N+n
> \/-N+§1 1 m(@)A(¥)f (v) dy

and the conclusion follows, since S f(y) dy is finite (because Dk C L)

The upper bound for f)K defined in Proposition 5.1 we denote by V,
V= {f: Mf € P(LY(R}))}. We next prove:

PROPOSITION 5.2. If K satisfies (5.1), (5.2)(b) and (5.3)(b}, then V C

Proof. We use (ii), the maximality property of the extended domain.
We notice first that Dy is dense in V and prove that K : V - L% is
continuous.

The continuity of K on V is estabhshed by ohserving that for every § > 0
we can represent V as the direct sum of L1([0,5]) and IP(L'(]S, o0); A)).

Since
TS

| Vb ») )l dyde < |z, s9p B2 0) o)
00 [0,8]
it follows that for every S, K is bounded as an operator from the first

summand into Li,, C L°.
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To take care of the second summand we choose € > 0 and a smooth
function e(z) > 0 equal to 1 in the interval [¢, X), and equal to 0 for  near
0 and for z > X + 1, say. We are going to get an estimate of the form
(s} [e.0] )
S E(E)H k(z,y)f(y) dy| dz < Cllfllzzr(s,e0n))
0 g

where S5 > w(X +1).

The estimate is obtained by a procedure similar to the one used in Section
2: we write the integral in question in the form {3 {3 A(u,v) f(u) f(v) dudv
where A(u,v) = §g° e(z)k(z, w)k(z,v) dz, and estimate the resulting expres-
sion by

00 S“L“."‘H S+n+l
D amn | AwIF@de | A@)IF()] dv,
mn=0 S+m S+n

where
G = supd | A, v)A(w) " A(w) 7L
ve[S+m,S+m+1, veS+nS+n+1]}

The argument is then completed by showing that the matrix am, defines
a bounded operator in [2. Indeed, we will show that G, < C/(1+|m—nl?),

then applying Schur’s lemma (Proposition 1.2} with u(m) = v(n) =1
First of all, since e{x) has bounded support, we have, using (5.3},
1/2
|4, 0)] < (Jel@) iz, w)rw) ™ da) " (Te(@)lb(z, v)A(v) 2 da)
< CAMu)A(v)

for all w,v €[5, o).
On the other hand, integrating by parts twice and using (5.2) we get

'S e(z)k{z,u)k(z,v) da:} = ]S e(z)p(z, u)e(z, v)(v — u) 282w (40 dm’
< Clu — v 2A(w)A(w).
These two inequalities combined together give

C
Aluo) € —Z
W) S T

1/2

Mu)A(v)
and o
<
Gmn = L+ jm —n|2’
which completes the argument.

We separated Propositions 5.1 and 5.2 to make more transparent the role

of the conditions imposed on the kernel k. Together, these two propositions
give rise to the following
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THEOREM 5.3. For a kernel k satisfying conditions (5.1)~(5.3) we have
the following description of its extended domain:

Dy = (L' (R4, M),
where A is the weight appearing in (5.2).

Remarks. Condition (5.3) could be stated in a more general form: it
is sufficient to assume that R, 3 z — ¢(z,-) € LY be bounded.

The argument above gives a very inaccurate idea as to the range of
the operator K; it would also be of interest to determine the images of K
restricted to spaces LP and other subspaces of Dg.

We next consider some concrete cases.

When ¢ = 1 we get the well known case of the Fourier transform [F5],
Dp = B(LY.

When w(z,y) = |z — y|? with Re(d) > —1 or p(z,y) = {1+ [z — yl)?
then, it is easy to check that ¥ (z,y) = Im({d)In |z — y| satisfies (5.1) and we
conclude that D is as in Theorem 5.3 with A(y) = (1 + y)Re(®,

In the next example we make use of the change of variables observations
(vii) and (viii).

Let k{z,1) = exp(iz®y®)|z — y|* where d is a complex number with
Re(d) > —1.

Without changing Dx we may, using (vii), replace the kernel k by
k(z,y) = exp(izy®)|z — y|* and conclude changing the variable § = y* and
using (viil) that f € Dg if and only if

oo (1+1)? R
YT rwliwla] <,
=0 /o

where A(y) = 1 for y € [0,1] and A(y) = YR for y € (1, 00).

The above condition describes the compressed [*-L* amalgam space with
weight A, the “compression” of the amalgam being determined by /%,

A similar result holds for kernels of the form ¢(z,y)explia{z)8(y)],
where o and 3 are increasing functions and ¢ satisfies suitable growth and
differentiability conditions. In this case the “compression” of the amalgam

is determined by the function §71.
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On some vector balancing problems
by

APOSTOLOS A. GIANNOPOULOS (Iraklion)

Abstract. Let V be an origin-synmumetric convex body in R™, n > 2, of Gaussian
measure ¥n (V) > 1/2. It is proved that for every choice u1,...,un of vectors in the Eu-
clidean unit ball By, there exist signs ; € {—1,1} with g1 + ... + &nun € (clogn)V.
The method used can be modified to give simple proofs of several related results of
J. Spencer and E. D. Gluskin.

1. Introduction. Let C,, denote the class of all origin-symmetric convex
bodies in R", n > 2. Following W. Banaszezyk [2], for each pair I/,V € C,,
we define 3(U, V) as the smallest r > 0 satisfying the following condition:
given uy, ..., u, € U, there exist signs £, ...,&, € {—1,1} such that e;u; +
et EpunE TV,

Several “vector balancing” results, proved by various authors for quite
different purposes, can be described as estimates on B(U, V) for specific
choices of U, V, or both of them:

(a) W. Banaszczyk (2] established a general lower bound for 8 (U, V) in
terms of the volumes of U7, V: for some absolute constant ¢ > 0, and for any
U,V € Cp, one has

BU,V) 2 ev/m(U1/ V)™

(b) L. Barany and V. S. Grinberg [5] show that S(U,U) < 2n for every
Uecd,.

(¢) The vector form of a well-known result of J. Beck and T Fiala [6]
states that B(B},Qn) < 2, where Bl is the unit ball of £ and Qn is the
unit cube In R™.

(d) J. Spencer [11] and E. D. Gluskin (7] have proved independently that
B(@n, Qn) < cy/m, where ¢ > 0 is an absolute constant.

(e) We write By, for the Buclidean unit ball in R”. Suppose that £ € Cn
is an ellipsoid with principal semiaxes ai,...,n. W. Banaszczyk [3] proves
that B(Bn, &) = (a7 -+ .. + a2 )2
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