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On some vector balancing problems
by

APOSTOLOS A. GIANNOPOULOS (Iraklion)

Abstract. Let V be an origin-synmumetric convex body in R™, n > 2, of Gaussian
measure ¥n (V) > 1/2. It is proved that for every choice u1,...,un of vectors in the Eu-
clidean unit ball By, there exist signs ; € {—1,1} with g1 + ... + &nun € (clogn)V.
The method used can be modified to give simple proofs of several related results of
J. Spencer and E. D. Gluskin.

1. Introduction. Let C,, denote the class of all origin-symmetric convex
bodies in R", n > 2. Following W. Banaszezyk [2], for each pair I/,V € C,,
we define 3(U, V) as the smallest r > 0 satisfying the following condition:
given uy, ..., u, € U, there exist signs £, ...,&, € {—1,1} such that e;u; +
et EpunE TV,

Several “vector balancing” results, proved by various authors for quite
different purposes, can be described as estimates on B(U, V) for specific
choices of U, V, or both of them:

(a) W. Banaszczyk (2] established a general lower bound for 8 (U, V) in
terms of the volumes of U7, V: for some absolute constant ¢ > 0, and for any
U,V € Cp, one has

BU,V) 2 ev/m(U1/ V)™

(b) L. Barany and V. S. Grinberg [5] show that S(U,U) < 2n for every
Uecd,.

(¢) The vector form of a well-known result of J. Beck and T Fiala [6]
states that B(B},Qn) < 2, where Bl is the unit ball of £ and Qn is the
unit cube In R™.

(d) J. Spencer [11] and E. D. Gluskin (7] have proved independently that
B(@n, Qn) < cy/m, where ¢ > 0 is an absolute constant.

(e) We write By, for the Buclidean unit ball in R”. Suppose that £ € Cn
is an ellipsoid with principal semiaxes ai,...,n. W. Banaszczyk [3] proves
that B(Bn, &) = (a7 -+ .. + a2 )2
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A standard reference for many of these results, especially those of them
motivated by combinatorial questions, is the book [13] of J. Spencer.

J. Komlds conjectures that the sequence B(B,, Q) is bounded. The
best known result on this problem (J. Spencer [11]) states that 3(By, Q,) =
O(logn) as n — oo.

Closely related to the Komlds conjecture is recent work of W, Banaszczyk
and S. J. Szarek [4]. They define and study the quantity

WL, V)
(11) Q(Ua V) - Slip f\-n(L; U) ]
where the supremum is taken over all lattices L in R™, u{L, V') is the covering
radius and A, (L,U) is the nth successive minimum of L with respect to V
and U respectively. If -y, denotes the standard Gaussian measure on R"
with density (2)~"/2e~*I/2) where |z| is the Euclidean norm of =, the
main result in [4] states that

(1.2) a(By, V) <67,

for every closed convex set V in R™ with v, (V) > 1/2, where 0 is an absolute
constant defined by the equation v, ([—6/2,68/2]) = 1/2. On the other hand,
one can see that (U, V) < (U, V) for every U,V &€ C,. This motivates the
question if «(B,,V) may be replaced by 8(B,, V) in (1.2). More precisely,
it is conjectured in [4] that for some function f : (0,1) — RT and for all
V € Cp, ome has 8(B,,, V) < f(1,(V}). This would imply in particular that
BBy, Qn) = O(ylogn) as n — oo,

The purpose of this note is to discuss upper bounds for 3(B,,, V) when V'
is an arbitrary origin-symmetric convex body in R™. In §2 we give a simple
proof of the following fact:

THEOREM 1. Let V' € Cy, with 1, (V) > 1/2. Then 8(B,, V) < 6logn.

Theorem 1 and standard estimates involving Siddk’s lemma ([10], see
also [7]) allow a reasonable upper bound for A(B,,V) when V is a body
with few faces (in the terminology of [1]). As an example, consider the case
of the intersection of NV strips defined by unit vectors in R":

TeEOREM 2. Let V = {z € R™ : |(z,%)}| £ 1,4 = 1,..., N}, where
zj € Bn,j £ N, are N wvectors spanning R™. Then
B(Bn, V) < 9logn/log(3N).

When V' = @, the estimate given by Theorem 2 is worse than Spencer’s.
In §3 we formulate a more precise version of Theorem 1, in which 8(B,, V)i

is bounded in terms of the quantities infg v, (V N H ), < n, where the inf '

is taken over all r-dimensional subspaces of R®. Spencer’s log n~theorem is
a consequence of this Theorem 3 and of the fact that infy Y (Qn N H) is
roughly “of the order” of 2.
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2. Proof of Theorems 1 and 2. For the proof of Theorem 1 we shall
make use of two well-known facts:

() IV € Cp and z € R, then vo(z + V) > e 1o°/29, (V). This
is a simple consequence of the symmetry of V' and the convexity of the
exponential function.

(II) Consider the entropy function F(a) = —alog, a— (1—a)logs (1 —a),
on (0,1/2). If A is a subset of {—1,1}" with cardinality |A| > 27F{1=8)/2),
0 < 8 < 1, then we can find ¢',e” € A with [{j < 7 : &) = [} < or
(D. Kleitman [9]).

LEMMA 2.1. Let V € Cy, m 2 7, with v,.(V) > 1/2, and u,, ... ,ur € By,
7 < r < n. There exists a subset o of {1,...,7} with |o] > r/2, and signs
g; € {—1,1}, j € o, such that

Zsjuj € 4V.
jeo
Proof For every ¢ = (g1,...,&r) € {—1,1} we write L(g) = e1us +
...+ &ru,. By the parallelogram law,

r

(2.1) Ave, |L(g)}? = Z lug|? < 7.

i=1

Consider the sets L(g)/4 4+ V, ¢ € {—1,1}". Using fact (I) and the
arithmetic-geometric means inequality, we obtain

22§ [ xuesv®)]midw)
= Z Tn (fi_"-‘) + V)

—Aveg &)|?
= (Ze‘“]L(E)lz/ELZ)fyn(V) > 2"e Avec|L(e)] /32')’n(V)
&

> 2(1—1/(3210g2)-v1/7)r Z 2F(1/4)T‘,

It follows that for some subset A of {~1,1}" with cardinality |A| >
27 (L/4)r we must have

(2.3) 5@4 (L—Ef)— +V) # 0.

Using Kleitman’s result we find a pair €/, € A for which

A 1"
and w——-~—L(8) L") € 2V.

. r
[i<rgi=ell <y z
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Setting o = {j <r:&} #¢j} and 5 = () —£}}/2, J € 0, we conclude the
proof. =

Remark 2.2. Instead of Kleitman’s result, in the final step of the proof
of Lemima 2.1, one may use the Sauer-Shelah lemma or an even simpler
argument based on the computation of the cardinality of a neighborhood of
a point in {—1,1}". This would only affect the value of the constant in the
staternent.

Proof of Theorem 1. We first observe that if v, (V) > 1/2, and if
0B, is the largest origin-symmetric ball inscribed in V', then V is contained
in a symmetric strip of width 2¢, hence v1 ([—g, ¢]) = ¥ (V) = 1/2. It follows
that g > 1/2, that is, B, C V.

Case 1. If2<n <6, then 8(Bn, V) < B(Bn, 3Bn) = 2y/n < Glogn.

Case 2 Ifn>7, weusean inductive argument. For the first step, set
7o = n and apply Lemma 2.1 to find ¢y C {1,...,n} with |oy| > n/2, and
signs 5 € {-1,1}, 7 € 01, so that ) gju; € 4V. Then, define 7y = of
and r1 = |7r1| < ro/2 = n/2.

If 741, Th—1 = |7i—1| have been defined for some k¥ > 2 and if rg—y > 7,
then, using Lemma 2.1 again, we find oy C 741 with |og| = 7x—1/2 and
g5 € {~1,1}, § € op, with 3 ¢, g5u; € 4V. We deflne 7, = Te—1\Tk;
e = |7k < re—1/2 < n/2F, and continue in the same way until, for some kq,
T4, < 7. The number of steps needed does not exceed logy(n/6)41:if rj, > 6
then 2% < n/6. At this point we choose €;, j € Tr,, with 2jery, S3U €
VT Bn € 24/6V. The choice of signs U;c HeideomuUle; g € it

satisfies
(2.4) EE:j'LLj € [4(10g2 (%) + 1) -+ 2&@]1/ C (6logn)V,
4=1

and this completes the proof. =

j€oy

Remark 2.3. Theorem 1 and a standard argument (see [11]) show that
if V e Cyp with v (V) = 1/2, and if 4y, ..., %n € Bp, m > n, then there
exist signs ; € {—1,1} such that g4y + ... + ety € (121logn) V.

There is nothing special about assuming that v, (V) > 1/2, If v, (V) =
a € (0,1), one can find ¢(a) such that 5(B,, V) < c(a)log n. Moreover, the
symmetry and the compactness of V' are also not so important; if, say, V' is
any closed convex set in R™ with ,{V) > 3/4, then

(2 5) (Bmv) < ﬁ(Bmvm ( V)) < clogn

Remark 2. 4 It is easy to see that if the vectors ug, ..., u, € B, are
orthogonal and if V' is a centered cube in R™ with v, (V) > 1 / 2, then there
exist signs g; for which e141 + ... + gptn € ¢V. A careful examination of
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the proof of (1.2) in [4] shows that the same is true for an arbitrary closed
convex set V in R" with v, (V) > 1/2.

Remark 2.5. Let V be a symmetric convex set in B®, n > 2. If z € R,
we write

Vo ={(z1,...,2n_1) € R 1 (21,...,Z0-1,2) € V]
From the log-concavity of 7,1 and the symmetry of V, one easily deduces
that h(z) = yn_1(Vz) is an even log-concave function on {z : yn-1(Vi) > 0},
hence it attains its maximum value at 0. It follows that
(2.6) (V) = | h) y(dz) < pm-a(V N ex),
B

where e+ = {z € R® : 2, = 0}. Induction and the rotational invariance of
the Gaussian measure show that whenever H, H; are subspaces of R” with
H C Hy, then vg, (VN Hy) < y2(V N H) (by v5 we denote Yam m on H).

Another usefu! remark is that the set I (h) = {z € R: h{z) > s} is a
symmetric interval in R (possibly the empty set) for every s > 0.

Using these observations one can give a proof of Siddk’s lemma starting
from the following lemmas:

LeMMA 2.6. Let K be o symmetric convez set in R*, n > 1, and V; =
{z e R* : [{z,2)| <1}, z € R, Then
'YM(K M Vz) > 'Yn(I{)'Yn(V-z)

Proof If n = 1 the inequality is trivially true since K NV, is either K or
V,, and 7 is a probability measure. Let n > 2. By the rotational invariance
of v, we may assume that z = A"len, A > 0. Then

A oo
@7 wmENV.) = | ham(de) = | nl(h)nl=X X)ds
=X 0
2 (05071(1.9(#1)) d-ﬁ)*n([—/\, A = () (Vz)- w
0

Let ®(z) = /2/r{je ~t*/2 gt z > 0. A simple inductive argument based
on Lemma 2.6 prov1des a proof of

SIDAK'S LEMMA. Let z; € R*, § < N, and V; = {z : [{z,2;)| < 1}
Then

2.8) ’Yn(ﬂv)>H'Tn(V H (1/21)-

J&N =1 j=

2

We include this proof of Lemma 2.6 because of its simplicity. The pos-
sibility of deducing Siddk’s lemma in such an easy way became known to
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several people more or less at the same time (see e.g. [14], where a much
harder non-symmetric version of Lemma 2.6 s proved). The connection
of Sidak’s lemma with 3(By,V) is clear: given any V & Cn, we solve
the equation v,(uV) = 1/2 in u, and then apply Theorem 1 to obtain
B(Bn, V) < eplogn. If V is an intersection of strips, we can easily find an
upper bound for 4 using (2.8). As an example, let us see what happens if
all the strips have width 2:

Proof of Theorem 2. Let x> L. Using the standard estimate
Ba) 21— zep(-2e77)  (221),
we ohtain
Tn(u) 2 [B()]Y > exp(-2Ne 1),

Tt is clear that choosing 4 = /2log(2N/log2), we get yn(uV) = 1/2.
Therefore, Theorem 1 irnplies that

B(B, V) = uf(Bn, uV) < 6v2logny/10g(3N). m

Finally, let us mention one slightly more delicate application of the
method:

PROPOSITION 2.7. Let z; € R, j < N, with |z;| < 1/+/log(7 +1). If
V={z:|{z,2;)] <1, § <N}, then

B(Bn, V) < clogmn,
where ¢ > 0 is an absolute constant. w

Note that the statement is independent of N.

3. A general upper bound for 3(B,,V). When V is a parallelepiped
in B™ which contains B,, the estimate given by Theorem 2 is 3(B,,V} =
O((log n)3/?) as n — oco. Spencer’s result for the cube can be recovered by
a more precise version of Theorem 1 which we now describe:

DEFINITION. If V € Cp, ¢ € (0,1), and r € {1,...,n}, we define
w(V,e,r) =min{p > 0 : i%f YooV N HY) > 277},
where the inf is over all r-dimensional subspaces of R". Note that @(V,¢,r)
is well defined since, for every H, v.(eV N H) = v (oV).

Our way to estimate F(By,, V) depends on an iteration scheme (similar
to the one in the proof of Theorem 1), based on the following lemma:

LEMMA 3.1. Let V € Cp, r < 1, and uy,...,u, € Bn. We can find a

subset ¢ of {1,...,r} with o] > /2, and signs £; € {-1,1}, § € 0, for
which
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Z g5y € 4p(V,1/7,1)V.
jeo
Proof. We may clearly assume that wy,...,u, are linearly indepen-
dent. Consider the subspace H = span{us,...,u,} and set g = o(V,1/7,r),
L{e) = g1ur + ... +&rtip, € € {—1,1}". We estimate

L{e)
3.1 A > F{l/4)r
(3.1) me( n +(9Vnﬂ))_2 :
and, exactly as in Lemma 2.1, we find o C {1,...,7}, |¢] = r/2, and a
sequence of signs &, € {-1,1}, j € &, with
(3.2) S e €4V NH. =
j€o
THEOREM 3. Let V € Cyp, and ¥y = [n/2],1=0,1,... Then
[log, »]

B(Bn, V) <8 Y o(V,1/21,4)
=0

Proof. Suppose that wy,..., s € By Weset o = {1,...,n}, To =7,
o = 0, and following the proof of Theorem 1 {with Lemma 3.1 playing now
the role of Lemma 2.1), for k > 1 we choose ok, 7%, '

(i) Tk © Th1, iUk[ > I’?’k_1|/2, and there exist £; & {-1,1}, j &€ og, with

Z gju; € 4p(V, 1/7, rg—1)V.
JEok
(ii) T = Tkm]_\dk, TE = l‘)’k!.
This procedure exhausts {1,...,n} in a finite number of steps: for some
m < [loggn] + 1, we will have 7, = 0.
Bach 7, k = 0,...,m — 1, lies in an interval of the form (1,1,
I = 0,...,[logyn], and at most two of them are in the same interval. If
g1 < 7 < 4y, then it is easy to see that e(V,1/7,m6) < ©(V,1/21,4):
notice that if dimH = r; and Hy is any ¢-dimensional subspace of R™
with H C Hy, then vm, (oV N H1) > 2-%/21 jinplies that yg(eV N H) =
i, (6V N Hy) 2 27/ > 97re/7 T follows that

Nlogs 1]

(3.3) igo(v, 1T <2 Y. @V, 1/2L4).
k=0 =0

Therefore, the sequence of signs ¢; chosen in our m steps satisfies

[logy m]

isjuj € [8 Z @(V,l/?l,’d)z)]V. [
i=1 1=0
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We shall apply Theorem 3 in the case where V = Q.

LEMMA 3.2. For some absolute constant ¢ > 0, and for everyr < n, one
has {Qn,1/21,7) < ec.

Proof. Let H be an r-dimensional subspace of R”. Let also {w1, ..., w,}
be an orthonormal basis of }, and W be the n x r matrix with columns w;,
J < r. Then, for every ¢ > 0,

Vo (cQunNH) = m({z € R : [{z, Wre;)| < ¢, i =1,...,n}),
where {e;}i<y, is the standard orthonormal basis of R™.
Cram. If t1,...,%n > 0, then

il . 1 n 2
(3.4) I | @(u) = 2—5&:1%,
w1 NS

where 6 > 0 15 an absolute constant.

Proof of the claim. We may assume that ¢y < ... < ¢, € 1 <
to1 £ ... St Weset S =30 1 t2, and 4; = {i <n: 21 <, < 271,
7=1,2,... Note that |4;] < §/227-2,

We have the estimates:

3 8
1 8
(3.5) I_Ilfﬁ(a) > exp ( -2 Ze“l/(ﬂtf)) > exp ( _ 427512) > 48,
[ i=1 i=]
36 JI#(=) > (Vajtme & My L/2M72 o pab=a 5
. Hez)= me) 5 > [(v/2/(xe)) 2 ]

and hence

6 TTTo(F) = [vmem) S g s

J d€4y *

From (3.5) and (3.7} it follows that
e T 1 1
a( 1) = 1 1 -68

e(z) = L=(2) LI () ==

i= i=1 J 4€A;
for some absolute constant § > 0. The claim is proved.

nBy Siilék;s lemIEa we have 1. (cQn N H) > [T, $(c/|W™*e;), and since

P [Wrei|* =320 Jws? =, our claim provides the inequality
(3.8) Yo (eQn NH) 2 2780/ > g=r/2
if ¢ = ¢(8) > 0 has been chosen large enough (independent of n and =). w

As a consequence of Theorem 3 and Lemma 3.2 one has Spencer’'s eati-
mate on the Komlds conjecture;
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COROLLARY 3.3. B(By, Qn) = O(logn) as n — co.

Remark 3.4. J. Spencer {11] and E. D. Gluskin [7] have proved that
B(Qn,Qn) = O(v/7) as n - oo, which is clearly optimal. The basic step
towards this theorem is to prove the following:

Cram. If w1, ..., up € Qp, 7 < n, then there exist a subset o of {1,...,7}
with cardinality |o| > Or and a choice of signs €;, j € o, such that

(3.9) Y ejus € cy/ry/log(2n/r) @n,

Jj€o
where 8 € (0,1) and ¢ > 0 are absolute constents.

A modification of the proof of Lemma 2.1 gives a simple proof of this fact:
define K = {z € R" : |{{z, W*e;}| £ 1,4 < n}, where W is the n x r matrix
with columns u;, § £ r. Note that |[W*e;} < +/r, i =1,...,r. Choosing an
absolute constant ¢ > 0 large enough and using Sidak’s lemma one has the
inequality

S (e + e/F/logn/rK) > 286/,

where § = 8(c) € (0,1) is some other absolute constant. The rest is as in
Lemma 2.1: we find £ € {-1,0,1}" with {{j : g; # 0}| > 6r, and ¢ €
ey/r/log(2n/r)K.

This is equivalent 4o the claim, and an inductive argument analogous
to the one in [7], {11] leads to the Spencer-Gluskin theorem. In this case,
our method may be viewed as a (simplified) variation of Gluskin’s method
where Sidédk’s lemma was used for volume estimates and then combined with
Minkowski’s theorem from the geometry of numbers.

Another modification of Lemma 2.1, now combined with the binary block
decomposition used by B. 8. Kashin in (8], can give the following stronger
result of J. Spencer [12]:

If ui, ..., up € Qn, then there exist signs &5 € {—1,1} for which

max
t<n

t
ZEj’LLjH S C'\/’ﬁ,
=1 =

where ¢ > (0 is an absolute constent.
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BMO,;-spaces and applications to extrapolation theory
hy

STEFAN GEISS (Jena)

Abstract. We investigate a scale of BMOy-spaces defined with the help of certain
Lorentz norms. The results are applied to extrapolation techniques concerning operators
defined on adapted sequences. Qur extrapolation works simultaneously with two operators,
starts with BMQy-Loc-estimates, and arrives at Lp-Lp-estimates, or more generally, at
estimates between K-functionals from interpolation theory.

Introduction. Extrapolation techniques are an important tool to com-
pare L,-norms of operators defined on martingales. Basic results were proved
by D. L. Burkholder, B. J. Davis, and R. F. Gundy ([11], {10}).

Let us consider a basic example. Assume f = {di)7oy C Li1(£2, F,P)
to be a sequence of martingale differences with respect to some filtration
(Fr)P., such that do = 0 and {di| is Fr_1-measurable for k =1,...,n. An
extension of the Azuma inequality proved by P. Hitczenko [16] (Lemma 4.3)
(see also [12], [25], the comments in [16], and the proof of Proposition 1 of
this paper) says that for A > 0,

(1) P(‘;dk‘ > )\HSZfHOO) < 9e—H"/2

where S2f = (., |d&|?)}/? is the usual square function operator. The
above inequality is of importance for several reasons. For example, in [16]
(Corollary 4.2) this inequality is used to prove the Burkholder-Davis—Gundy
type inequality

gdi , < c\/p?“(gldilg)l/zup for 1< p< o0

which extends the corresponding one for dyadic martingales ([12], [6].1 [25]).
In order to deduce (2) from (1) one has to modify (1) in two steps. First we
observe that for B € Fi we get a martingale difference sequence (d,,-)i.: w1 ©
L1(B,Pp), where Pg is the normalized restriction of Pto B. Applying (1) to

(2) H sup
1<k<n
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