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factors (see [4]) and for example can be applied in the case of Gaussian-
Kronecker automorphisms (see [16]).
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Product Z%-actions on a Lebesgue space and their applications
by

L FILIPOWICZ (Bydgoszcz)

Abstract. We define a class of Z-actions, d > 2, called prodact Z%-actions. For every
such action we find a connection between its spectrum and the spectra of automorphisms
generating this action. We prove that for any subset A of the positive integers such that
1 € A there exists a weakly mixing Zd—action, d > 2, having A as the set of essential values
of its multiplicity function. We also apply this class to construct an ergodic 7%-action with
Lebesgue component of multiplicity 2%k, where k is an arbitrary positive integer.

1. Introduction. One of the most important open problems in ergodic
theory is the following: does there exist a dynamical system with a given
spectrum? This very difficult problem has been solved only for some types
of spectra. It is not known in particular whether there exists a dynamical
system with Lebesgue spectrum of a finite multiplicity.

Let T : X — X be an automorphism of a Lebesgue probability space
(X, B, 1). The spectrum of T is uniquely described by the maximal spectral
type and the spectral multiplicity function. We denote the set of essential
values of the spectral multiplicity function by E(T). The problem of what
subsets of N* U {oo} (where N* is the set of all positive integers} can be
realized as E(T) for an automorphism T is considered e.g. in {A], [BL],
[CFS], [GKLL], [MN], {O], [Re].

Recently Kwiatkowski and Lemanczyk ([KL]) have shown that, for a
given set 4 C Nt with 1 € A, there exists a weakly mixing T such that
E(T) = A. In addition, if A is finite then one can find a smooth such T'. The
goal of this paper is to extend this result to dynamical systems which are
actions of the group Z¢ of d-dimensional integers on a Lebesgue probability
space. To do this, we introduce a special class of Z%-actions.

Let & be a Z%-action on a Lebesgue probability space (X, B, i), le. ®isa
homomorphism of Z% into the group of all automorphisms of (X, B, u). The

1991 Mathematics Subject Clussification: Primary 28D15; Secondary 60G15.
Key words and phroses: Z%-action, speciral theorem, spectrum, spectral multiplicity
function.
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automorphism which corresponds to g € 72 is denoted by #9. The Z%-action
& yields the unitary representation I7 = U of Z¢ on L?(X, ) given by

USf=fod®, geZ¢ fel’(X,p)
For each f € L3(X, u) we define the cyclic space Zs(f) as
Zs(f) =spam{U?f : g € I},
and the spectral measure Q? = gy on the d-dimensional torus T¢ is defined
by
gplma, ..., mq) = (U9F, f),
where g = (my,...,mq) € Z% and gy is the Fourier transform of gy, i.e.

grlma, ..., ma] = S 2z gr(da, . - dza).

e
Of course, the subspace Zg(f) is Up-invariant and it is known that Ug on
Zs{f) is spectrally equivalent to the unitary representation Ve = Vg s of zd

on L*(T%, gy} defined by
(Va7 h)(z1,. .., zq) = 27" ...z k(= - - -, 24),

4= (mla ce :md): he L2(Td19f)'
Let
LX) = {f € L3(X,p): | fdp=0}.
' X
The spectral theorem says that there exists a sequence (fy)ner © L3(X, 1)
where I = [1, ] NNt for some m € Nt or I = NT such that

Lg(X: p) = @ Zg(fn)
nel
and

Of1 2 Ofy 2 -+

Moreover, Us on LE(X, 1) is spectrally equivalent to the Z4-action ¥ on the
space {2, where

¥=(PVays and 2=CHIAT g4,).
) nel nel
Set gn = py,, n € I. The sequence (7,,) of the types of (g,) is uniquely
determined and it is in one-to-one correspondence with the set of spectral
equivalence classes of Z%-actions. This sequence is called the sequence of
spectrol types of Ug and gy is the mazimal spectral type of Ug. The sequence
(6,)ner is uniquely described by the pair (g, m) where m : T — N™ U {oc}
is a Borel function called the spectral multiplicity function of &.
A number k € Nt U {oo} is said to be an essential value of m if

o1({z :m(z) = k}} > 0.
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A number &k € Nt is an essential value of m iff g, is not equivalent to pg11,
while & = oc 15 an essential value iff g, Z 0 for every n = 1,2, ... We denote
the set of essential values of m by E(&).

In this paper we define a class of Z%-actions called product Z-actions
and we show that for every such action &, generated by automorphisms
11,...,T4, we have

d

d
@y =) U B@m) .. BT

s=11<i1 <... <is

Next we describe the sequence of spectral types of ¢ by the sequences of
spectral types of T7,...,Tq.

We apply these results to extend the results of [KL] and [L] (see also
[A]). Namely, for a given set A C NT such that 1 € 4 we construct a weakly
mixing product Z3-action @ such that E(®) = A. As another application,
we show that for every k € Nt there exists an ergedic product Z&-action &
with Lebesgue component of multiplicity 29E.

We present our results for d = 2. They may be easily extended to arbi-
trary d > 2. B

The author would like to thank B. Kamirnski, J. Kwiatkowski, and M. Le-
maiczyk who have suggested the problem, for many stimulating conversa-
ticns.

The author would also like to thank the referee for helpful remarks which
allowed him to improve the original version of the paper.

2. The product Z%-actions and their spectrum. Let T and 5 be
automorphisms of Lebesgue probability spaces (X, B ) and (Y¥,C,v), respec-
tively. The action @ of Z2, defined on the product space (X x Y, B&C, s x v)
by the formula

Fmm) = 7™ % §* (m,n) € 77,

is called a product Z*-action.

It is clear how to extend this definition to arbitrary Z%.actions, d = 2.
Tt is easy to show that & is free whenever T' and S are aperiodic. Similarly,
the ergodicity of 7 and § gnarantees the ergodicity of @.

For f € L3(X, u) we denote by Zr(f) and o the cyclic space and the
spectral measure generated by f, respectively. In the same way we define
Z5(g) and gg for g € L*(Y,v). We denote by mq and mg the multiplicity
functions of the unitary operators Ur and Ug, respectively.

For f € LA(X,u) and g € L*(Y,v) we put

(f®g)(z,y) = flz)gly), =X, y¢& Y.
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LEMMA 1. For every f € L*(X, 1) and g € L*{Y,v) we have
& _ T, 8
0igg = €5 * &y

Proof. It is enough to show that the Fourier transforms of the above
measures coincide. Let (m,n) € Z2. We have

BFslm.n) = (U™ (f @ g), f @ 9) = Urnxsn(f @ 9).f @ g)
=Ur feUsg feg) =(Ur f.HUsg9)
= 2 m] - 85n] = o x of[m,n],
which gives the desired equality. w

, Let Cx, Cy and Cxxy be the subspaces of L?(X,pu), L3(Y,r) and
L*(X x Y, u x v) respectively, consisting of the constant functions. Then

L2(X’f-"') :GX@Lg(XJ”): Lz(Y:V) —_—OYEBLg(Ya V)
and
LHX XY, uxv)=Cxxy ®L2X x Y, 1 x v).

LeMMA 2. If f; € LE(X,p), i € T, and g; € LA(Y,v), j € T, are such
that

(1) Ly(X,n) =B Zr(fi) and LE(Y,v) = P Zs(g;)
i€l JET
then
X xYux) =P P zs(fivg)oPZe(fie) oD Zs(i @ g;).
€L jeT iel Jerg

Proof. The set of functions f ®g, where f € L*(X, u) and g € L2(Y, ),
is linearly dense in L?(X x ¥,u x v). Hence, the set of functions f ® g,
F®1,1®g, where f € L(X,p) and g € L2(Y,v), is linearly dense in
LAX xY,nxv).

Of course, f®1 € B, 7 Z5(f;®1) and 1®g & B,cs Ze(19g;) whenever
f e L(X, p) and g € L3(Y, ). So, it is enough to prove that

foge DD zs(fi®yg;)
i€T jET
for f € L3(X, u) and g € L3(¥, v).

Let 0 < & < 1. It follows from (1) that there exist fnite sets I, ¢ Z,

1t;i'lfL tC J and functions un € Zv(fr), vm € Zs(gm),n € I, m € Je, such
a
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£ £
Eedep e S led
Hf neZI ”” 2 g Z’Um <2c’

[ meJe

where ¢ = ||f]| + ||g]| + 1. Hence,

(2) Hf®9— >N un®vm“

nel, meJ.
F=2 un
nel,

=

|

“lgll + Hg—n%;I 'vm” : Hn; Ury

£ £
< — —— .
2 (151l + £) <
Now, we show that

(3) Un B Um € Zp(frn® gm), nel., me .

There exist finite sets Ky, Ly, C N and complex numbers a,; and by, g,
ke K,, 1 e L,,, with
€

e — il < o,

£
lom 5l < -,

where

k l
U; = Z an,kUT fna vfn = E b‘m,iUS 9m
ke i, 1E€L oy,

and @ > |lun|| + ||vm| + 1. Therefore, we obtain

[un @ v = s @ v, || <l = il - fom|| 4 {om — v - [lurl]

£
< o~ - o] + 1o vfnll(llun“ * z—) A

Moreover,
uE @5, = Y Y ansbmi(Uf fo ® Uk gm)
ReER €L,
= 3 Y 0nbendUS P (Fa © gm) € Zo(fn ® 9rm)-
keK,lely,

As a consequence, we get (3). From (2) and (3) we obtain
feg=> > uevyc Z(fiog),
€L JET e jeT
which ends the proof of Lemma 2. m

Now, we are in a position to describe all spectral types of the Z*-action &.
Assume that (§;)ier, (V;)jes are the sequences of spectral types of T' and
S, respectively. We can present them in the following way.
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Let (n;) and (r;) be two increasing sequences of positive integers from
I and J, respectively. Consider the following partitions of I and J, respec-
tively: .
L={l,....,ma}, DL={m+ 1,...,m1 +mn2},
Ji={1,...,71}, J2={T1+l,...,7‘1+7"2},
Assume that the functions n — ﬁn and n — u, are constant on Iy, and Jy,
respectively, k& > 1. Let
En =y, nely
Pp=7p, nEJy

We assume that %, # i, if n and m belong to different Iy, and 7, # Uy if
n and m belong to different Ji, £ > 1, i.e.

B=.. =0 > = =y >. ..,
U kL)

(4) 312...=ﬁ11>>52:...ﬂ77%>> ,
P 2

where (f1,,) and (7,,) are the sequences of speciral types of T and 5, respec-
tively. Let & be the measure on T' defined by

1 ifle A,
5(‘4):{0 if 1¢ A

THEOREM 1. If @ is a product Z? -action generated by ergodic automor-
phisms T and S, then

(i) B(®) = E(T)- E(S)UE(T)U E(S), where E(T), B(S) are the sets
of essential values of mr and mg, respectively.

(ii) The mazimal spectral type of Ug is (1 x v1) + (p1 x 8) + (8 x 1),
where py and vy are measures of the maximal spectral types of T and S,
respectively.

Proof. By the definition of the essential value, we have
B(T) = {n,n1+mno,...},  B(S)={r,r +ra...}.

Applying the Lebesgue decomposition theorem, we see that there exist pair-
wise orthogonal measures &g, k > 1, such that

al

pi=) 6k, icl,

k=1

where |I| is the cardinality of I. Similarly, there exist pairwise orthogonal
measures ¢, | > 1, such that
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[J]

Vj EZO‘;, je

There exist functions A2 4 DELp>i,k=1,.

Pk
g2 j,t=1,...,r;, such that

0= @DD . Zy=5

i€l p>i k=1

L2 Yvy= @@@ZS gql Qgsg) =0,

jeJ g2 I=1

-~ Mgy and gg)a Jaq S 'I:

Then Lemmas 1 and 2 give

(5) LiX xY,uxv)= @@@@é@% b @ g0y

iel jed p>i q>g k=1 =1

o DDDH ze(h) &

16l p>i k=1
75
oPDD 205
jeJ gzj I=1
and
Qh(i)®g(1) 5}) b Uq; Qh(ik)@l = 6_;0 X 51 Q1® J) = 6 X Jq
»
fork=1,...,n; and [ = 1,...,r;. We notice that (5} can be written as
P i Ti
zir v - DO DD D 20204 o B moD 1,
pel g€J i=1 j=1 k=1 I=1 pel geJ
where

P ony ) 9 .
H,=@P 2l 01), K,=PPz1ogl)

=1 k=1 j=1I=1

We also notice that the measures é, x 04, § x 0, 6, x 6, p € I, ¢ € J, are
pairwise orthogonal. We set

g mng T

Gpq = @@@@Z&"(h(z) ®gql )

i=1 =1 k=1 I=1

PPc.aePHePK,

pel q&J pel ged

Hence,
LAX xY,uxv)=
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Let us remark that

» G, is the Hilbert product of {ny + ... 4+np) - (r1+... - r4) cyclic
spaces ng(h}(]iz ® gg{ )) and the spectral measure of each of them is equivalent
to &, X oy, .

e H, is the Hilbert product of ny + ... + n, cyclic spaces qu(hf,ﬁc) ® 1)
and the spectral measure of each of them is equivalent to &, x &, .

e K is the Hilbert product of 1 +. .. +r; cyclic spaces Z3(1® qéj')) and
the spectral measure of each of them is equivalent to § x oy,

Now, consider the set of numbers of one of the forms (nq +. .. +n,)(r1 +

s Tg)y My A, P g, g > 1. Let (ug)sex be the sequence
formed from these numbers in such a way that uy < us41, 8 € K. Set

D= (I xJ)U{I x {0}) U {0} x J)

and let
vip,g) ={m+...+n)(r1+...+7,) forpel, geJ,
v(p,0)=mny+...+n, forpel,
v(0,g)=r14+...+1r, forgeJ

We put

(6) Ne={{p',dYe D: vy, ¢)>us} forsek.

Clearly, Ny D Ny D ... For s ¢ K, we define

(7){ Ve = Z (6pr X 0ge), where og = §p = 6.

(F'a'}EN,
Then
(8) h= =MFT=..=T>. ..

is the sequence of spectral types of the action @ on L3(X x Y, 4 x v). This
means that E(®) = {u1,uz, ...}, which concludes the proof. =

Remark. The measures v1,7,..., defined by (7) depend on the mea-
sures 6 X og. However, 6, and oy are not given a priori in {4). There
exists a description of (8) using the measures y; x vy, fg X 6, 8 x vy, 1,9 > 1,
but it is not necessary for our purpose and we omit it.

COROLLARY 1. For every set A C Nt with 1 ¢ A, there erists a weakly
mizing Z2-action & such that F(&) = A.

Proof. For a given set A C N* containing 1, a weakly mixing dynamical
system (X, B, p,T) with

(9) B(T)=A

Product Z%-actions 207

bas been constructed in [KL]. Let (Y,C, v, §) be a weakly mixing dynamical
system with simple spectrum, i.e.
(11) E(S)={1}.

Let @ be the product Z*-action defined by T and S. Observe that & is weakly
mixing because so are T' and §. Tt follows from Theorem 1 and (9), (10) that
B@)=E(T)=A n

COROLLARY 2. For every k € Nt there exists an ergodic Z2-action &
with Lebesgue component of multiplicity 22k.

Proof. It follows from [L} (see also [A]) that for every k € N* there
exists an ergodic dynamical systermn (Xp, Bz, ptx, Tx) having the following
sequence of spectral types:

(k] Y= =3
(11} ai T FAD A= =)
TL1—-1 no=0Rk—1

where agk) L A and X is the Lebesgue measure.
Let k € N*. Let & be the product Z?-action on Xy x X; defined by T}
and T;. Now, we apply (6) and (7). We obtain
I={1,2}, J={1,2},
Ni=(IxJ)u{Ix{0}Hu ({0} xJ)=D,
Ny ={(1,2),(2,1), (2, 2),(2,0),(0,2)},

Ny = {{(2,1),(2,2),(2, 0} ifk>1,
{(2,2)} if k= 1,
2 i 1
o gy
Then
uy =1, up =2, us=2k, ug=2%%k fork>1
and
=1, wp =2 uz=2> fork=1.
Hence,
1= {0y +A) X (g + A) + (@1 + Ay X 6+ 6 x (ag + A),
Yo = (g +A) X A+ A X% (az+ A) + (6 x A)+ (A x 8),
(Axa)+AxN+{Ax6) Hk>1,
"Yf*:{AxA if k=1,
AxA k>,
"'1:{0 it k=1,
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where oy = of”, ap = o). Therefore the Z*-action & has a Lebesgue
component of multiplicity 2%k. Similarly, the maximal spectral multiplicity
of & equals 2°k. m
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