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The boundary Harnack principle for the fractional Laplacian
by

KRZYSZTOF BOGDAN (Wroctaw)

Abstract. We study nonnegative functions which are harmonic on a Lipschitz domain
with respect to symmetric stable processes. We prove that if two such functions vanish
confilnuonsly outside the damain near a part of its boundary, then their ratio is bounded
near this part of the boundary.

1. Introduction. The boundary Harnack principle (BHP) for nonneg-
ative harmonic functions has important applications in probability theory
and potential theory. Among these are approximations to excursion laws
for the Brownian motion (see [6]), “3G Theorem” and “Conditional Gauge
Theorem” (sec (8]). BHP was first proved in [9] for Lipschitz domains by ana-
lytic methods (see also [12], [11]). Later, the classical link between harmonic
functions and the Brownian motion in R® was used to give a probabilistic
proof of BHP ([2]). The result and generalizations of BHP to elliptic opera-
tors and Schrédinger operators have yielded stimulating interplay between
probability theory, harmonic analysis and potential theory (see [7], [3], [8],
6], [11).

The Brownian motion is a particular (and limiting) instance of the stan-
dard rotation invariant a-stable process, & € (0, 2]. The infinitesimal gener-
ator A%/2 of the latter and the related class of a-harmonic functions have
simple homogeneity properties analogous to those of the classical Laplacian
and harmonic functions (o = 2) in R™. Also, the potential theory of A%/2
(n > a) enjoys an explicit formulation in terms of M. Riesz kernels, and is
similar to that of the Laplacian in R®, n > 2 {[13]).

The main result of this paper is the following theorem which gives an-
other extension of the classical theory (@ = 2) to the case o € (0, 2).
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THEOREM 1. Let & € (0,2) and n > 2. Let D be a Lipschilz domain
in R* and V be an open set. For every compact set K C V, there exists a
positive constont C = Cla, D, V, K) such that for all nonnegative functions
w and v in R® which are continuous in V', a-harmonic in D NV, vanish on
DNV, and satisfy u(zg) = v(zo) > 0 for some zo € DN K, we have

(1.1} Clulz) <w(z) < Cu(z), weDnNK.

Moreover, there exists a constant n = n(a, D,V,K) > 0 such that the func-
tion u{z)/v(z) is Hélder continuous of ordern in KN D. In particular, for
every Q € 8D NV, limu{z)/v(z) ewists as D>z — Q.

Generally, we follow the approach designed in [7] for elliptic operators
(see also [L1]). In particular, Lemmas 1, 3, 4, 10-13 and 16 below have their
analogues in [12], [11] and [7], with major changes in the proofs. The main
obstacle to our development is the non-locality of the integro-differential op-
erator A%/2, resulting in non-locality of the definition of a-harmonic func-
tion and even of the notion of nonnegativity for such functions. This makes
many of the arguments essentially different compared with the case of el-
liptic operators. In reward we are confronted with new concepts shedding
new light on the classical theory. To prove results on the class of a-harmonic
functions, we rely on basic properties of the corresponding c-stable process.
While a purely analytic approach is possible ([13] provides an analytic intro-
duction to a-harmonic functions), the probabilistic methods are very often
more natural and convenient.

2. Preliminaries. For the rest of the paper, let & € (0, 2) and n > 2. We
denote by (X;, P®) the standard rotation invariant {or “symumetric”) stable
process in K™, with the index of stability «, and the characteristic function

(2.1) EPei€Xe — o=tlll® e eR™ £ >0

(see [5] for an explicit definition). As usual, E® is the expectation with
respect to the distribution P¥ of the process starting from z ¢ R™. The
process X, has the potential operator

Uaf(z) = Aln, o) sﬁmﬂ?-’—-;dy

(see [5]), and the infinitesimal generator A%/2,

A{n, —a) S wd

(2.2) 2°%(z) = e v,

R®
where A(n, v} = I'((n — +)/2)/ (277" 2|T(v/2)]) (cf. [18]). The justification
for the notation A%/2 is in the fact that the Fourier transform of the gen-

erator and the Fourier transform of the Laplacian A =37 | 82 satisfy the
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equation

(2.3) F(=AP)(&) = ¢* = (F(-A)Eg)™>.

The proof of (2.3) can be found in [13] (see also [16, IX.11] for another
justification). We point out that our notation, and in particular the definition
of the Fourier transform:

FrE) = | & f(2) du
]Rn

are different from those of [13].

Forz € R*, 7 > 0 and a > 0, we set B(z,r) = {y e R* : |z — y| < 7},
so that diam(B(z,7)) = 2r; and we write aB(z,r) = B(z,ar). As usual, A
is the complement of A, and dist(A4, B) = inf{|z —y| : z € A, y € B} for
A, B C R, For a Borel set A C R™, we define T(A) =inf{t > 0: X; € A},
the first entrance time of A.

DermNiTion 1. Let w be a Borel measurable function on B* which is
bounded from bhelow (above). We say that u is a-harmonic in an open set
DC Rl

(2.4) u(x) = B°u(Xp(p)), =€ B,

for every bounded open set B with the closure B contained in D). We say
that w i regulor a-harmonic in D if

(2.5) U($) = EWU(XT(Dn)), z € D.

By the strong Markov property of X;, (2.5) implies (2.4), so that regu-
lar c-harmonic functions are c-harmonic. The converse is not true, as the
example of the Green function (defined below) demonstrates (see also [14]).
For u regular a-harmonic in D, we regard u(z), x € D¢, as the “boundary
condition” in the sense that, in view of (2.5), it determines (and defines) u
completely.

In case B = B(0,r) C R*, r > 0, and |z| < r, the P distribution
of X7(pe; has the density function Pr(z,-) {the Poisson kernel), explicitly
given by the formula

2 27 /2
P |z _
Cghwzliz] le —yl™™ |yl >

ly| <

(2.6) Pulm,y) =

i

where ¢ = I'(n/2)n~"/*"1sin(rc/2). The proof of (2.6) is given in [13]
{see a,l%o the first passage relation [14, (3.1)], to translate the potential the-
oretic result of [13] into the probabilistic assertion (2.6)). Consequently, for
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a function v which is a-harmonic in D, we have

@7  u@)= | Ple-6y-0uy)dy,
ly—8]>r

provided B(8,7) C D. By (2.6), such a function u is C° on D and satisfes
fen u()(1 + |y))7"*dy < oc. We note that (2.7) is an analogue of the
Poisson integral for the ball. However, unlike Brownian motion, the process
X; has jumps, and the support of P.(z,-) is the whole of B(0,r)¢.

As in the classical case (o == 2), Definition 1 is not the only description of
a-harmonicity (cf. [13], {4]). For instance, let u be again a Borel measurable
function on R™ which is bounded from below (above} and (say) C? in D,
Then the Dynkin characteristic operator (see [10]},

B (X r(p(am)e) — ul®
(2.8) Uu(z) = liny U(EE;“?EBE;37?))°U( s

is well defined and equals A*?u(z) for ¢ € D. If u is a-harmonic in D,
this clearly implies A%/2u(z) = 0 for x € D. The converse is also true, and
seems tc be well known. Thus e-harmonic functions bounded from below
(above) are identified with the solutions v of A%/?u(z) =0, z € D, which
are bounded from below (above) and C? in D.

Lipschitz domains are recognized as an approximate borderline hetween
the class of domains where the classical (a = 2) BHP holds in its strongest
form, and the class of domains where only partial results may be obtained
(see [1, Chapter IIT]). Also in this paper we restrict ourselves to Lipschitz
domains in order to present the methods, rather than to achieve maximal
generality.

A (connected) region D C R" is called a Lipschitz domain if it is bounded
and for each @ in its boundary 8D there are: a Lipschitz function I'p :
R™"! — R, an orthonormal coordinate system CSg, and a number Rg > 0
such that if y = (y1,...,yn) in CSg coordinates, then

D mB(Q:RQ) = {y P Yn > FQ('.UI: . --111'7:,-—«1)} N B(Q: RQ)

We note that by compactness of D, the radii Rg are not less than a constant
Ry > 0 {the localization radius of D), and the Lipschitz constants of the
functions I'y are not greater than a constant A < oo (the Lipschitz constant
of D).

For the rest of the paper let IJ be a Lipschitz domain with localization
radius Ry and Lipschitz constant A. Many estimates below vary according
to these (and other) parameters. Such a dependence is always explicitly
indicated in the notation C == C(z,y, 2}, which means that the constant C
depends only on 7,y, z. “Constants” are always numbers in (0, 00), so that
we can freely multiply and divide them to get other constants.

x € B{A,r),
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Below we list a few important properties of Lipschitz domains.

Pl (Outer cone property). There exists a constant n = n(A) and a cone
C=Az=(21,...,2n) € R* : 0 < @, |(z1,...,8n_1)| < Mz} such that
for every Q € 8D, there is a cone Cq with vertez (, isometric with C and
sattsfying Co N B(Q, Ry) C DS,

P2. There exists a constant £ = k(X) € (0,1) such that for every v €
(0, Ro) and Q@ € 8D, there is a point A € DN B(Q,r), denoted by A.(Q),
such that B(A,kr) C DN B(Q,r).

P3. There exists a constant M = M(D) € N such that for all 21,z € D,
£>0 and k € N satisfying

(29) diSt({mlawZ}aDc) > £,
(2.10) [z1 — za| < 2%,
there is a sequence of balls By, ..., By C D sotisfying

§ diam B; < dist(B;, D) < 2diam B;, j=1,..., Mk,

which join 1 and xo in the sense that ) is the center of By, ay is the centfer
of Bapr, and By N By # 0, 5 =1,...,Mk — 1. Also, there is a constant
L = L(D) such thot the above sequence B; is contained in D N B(@,r),
provided

(2.11) z,2 € DNB(Q,Lr), Qe&dD, r>0.

Moreover, there is a constant L = L(X) such that the sequence B; is con-
tained in D N B(Q,r}, provided

(2.12) T1, L2 ED(—]B(Q,L'I”), @ edD, 0 <r < Ry,

and, in this case, the constant M above may be chosen fo depend only on
A. This number will be denoted by M = M(}).

Remark 1. In property P1, the existence of the cone C¢ in local coordi-
nates C'Sg easily follows from the Lipschitz condition on I'g. A calculation
yields 7 = A~!. Property P2 follows from the existence of inner cones Cg; for

D (with the same aperture as Cg), and a calculation gives & = (24/1 + AZ)~%.
We observe that the point A need not be unigue, so there is a little abuse
of language in the notation A, (@Q).

In turn, P3 follows locally (i.e. in the part concerning L, M) from a
straightforward construction. In coordinates C'Sg, we consider two cones
with vertices on 8D, isometric with, say, ' = {z = (z1,...,2,) € R* :
0 < Zn, (®1-. s Znm1)]| < 2n/(2X + 2))}, with axes parallel to the y,
axis and containing z1 and zp, respectively. If «; and x are sufficiently
close to (), the cones intersect within D N B(Q,r), and the sequence B
is easily constructed by stipulating that it should be included within the
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cones, Globally (in the part concerning M, £), property P3 is a consequence
of the local result and of the compactness and connectedness of the set
Ds ={z ¢ D : dist(z,D®) > &} for all 6 € (0,8) (some 6y > 0). We note
that, unlike M, L, the constants M, £ depend heavily on global geometric
properties of D, which makes estimates expressed in terms of M, £ less
suitable for our purposes.

Admittedly, the statement of P3 ig quite complicated. In part this is
due to the fact that it is tailor-made for the Harnack chain argument for
harmonic functions. Tn the case of a-harmonic functions, o € (0, 2), treated
in this paper, we give a convenient replacement for this argument. As a
result, our considerations do not depend on P3, nor on the connectedness
of D, which is used only in the justification of P3. However, we mention
the property for the sake of comparison and because it is possibly more
versatile when different processes and the corresponding harmonic lunctions
are considered.

3. Estimates for individual o-harmonic functions. The following
is an analogue of the classical chain Harnack principle (see [L1]).

LeMMA 1. There 18 a constant K = K(D) such that for all 1,22 € D,
Q€ 0D, r >0 and k € N salisfying (2.9)-(2.11) of P3,

(3.1) K=*u(ze) < u(z) < KFufas)

for every function v > 0, a-harmonic in DN B(Q,r). Also, there is a con-
stant K = K(n, ) such that for all z1,2: €D, Q€ 8D, r >0 and ke N
satisfying (2.9), (2.10), and (2.12) of P3,

(3.2) Kbu(zg) < u(ey) < K5u(zs)
for every function u > 0, a-harmonic in D N B(Q, 7).

Proof. By (2.7) for the ball 2B; with the same center and twice the
diameter of B;, and (2.6), we see that there is a constant ¢ = ¢(n) such that

clulz") S ula'y < cu(z"), o a"e€By, j=1,..., Mk

This is the usual Harnack principle for the ball (see [4] for an explicit formula
for ¢). It follows by induction that ¢~ M*u(zy) € w(z;) < eMru(ay), hence
we can take K = ¢™ in (3.1). Similar arguments prove (3.2). u

The following lemma proves to be a convenient replacement for the above
chain Harnack principle. However, it should be noted that apart from evident

analogies there are essential differences between these two results, as well as
between. their proofs.
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LeMMA 2. Let z1,23 €R™, 7 > 0 and k € N satisfy |z; — To| < 2F¢. Let
u 2 0 be a function which is o-harmonic in B(zq,7) U B(za, 7). Then

(33) J—12——k(‘4’1+0t)u($2) < u(ml) < J-2k(n+cx)u(m2)
for a constant J = J(n,a).

Proof. We may and do assume that 21 = 0 and |21 — 23| > 2r. As in
the proof of Lemmma 1, we have

(3.4) w(z) > ¢ ulza), € Bz, 7/2),
with a constant ¢ = c(n). By (2.6), for z € B(z2,/2) we obtain
P, /2{0, @) > cRa=r|g|~(nta) 5 gro—ape ghtly)~(nta)
= cpo~(r 42y kbl .
Using (2.7) and remembering that u > 0, we get
w(zy) = w(0) = S P, s2(0, 2)u(z) dz > S
|z|>r/2 Blwa.r/2}
> | B(mg, r/2)|cra(nH2e)g—k(nta)~n =1y (50},

and, by symmetry, (3.3) follows. m

Pr2(0, p)u(z) de

We now come to the main results of the section. .
LeMMaA 3. There exist constants 8 = B(n,a,A) end My = Mi(n,a, A)
such that for all @ € 0D and r € (0, Rp), and functions u > 0, regular
a-harmonic in D M B(Q,r) and satisfying u(z) = 0 on DN B(Q,r), we
have
(3.5) u(@) < Ma(jz — QI/r) c(u),
where c(u) = sup{u(y) : y € DN B(Q,r)}.
LEmMA 4. There evists a constant Ma = Ma(n,a, X) such that for all

Q € 8D and r € (0,Rp/2), and functions u > 0, regular a-harmonic in
DN B(Q,2r) and satisfying u(z) =0 on DN B(Q,2r), we have

(3.6) u(z) € Mau(A-(Q)), = €DNB@r).

The above estimates for (regular) a-harmonic functions correspond to
those used in the proofs of the classical BHP in [12] and [2]. Lemma 3 is a
scaling-invariant statement about the decay of c-barmonic functions with a
locally vanishing “boundary condition”, and Lemma 4 is an analogue of the
Carleson estimate.

For |z| < r and |y| > r, we consider the quotient

P,(@,y) _ [r** - lwi2] Pz -yl
POy L T lyi=

z € DnB(Q,r),
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We take r = L. It is clear that for each £ > 0, there is a neighborhood of
0 € B*, say By = B(0,27%) for some large N = N{e) € N, which satisfies
the following important inequality:
< Plzy)
P 1(07 y)

Proof of Lemma 3. It is clearly enough to show that, under the
assumptions of the lemma, we have

(3.8) w(z) < Mi(jz — Q|/rPe(uw), =zeDNB(@,r/2),

with a constant M{ = M{(n,a,)). We make the following simplifications.
For the domain D, the function w > 0, regular c-harmenic in D N B(@Q, r),
and a positive number d, the function u'(z) = u(z/d) > 0 is regular a-
harmonic in d(DNB(Q,r)). This is a simple consequence of the homogeneity
of the process:

(3.7) (14+¢)" <l+4e z€By, jyl>1

Xat -»P: al/“‘Xt, a>0.
On the other hand, the inequality (3.8) holds for (D, Ry, A, @, 7, u) if and
only if it holds for (dD,dRy, A, dQ, dr,u’). By such a scaling we may and do
restrict our considerations to the case Rp > 1, r = 1 (note that the Lipschitz
constant for D is not changed by the scaling). Without loosing generality, we
also assume that @ = 0, v is bounded on D N B(0, 1), and, finally, u(z) < 1
for 2 € B(0,1), so that ¢(u) < 1. For every integer k, we set

Bk = B(O,T;c),
up = sup{u(z) : & € By},

Th "'—"2_’0,
I = By \ By,

and we claim that there are constants ¢; = ci(n,, A} and ca = cp(n,a, A)
< 1 such that

(3.9) ug < clcg, k> 0.

Our task now is to prove (3.9), since it is clearly equivalent to (3.8).
For k > 0 and z; € By, we have

(3.10) ulz) < | Pry (o, w)uly) dy.
By
Indeed, by regular a-harmonicity,
w(@i) = E¥u(Xrpns.ye) = B {u(Xrpns,)e)i Xrpnaye & D°0 By},

since X7 (png,)- € D°N By, implies u(XT(DﬂBk)c) = 0. The semicolon above
means as usual that the integration is over the subsequent set. Now, assum-
ing X7(png,)e & D°N By, we see that the process X; leaves DN By, and By
at the same time. Therefore, remembering that u > 0, we conclude

w(ze) = B {u(Xrzs)); Xoonp,)e € DN By} < E* u(Xp(se)).
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We split the integral in (3.10) into two parts

(3.11) In(ze) = | P (2x,9)uly) dy,
BY

(3.12) Tu@) = | Po(or y)uly) dy.
Bo\ By

The estimate for Iy is easy. We set 7 = 21z € By, We have

R - P /2 .
Iplwg) = e S [T%Tﬁ"_—%:l 5 - y| " u(y) dy,
lyl>1
\ 7"2 - | Ly 270/2 -
[
lyl>1

2 a2 13
x[ |mq”[m2 1’(mfm)dy
|21 |2 ly|* —ri |z% — vl
Also, we have |

: w2 of2
[Tﬁ - W!«IT / [|y|‘°‘ ] / (ml"“yl)n

T fal? y|* —ri |z — ¥l

/2 n 3 n
_ g-(k-1)a [4?74‘2 - TQ} : (Iw-l —y|) < zw(kana(#) < gegrgka
lyl* — i |2k — 9 31yl

therefore It(xy) < 293" Iy(z:)27%*. This yields
(3.13)  sup{lx(z) : = € B} <2°8"sup{f1(z) :z € Byy27k k>0,

Let A= Al( ), of P2, 8o that B = B(A,x) C DN By. Fix z € By and
y € B§. Let P be the density function of the P4 distribution of Xpge). We
have

2% @/2 [
5 w2~ o] [ly— AP = #2]*" jy ~ 4]
Pm (m,y)/p(y) = [lglz_,r% 52 |y—w]”
porea Y—A*  ly— A
< (2x) (g =r3e72 Ty —alr
< (Zﬁ)—a (2|yDa (zlyl)n —0422714'043""0‘/2,

Gp)™” Giv)”
which yields, by (3.11), (2.7), and the assumptions that w is regular o-
harmonic on D M B(Q,r) O B and c(u) < 1, the estimate

Il(.’.!)) < fﬁ"a22n+a3—a/2u(}l) < H~a22n+a3—-a/2'
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By (3.13), we thus see that there is a constant ¢z = c3(n, A) such that
(3.14) sup{Tp(z): ¢ € By} <3275, k> 0.

For k,l > 0 and = € By, we denote by P, (z, [I;_1) the probability of
the event that the process X; (starting from ) leaves By by hitting ITy.;.
This notation is consistent with (2.6). Similarly, P, (2, Ix—; N Co) denotes
the probability of hitting [Tx—; N Cy for the outer cone Cy in property P1.
The existence of the cone, (3.7) and the homogeneity of P,

P.(z,y) = r "Pler~tyr ), el <r iyl >r v >0,
clearly imply the existence of a constant p = p(n, e, A) € (0, 1) such that
(3.15) P (2, Iy M Cy) 2 pPr (2, py), 11Kk, o€ By,
for N satisfying (3.7). The constant p is independent of £ > 0 in (3.7)

provided £ < 1, which we assume to hold in the sequel. Next we observe
that

PO T_ren)) _ < ga
P]_(O Hﬁk) - !

The verification is straightforward. For y¢ € Il and Y41 = 2yx € k11,
we have

(3.16) k>0,

P10 yky1) _ (lyera* = 1) 2lypqa |
P10, yx) (lyw|? — 1)~/ 2]yg| ™
(Jye)> = 1)>*

(lyp1]? — 4)o/2

Using (3.7) and (3.16), and defining

pr =sup{Pi(z,II_r):z € By}, k>0,

<2 =27"27%

we obtain

(3.17) Pet1/pe < (1 +¢€)%27% k> 0.

Also by (3.7), pr < (1 +&)P1(0,11_g), k > 0, hence

(3.18) Yo lte

Let z € Brn, k > 0. By (3.10), (3.14), scaling and (3.15),

k

(3.19) u(z) < c327% 4 (1 —p) szuk_;.
==

Therefore we have

k
Upn S 27+ (L-p) Y pugg, k>0
=1

Boundery Harnack principle 53
Let {dr}ieq be the sequence satisfying the conditions
dy=dy=..=dy=1
dpan = c327F 4 (1 hp)ipgdk_g, k>0,
Clearly dy = ug, k > 0.

We denote by m a natural number whose value will be specified later so
as to depend only on n, e, X. Using the definition of dy, and (3.17), we get

m k+m
dkt-N 4m ﬁ<~'32’"(k*'"m)“+(1*P)Zpadk+m tH(1=p) Y pdisme
le=l I=m+41
ke
= gy~ e (1 - P)Zmdw-m 1+ (1—-p) Zpl-l-mdk i
=1 1=1

< g2 ™Iy (1 - p) Zptdk+m—: +[27%(1+ )% szdk ;
=1

ne
=) Pilhpmot + 270+ €)M dey, k>0,
Let dj, = max{d; : k <4< k+ N-+m}. We have by (3.18), for k > 0,

(320)  dueyam <{(1=0) 3 pi 271+ i

=1
<{(1-p)(1+6) + 271+ €)Y dh = cadh,
with the constant ¢s = ca(n, e, A) = (L—p)(1 +e) + 2721 + )%™ €

{0,1) depending only on the choice of ¢ = e(n @, A), subordinate to the
conditions (1 — p)(1+¢) < 1 and 27%(1 + &)? < 1, and a suitable choice of
m = m(n, &, A}, which must be made at the moment In particular, we get
(3.21) et vpm S dk, k>0,
which yields (:!'M‘,,;L < (;’.-;ﬂ, k > 0. Thus, by induction, (3.20) and (3.21), we
get for every k > 0,

Qp-Npmei S cads, @3> 0.
It follows that

dit N4m < Cadi,

and so
G < &/
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The observations that dq = gl(n, a, A}, and
u, < dy, < djy < o ida ey’ VT,
finish the proof of (3.8). »

The emphasis in this section is on the analogies between our results and
the theory of nonnegative harmonic functions. Nevertheless, it is noteworthy
how much the discontinuity of the paths of X; complicates the simple idea of
the proof of Lemma 3, which is taken from its classical (@ = 2) counterpart
(see [12, Lemma 5.1]).

We note that the estimates in the proof of Lemnma 3 above do not guar-
antee that u is bounded on the whole of DN B(Q, r), which is the condition
for (3.5) to be meaningful. The boundedness is obtained under the slightly
stronger assumptions of Lemma 4.

Proof of Lemma 4. Wefirst show that v is bounded on DNB(Q, ).
As in the proof of Lemma 3, we may and do restrict our considerations to
the case @ =0, r = 1, without loosing generality. Let ¢ € (1,2), so that

k>0,

(3.22) B(0,1) € B(0,0) C B(0,2).

We define

(3.23) ug(z) = | Prlz,y)uly)dy, =€ B,0).
ly|>o

The same argument as that used to prove (3.10) yields

us(2) > u(z), ze€DNB(0,0).
We observe that if u,(0) is finite, then, by (2.6), u, is finite and regular o-
harmonic on B(0, ) (with the “boundary condition” equal to « on B(0,0)¢).
Then, using (3.22), we conclude that u, is bounded on D B(0,1}, and so
is %. Moreover, we have
{3.24) sup u(z) £ sup  u,(z) < cug{0),

=z€B(0,1) z€.B8(0,1)
with a constant ¢ = c(n, @, ¢) (see Lemma 2). Thus, we only need to show
that the integral in (3.23) converges for z = 0, and for at least one ¢ &
(1,2). We recall that v satisfies Slyl>1 u(y)(1+ |y}~ dy < oo, Therefore,
U (0) < oo is equivalent to

b Pa(0,9)uly) dy < o,
2> |y|>e
and, consequently, to

I{o) = S
2> |y|>a
{see (2.6)). We make an auxiliary calculation:

[l}? ~ o®|* u(y) dy < oo
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t

t
(3.25) [[#? = 0?24y <42 V= 0] do = 2 _p-a 4o
0 D 2-a

2

Then, by Fubini’s theorem and (3.25), we have

2 2
(326) VHoydo={do | [lg)? - 0%/ u(y) dy
1 L 2>ylse
1
= | w)dy {lly?- 0% a0
2|y >1 1
2 l—~cx 4
< 5T g u(y)|y dy < o S u(y) dy,
2>y >1 2>lyi>1

which is finite by the local integrability of u. Clearly, I{(¢) < oo c-a.e.
on (1,2), which proves that u is bounded on I} N B(0,1), and even on
DN B(0,2 —¢) for £ > 0 arhitrarily small. The latter fact and Lemma 3
imoply that u(z) — 0 as D 3 = — S € 8D N B(0, 2). This continuity and
Lemma 3 arc the only ingredients needed to get estimates analogous to
(3.6) by verbatim repetition of standard arguments developed for classical
harmonic functions (see e.g. (11, Lemma (4.4)]).

Actually, if we follow this way, we need to use the (local) chain Harnack
principle (3.2), with the balls B; of P3 necessarily included in the domain
of e-harmonicity D N B{Q,2r) of w. Still, it is so in the case when u is
c-harmonic on the whole of D, assuming we want M; to depend only on
n, &, A, and not otherwise on D, The stipulation renders

u(z) € Myu(AL,(@)), =€ DnB(Q,Lr),

with a constant M5 = M}(n, ) and L = L(A) of P3. The estimate is slightly
less convenient than (3.6), but sufficient for our method of the proof of BHP
for e-harmonic functions (we could also use (3.3), with easier calculations).

However, we present a simpler and more explicit proof making further
ugo of the estimates obtained above. As before, @ = 0 and » = 1. We take
o € (4/3,5/3) such that I(e) < 3ﬁ?82>|y\>1 w(y) dy (cf. (3.26)). Since
o > 4/3, the coustant ¢ in (3.24) may he chosen independent of o, i.e.
c=c{n,a), We have, by (3.23) and (2.6),

| POyu@as< | + |
lyl=e 2>|yl>e  |y=2

(3.27) e (0) ==

SCR[I(U)U‘]'*‘ j Whll'“u(y)dy]
ly[>2
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48 o®ly| " uly)

562[ J uwdy+ |
2h022>|y|>1 ful>2 [/ o]

We take a point A = A;(0) € DN B(0,1) such that B(4,x) C D B(0,1)
(see P2). Then we have, by (2.7),
(328)  w(A)= | Pu0,y— Auly)dy

B(A,r)®

-
=c |

ly—A|>x

[y — AI’: —paraly — Al uly) dy.

To compare the integrals in (3.27) and (3.28) we note that

_ —n
oAl ATz 1<hi<2,
with a constant ¢; = ¢1{n, A). Also, we have
e

ly| > 2,

- we A
gE= el S A —ee AT

for a constant ¢g = co(n, A). Indeed, |y| > 2 and o < 5/3 imply

3
ly— Al < Jy[+ Al <yl +1 < 5|yl
and

25
[yl —o® 2 yl* - (5/3)" 2 [yl — 5zl

e 2(2) oarz Ry ap -

Now, it is clear that

u(A)>mm{c1 r ,CZ}UJ(O),

and, consequently, (3.24) yields

22— -1
sup u{z <c(m1n{c yC }) u(4)}.
Lo (2) TR, (4)
By a remark above, ¢ = ¢(n, ), which finishes the proof. For later con-
venience we note that clearly the following improved version of (3.6) also
holds:

(3.29) sup
z€B(0,5r/4)

u(z) < cau(4,(Q)),

with a constant ¢ = c3(n, o, A). m
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The following lemma reverses the inequality in Lemma 3. It is crucial
that v < a below, since by (2.7), we clearly have (3.30) with ~ = a.

LEMMA 5. There exist constants My = Ms(n, o, ) and v = v{n, o, A) <

o such that for all @ € 8D andr € (0, Ryo), and functions u > 0, a-harmonic
in DN B(Q,r), we have

(3.30) u(Ay(Q)) 2 Ma(|4:(Q) - Q|/r)"u(4,(Q)), s (0,7).
Proof. We may and do assume that r = 1 and u(A.(Q)) = 1. Let
T = 2/k, with the constant s = &()) of P2 For k = 0,1,..., we define

R T"k, Ay = A, (Q) (see P2), By = B{Ag,rr41).

As in the proof of Lemma 1, we have a constant ¢; = ¢1(n) such that

X
(3.31) uE;& Le, =,Y¥EBy, k=0,1,...
Also, there is a constant ¢y = ca(n, A) such that
|Bi| 2 7' T™™,  diam(By) > ¢5'T7%,

dist(Ag,y) ST, k>1>0, y€ B,

Now, by (2.7), (3.31) and (2.6) it follows easily that for k& = 0,1,..., we
have

k-1 k1
uw(dy) = ¢ ‘LZM SPWH 0,y— A;c)dy>63ZT e=Day (A,
1=0 By 1=0

with a constant ¢g = es(n, e, ). We set by,
above inequality vields

= T™y(Ap), m=0,1,... The

(3.32) b=y b

We claim that there are constants cq = ca(n, @, A) and e5 = cs(n, @, A) > 1
such that for k= 0,1,..., we have

(3.33) b > cack.

This is proved by induction. The values of ¢4 and ¢y are specified in the
course of the proof. Indeed, by (3.32) and induction we have

-1
-1
b = ¢ 26‘405 = 03C4 1

For cs > 1 small enough (e.g. ¢z = 1+ c/2) this yields (3.33) for & 2> ko,
where ky = ko(n, o, A} € N is a constant. By (3.3) we can choose ¢4 ==
ca(n, &, A) small enough to satisfy (3.33) for k < ko. This proves (3.30) for
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s=T"% k=0,1,... For the remaining values of s, we use the partial result
and (3.3). =

4. Estimates for a-harmonic measure. Let V be a bounded open
set in R™. For a point # € R™, the P® distribution of Xg(y«) is a probability
measure on V¢, called a-harmonic measure (in @ with respect to V) and
denoted by w® (we drop o from the notation). Unlike Brownian motion,
(X;) has discontinuous paths a.s. and, for z € V, w§ is usually supported
on all of V¢, The latter fact follows from (2.6) and the estimate wi = wi
on V¢, for every ball B € V. For =z € V°©, since P*(Xy = ) = 1, we have
w{r = £4, the Dirac measure in z.

It is important to notice that w%(4), = € R", is a nonnegative func-
tion regular c-harmonic in V for every Borel set A C R™. Indeed, we have
w&(A) = BE=(1a(Xrevrey)), © € R® {cf. (2.5)). We observe that the “bound-
ary condition” for w{,(A) is the indicator function 1 4nye.

Qur basic tool in estimating the a-harmonic measure is the following
lemma.

LeMmma 6. Let V C R™ be a bounded open set with the ouler cone prop-
erty. Let Ay and Ao be Borel sets in V°©. Assume that there is o constant C
such that for every ball B = B(z,r) € V satisfying dist(B, V) = diam{B),
we have

(4.1) wg (A1) < Cwi(4s).
Then
(4.2) wip(A;) S Cwi(ds), zeV.

The a-harmonic measure wi is concentrated on intV° and is absolutely
continuous with respect to the Lebesgue measure on VC. The corresponding
density function f*{y), z € V, y € V*, is condinuous in (x,y) € V x int V°.

Proof For z € V, let v, = §dist(z,V®) and B, = B(=,7,), so that
diam B, = dist(B,;, V). We note that r, depends continuously on z. Let 4
be a Borel subset of V°, For brevity we write

F(z) = wi(4) = P*(Xpwe € 4), zeV
By a remark above, F(z) is continuous in V. The following equality holds:
(4.3} F(z) = P*(Xp(ps) € A) + E*(F(X7(5g)); Xripg) € V), zeV.
Indeed, T(V°) = T(BE) + T(V®) o by Bs) (we follow the standard notation
of [3], with # being the translation operator X; o 8, = X.,). This implies

XT(Vc) o HT(Bg) = XT(VG)OHT(82)+T(BSJ) == XT(VC)- By the strong Markov
property, we have, for z € V,
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P Xpiyey € A) = ESP{Xpye) € Al Xrae)}
= E*P{Xrye) o Br(psy € A Xr(pg)}
= E*PXT09 (X0 € A)
— Em{PXT(B;)(XT(W) € 4); XT(B;) eV©}
+ Ew{PX""“’g’(XT(W) € A); Xrps) €V}
= P Xgqgey € A) + B®(F(Xpps)); Xrimsy € V).

We denote the two terms on the right hand side of (4.3) by pg{z, A} and
ro(z, A), respectively. We observe that po(z, A) is the probability of the event
that the process (X;) jumps directly to A when leaving B,., and ro(x, 4) is
the probability of a complementary event that, leaving B,, it visits V before
jumping to A. The definition of B, and (2.6) yield that py(-, A) is continuous
on V, thus v (-, A) is continuous on V. Using (4.3) we prove inductively that
for k =0,1,..., we have

(4.4)  F(z)=po(z, A) +pi{z,A) + ... +pp(z, A) +re(z, A), z €V,
with

(4.5) pr1(z, A) = B (pp(Xop(ss), A); Xpss) € V),
and
(4.6) Pl 1 (.’E, A) e Em(Tk(XT(Bg), A); XT(B;) € V)

Indeed, it is enough to verify that v = pra1 +re+1, £ =0,1,2,... We may
think of pr as the probability of the event that the process (X;) goes to A
after precisely k jumps from one hall By, z € V, to another. We notice that
by the definition of B,, the outer cone property (cf. P1) and (2.6), there is
a constant p = p(a, diam (1)} such that

{4.7) P Xppsy € V) >p, zeV

We use {4.6) and -

(4.8)  sup reyi(m, A) S (1-p) sup (e, 4) < (1~p)*™ =0 ask — oo,
reV GV

togethor with (4.4), to conclude that
4]

(4.9) wh(4) =) (e, A).
fel)

Let Ay and A, satisfy the hypotheses of the lemma. By (4.1) we have
po(z, A1) < Cpy(x, Ay) for 2 € V. Using this, (4.5) and induction, we get

(4.10) po(z, A1) € Cpi(w, 42), 2 €V, k=0,1,2,...
Ap application of (4.9) yields (4.2).
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If A1 C V* is a Borel set of zero Lebesgue meagure, then {4.1) is satisfied
with C' =0 (and, say, 4z = V°), thus w{ (A4;} = 0 for ¢ € V. Therefore w{
is ahsolutely continuous with respect to Lebesgue measure, with a density
function (the Poisson kernel for V) denoted by f*(y), z € V, y € V°.
Similarly, pg(z, -) has a density function denoted by 7y (z,y), x € V, y € V*.
We may and do choose Py continuous by letting the equality po(z,y) =
P 0,y —2),z € V,y € V® (see (2.6}), hold pointwise in y. For k =
0,1,2,..., and for every Borel set A C V¢, by (4.5}, and Fubini’s theorem,
we have

prsi(z,A) = | p(z, A)P,, (0,2 ~ o) dz

if
C_——-ni

ka 2y P (0,2 ~x)dzdy, z&V.

Therefore we may and do assume that (pointwise)

(4.11) D1 (z,y) = Sﬁk(z, WP, (0,z—xz)dz, zeV, ye V"
v
Let K be an arbitrary compact subset of int V°¢. We claim that 5y (z, )
is uniformly continuous in ¥V x K ~ and vanishes as z — 8V. This is proved
by induction. Let Va2, - Q eV and K 3y, — 93 K. If Q € OV then,
for every £ > 0, by (4.11) we have

Prt1(Zn.Yn) = | Bu(2,¥n) Pr, (0,2 — ) dz
v

= )+ ]
VAB(QE)  V\B(@e)

By induction, the first integral on the right hand side can be made arbitrarily

small provided € > 0 is small enough. Since 7, — 0, for every £ > 0 fixed,

the second integral vanishes as n — co. Thus Py.1(%n, ¥n) — 0 as n — oo.
Now agssume that @ € V. We have

§k+1(zn, yn) - ﬁk-i—l(@: S)
= S ﬁk(zs 'yn)Pr;,n (O,Z ~ x'n) —ﬁk(za S)PTQ(O1 z - Q) dz

v
| P, (0,2 = 2 Bi(,3m) — i, )] d
v
+ S ﬁk(‘zjs)[Prmn (O,Z - xn) — PTQ(0= Z= Q)] dz.
7

Since, by induction, Px(2,yn) — Pi(z, 5), uniformly in z € V, the first
integral on the right hand side tends to zero as n — oo. We also note that
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Pan = T > 0, ancl by (2.6), the measures u,,, given by the density functions
P, 0,z —xn), 2 € R, converge weakly to the measure with the density
function P, (0,2 — @),z € R*. Thus the second integral also vanishes. In
consequence, P (En, ¥n) — Per1(Q,8) — 0 as n — oo, The induction is
completa.

By (4.9}, we clearly have for x € V, and almost all y g Ve,

(4.12) Fy) =Y Bulz.y).
k=0

Using (4.11} and (4.7) yields

sup Pred(e,y) € (L-p) sup  Brle,y)
aeV, e i wgV,yeK
<A -p) sup  P(0,y - ).

eEV, ye K

We conclude that the series in (4.12) converges uniformly on V x K, and
(by letting (4.12) hold pointwise) f®(y) is uniformly continuous on V x K,
and vanishes as ¢ -» 0V. In particular, f*(y) is continuous in (z,y) €
V ox int V. w

Remark 2. In fact, f%(y) is € in (x,y) € V x int V°. The proof
requires ouly & slight modification of the method applied above, namely a
O™ selection of the radii vy, 2 € V, and is left to the interested reader. We
do not use this result in our considerations.

Remark 3. Let vy, 42 € int V° Under the notation from the proof of
Lemma 6, if Bo(z,y1) € Cholz,ye) for € V, then f%(y) < Cf*(yy) for
2 € V. This is an easy consequence of (4.10), (4.12) and the continnity of
the density functions.

The next lanma states that the asymptotics of f#(y) as y — oo is the
same as that of the Poisson kernel (2.6) for the ball.

LemMmMa 7. Let V ¢ R" be a bounded open set with the outer cone prop-
erty. Let X > 0. For cvery y € V¢ which satisfies

(4.13) dist(y, V') 2 A diam(V),
we have

o sta) 5(z) v
(4.14) @ dist(y, Vrie = s < RTEONGE ="

with Cy = €' (n, M) and a function 8(z), z € V, depending only on V end .
Moreover, O — L as Ay -+ 00.

Proof. We use the notation from the proof of Lemuma 6. Let y E‘VC
satisfy (4.13) and 2 be an arbitrary point in V. We claim that there is a



62 K. Bogdan

constant ¢ = e(n, Ay) such that
,’,.0! TC!

—1.n xT fn < e T ,
@15} caggn Yyera < Pol(z:y) = oo g yyra

We recall that
2 a2
@19 Aoy = POy =] —th] w-e
‘We have
ly - x| > rq + dist(y, V) 2 7o + A diam(V) > (14 Ay)ra,
and so

A1

mm“l-y—wlﬂ-'f'm-

AL 1
|y—$l21—_‘}j:\“1'\y—w|+1+)\1(1+)\1)"w

Now, we get the estimate

r2

af2
o~ n, T — T
Po(ma y) < Cor iy - 56‘2;\%/(1 ¥ )\1)2] Iy CL"

o

T
_ L P L 1 e nww»ﬂi-»-—-—--—‘
Ca(l + 1/A1) T |y ml = (1 + /)\]) Cy dlSt(’y, V)'n,-l-rx

Using (4.13), we also get
ly — 2| < dist(y, V) + diam(V) < dist{y, V)(L+1/A),
which yields

,r.Dd
Polz,y) = corgly — 2" = (1 + 1/A1)"n—“CEW'
As a result, for A; fixed, we obtain {4.15). At the same time it is obvious that
we can get rid of the dependence of the constant ¢ = ¢(n, o, A1), resulting
from our calculations, on « € (0,2} by considering the worst case a — 2.
Also, we can make ¢ = ¢(n, A1) thus cbtained as close to 1 as we wish, by
taking A; large enough.

We next dencte by y1, ¥2 two points y satisfying (4.13), We have
. n-o o~ s e X
(4.17) 2 (d%st(yz, V)) < Eo(m, Y1) <2 (clfst(yg, V)) '
dist(y, V) Polz, y2) dist(y1, V)
By this inequality and Remark 3,

2 (dist(yz, vyt <
dist{y,, V)

) 2 (dist(yz, V) ) o

~ (1) dist{y1, V)
or

(4.18) ™2 ¥ (yo ) dist(ya, V)™ < #2(3n) dist (g1, V)"
< ¢* (o) dist(yg, V)2
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We now consider a sequence of points y, above, denoted by v k=1,2,...
We assume that the corresponding constants Ay (k) = dist{y%, V)/ diam(V)
(cf. (4.13)) satisfy Ay € Aulk) ~ oo as k — oco. The first consequence of
(4.18) is that the sequence
I (yg) dist(gh, V™o, k=12,
is bounded away from zero and infinity. Then we have
e £ () dis(gh, VY™ < ) dist(y, V)
< e 7 (v5) dist(yh, V)™, k,meN,
with a constant ¢ = cy(n,k,m) = c¢(n,min(A;(k), \(m)}). The remark
made on the constant ¢ above yields ¢g — 1 as (k,m) — oco. It is now
obvious that
a{x) = lil?lf“’(yé) dist(y¥, v)r+e

exists. Therefore, by (4.18) with y1 = y and ya = ¥%, the inequality (4.14)

is proved with Cy = ¢%. u

Remark 4. Incidentally, Lemma 7 proves that s(z) > 0 and f*(y) > 0
for @ € V and y € int V¥, An explicit example of the above function s(z)
for V = B(0,7) ¢ R™ is the factor ¢X(r? — 22)%/% in (2.6). For general V,
by the proof of Lemma 6, ¢(x) is (uniformly) continuous on V" and vanishes
as V ow— av.

LEMMA 8. Let V < R™ be a bounded open set with the outer cone prop-
erty. Let A > 0. For any functions u,v > 0, regular a-harmonic in V,
vanishing on the set B = {z: 0 < dist{z,V) < Ay diam(V)}, and such that
w(zp) = v(wp) for some ay €V, we have

crts M8 <o,

v{x)

with the constant 4y = Cy(n, A) of Lemma 7.

z eV,

Proof. Let x denote an arbitrary point in V. By {4.14),
(419)  w(e) = | uy)eh(dy) < s@)C | uly)(distly, V) dy,

i Be
and
4200 (o) = § o) (d) 2 )07 | vla)dsily, V)
e Eo

We denote by I, 1] the rightmost integrals of (4.19), (4.20), respectively.
For u,v not equal to 0 a.s. we have u(z)/v(z) £ C?I/11, and by symmetry,
also w(z)/v{z) = Cf 21/1I. By our assumption and the latter inequality,
u(io) /viag) = 1 » Cy2I/1I, hence u(z)/v(z) < CF, and also u(x)/v(z) >
C; 4. This corpletes the proof. =
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For points y which are “near” D), we do not have an estimate as precise as
(4.14). However, the following lemma states that an important consequence
of (4.14) holds also for such points, namely the ratio f (1) 2 (ya), for 4, ya
satisfying appropriate additional assumptions, does not essentially depend
on z.

LEMMA 9. Let V C R™ be a bounded open set with the outer cone prop-

erty. Let 6 > 0. There is a constant Cy = Cy(n, 8) such that for every pair
y1, 2 € V© satisfying

(4.21) dist({y1, 42}, V) > 8|y — 32|,
we have

-1 )
4.22 et < <Cy z€eV
(4.22) S Fy =%

Proof. The method of proof is very similar to that of the proof of
Lemma 7 and without further comments we adopt the notation used therein.
Let y1,y2 € V° satisfy (4.21) and z be an arbitrary point in V.. We prove
(4.22) by means of the inequality

02——1 < .?\D(wiyl) < 02’

- pD(ma '92)
with Cy = Ca(n, 6) (see Remark 3). Let

(4.23)

~n

o Pre0ys—2) _ [m —wlz—m’é]“”  —
P (0,92 — 2) lyr — =2 ~ 72 |y — [~

We set d = dist({y1, y2}, Bz). Clearly, by {4.21), we have |y2— 31| < d/6, and
ly1 —z| > d, so that

o — 2| < [y — x|+ ly2 — 1] < |v1 — 2]+ lys = 2]/ = (1 + 1/8)y1 — =]
Also |y1 — z| > d + r4, and
lyz — 2| < d+ [y2 — y1| + 7o < d(1+1/6) + 1y
Then we have

W< [GOE1/8) +1a)2 =127 g — gy
B ECEE ST TG

g [d2(1+1/6)2~+~2rwd(1+1/5)r/2( 1)“ < ( 1)”-"""‘,

d% 4+ 2r.d 1+3‘- 1+}§

By analogy W 2> (1+1/6)"™~%. This proves (4.23) and consequently (4.22).
We see that U2 may be taken independent of o € (0,2), and, naturally,
Co—1asd— o0 n
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We recall that D denotes a Lipschitz domain in R™. So far in this section
we have been able to avoid property P2, and we have investigated a larger
class of domaing V' satisfying only the outer cone property. Even greater
generality is possible, and some clues can be found in the proof of Lemama 17
below. Now we return to our primary focus on Lipschitz domains D.

The a-harmonic measure of the sets D°N.B(Q,r), Q € 4D, r > 0, cannot
be estimated by means of (4.14) nor (4.22). However, it is possible to cbtain
hounds for the measure in terms of the Green function G of D, which turn
out Lo be sufficient to complete our proof of BHP,

LeMMA 10, There evists a constant g = p(n, o, X) € (0,1) such that for
all @ € 8D and r ¢ (0, Ry),

(4.24) wH(BG,) 2 1/2, © € BQ,er)

Proof. For clarity we first observe that wh (B(Q, 7)) = w% (DNB(Q, 7)),
z € R", The notation on the left hand side is shorter and therefore will be
preferred. We define v(z) = 1 — wh(B(@Q,r)) = w(B(Q,7)%), = € R™.
This is a bounded (by 1) nonnegative function, regular a-harmonic in D,
which vanishes on D N B(Q,r). By Lemma 3 there is a constant p =
g(n, o, A) € (0,1) such that v(z) < 1/2 for z € D n B(Q, or). Therefore
wh(B(Q, 7)) = 1—v(x) > 1/2for & € DNB(Q, gr). For z € D°N B(Q, or),
we even have wi(B(Q,7)) = 1. u

We recall the definition of the Green function G of D, For a measure u
on R™, let U# be its Riesz potential,

duly}
|z —y|n—a

Uk(z) = Aln,a) |
]Eﬂ
Let €5, @ € R™, be the Dirac measure. We define

(4.25) Cla,y) = Ut (y) — Us? (),

the (nonnegative) Green function of D. 1t is well known that G(z,y) > 0 and
G, y) = Gy, z) for z,y € R", and G{,y) = 0 provided « € D® or y € D°
{we agree to set Gz, ) == 0 for 2 & D). It is also well known that the first
term on the right hand side of (4.25) is a-harmonic in z € R® \ {y} (see
[13])). The second term is clearly regular a-harmonic in x € D. Therefore,
for each y € D and 7 > 0, ((z,y) is regular o-harmonic in z € D\ B(y, 7).
Certainly, it is net regular a-harmonic in D\ {y}.

z,y €R",

LEMMA 1L. There exists a constant Cg = Ca(n, o, ) such that for all
Qe dD, re (0,Ry) and x € D\ B(Ag2(Q), 0xr/2),

(4.26) TMWQG(mgAQr/Z(Q)) _.'<_ GS(U%(B(Q,T‘)),
with the constant g = p(n, o, A) of Lemma 10.
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Proof. We set A = A, 3(Q) (see P2) and B = B(4, prr/2). By P2
we have B ¢ B(Q,or/2). Lemma 10 states that wh(B(Q,r)) 2 1/2 for
z € B(Q, gr). By (4.25) we clearly have
(4.27) Gz, A) < Aln, )|z — A|*™™, zeR",
and so PG (z, A) < A(n, o) (pr/2)* " for & ¢ B. Hence it is obvious that
there is a constant ¢y = ¢1(n, o, A) such that
(4.28) Gz, A) < e (B(Q,r)),
We define Dy = D\ B{Q, ¢r) and

u(z) = cewBH(B(Q, 7)) — r"Cle, A), we R,
where ¢ = ¢(n,a, A} > 1 is another constant to be determined later. We
observe that u is a function regular a-harmonic in Dy (bounded from above),
and by (4.28), u is nonnegative on D§\ B. We observe that for every pair
y1. Y2 € B C B(Q, or/2), we have
i — 2| < or < 2dist({y1, 92}, Do),

so (4.21) is satisfied for yi,ys, and the set Dy, with § = 1/2. We note that
while Dy need not be a Lipschitz domain, the outer cone property holds for
Dy, and consequently, by Lemma 9, there is a constant ¢y = co(n) such that
the density function f°(-) of w}, (-) satisfles the inequality

(4.29) 2 <P/ A < e
We fix z € Dg. We have
u(z) = | uly) (W) dy = §uy)f*(y) dy

D B
= cer { wh(BQ,m) () dy — "~ { Gly, A) (1) dy.
B B

By (4.29) and (4.24), the first term on the right hand side is bounded from
below by

x€ B(Qer)\ B

yEB, .’E(EDQ.

1
cercy Ef”” (A} B| = ceg f5(A)r",
with a constant ¢; = ca(n, @, A). Using (4.29}, (4.27) and polar coordinates,
we estimate the second term from above by

A n, or)ea fU(A) S ¥ — A" dy
B
grr /2
= """ A, a)eaf"(A) | wpogt" 0 g

0

= Aln, a)esn1 - (or/2)" F(A)r™,
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where wy -1 18 the (n — 1)-dimensional Hausdorff measure of the unit sphere
in K. Clearly, we can now choose ¢ = ¢(n, a, A} large enough to provide
u(x) 2 0 for @ € Dg. This completes the proof. m

LuMMmA 12, There evists a constant Cy = Cy(n,a, N) such that for all
G e dD andr & (0, Ry/2),

(430)  wh(BQr) S Car™ Gz, An(Q)),
with the constant @ = p(n, o, A) of Lemma 10,

D\ B(Q,2r) and g(y) =

z € D\ B(Q,2r),

Proof, Let z €

Gl{z,y),y € B Let ¢ €
Cge(IR™). Trom

Aa/'zd)(w) = A(n, "'Ct) ‘ (I)(m + ?,2: ¢(m) dy,
A 7
it follows easily that
(4.31) 1A%y} < ex(1+ [y,

for a constant ¢y ==cq(n, o, ¢). We claim that under the assumption ¢(z) =0,

| 9 A Pg(y) dy = | dly) dw(y).
g R

y R,

(4.32)

Indeed, in the sense of distributions,

A%/ (m‘ Aln, o) ) =—£;, TER®

I - _in—-a

(4.33)

(see [13, Lemma 1.11]). This is uged twice in the following identities:

Vo) 4% (y) dy
Jign
= Al ) § {lo=gl"™ = § Iy =2l dwb(2) }A*200) dy
e 138
= = pla) = Al ) § | |2 - gi* A2 (y) dy dwp(e)
figr ke

= | o) du(2).

THre

c B(0,1), and ¢(y) = 0 for

Assume next that ¢ = 0, q5( ) = for
€ R", By a simple change of

¥y & B(0,2). We define ¢,(y) = ( - ), ¥
variable we obtain
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(4.34) A%, (y) = A(n, ~a) §

n |z|71+0£

}J;Q.+ N p{u=% ,
EA(‘H;,“O!) S QS( T.lz,ulnilq,.nfa( T ),rn dz
B

:r—aAﬂ”¢(Eil9), y € R,

r

We observe that for z € D\ B(Q,2r), we have ¢,(z) = 0, thus (4.32) applies
to ¢,. By definition of ¢, (4.32), (4.34) and (4.31), we get

wH(BQ,r) < | ¢o(y) dob(y) = | 9(v) A% 60 (y) dy
Rn R
< | oA ¢.(y)| dy

=fi"‘ | olv) A"‘”cb(g)‘dy

el

<ar™ | g() (1 + ’y_QD—M dy

R r

= cw‘“[ |+
B(Q,mND D\B(Q,n)
By (3.29) in the proof of Lemma 4, we have g{y) < cag(A4,-(Q)) for
y € B(Q,r), with a constant cg = cz(n, o, A). Indeed, ¢ is nonnegative,
regular a-harmenic on DNB(Q), 8r/5), and vanishes on D¢, so the conditions
leading to (3.29) are fulfilled (we use (3.28) rather than (3.6) to simplify the

notation in (4.30)). Now we set A = A, /2(Q), B == B(4, ¢rr/2), and we
claim that there is 2 congtant ¢z = cs(n, o, A) such that

(4.35) 9(A(Q)) < eagl4).

To prove (4.35), we could use the chain Harnack principle of Lemzna 1, but
this requires the additional assumptions

x €D\ B(@Q,r/L) and re(0,ReL),
with the constant L == L()) of P3, and so we get involved into somewhat
clumsy notation concerning among other things the range of r.
Therefore we prefer to use (3.3), which gives (4.35) immediately. The
moderate price we pay, in this particular case, for using such an argument

is that the constant ¢ obtained, depending on «, tends to zero as ¢ — 2,
and the estimate (4.35) becomes inaccurate near o = 2. It follows that

I < r7%ieacag(4)| B(Q,r)| = r"*g(A)ercacawn—1 /1.

] =I+]IL
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To estimate [1, we denote by P the density function of the a-harmonic
measure wi. For y € BS, we have by (2.6),

~ r2( 2 a/2
Ply) = Pngr/2(03y - A)= Cgl:y — A|2(~gﬁgmg/2)2} ly—AI™"
1 /2
= el a0 A

> cy(ke/2)*r ™ (jy — Al/m)7" 7"
We will further assume that |y — Q| > r. We have |4 — Q| < or/2, hence
ly— Al < |ly— Q|+ er/2 < |y — Q|(1+ ¢/2). It follows that
P(y) 2 ci(ke/2)*(L+ ¢/ M (ly = Ql/r) """
> cp(ko/2)%(1+0/2) " M1+ ly - Ql/m) T
The conclusicn reads

IT < oy () M (me/2) (1 + 0/2)" = | g(y) P(y) dy.
Bc

We recall that g is regular a-harmonic on B, and the last integral is equal
to g(A), which yields

II< r“""‘cl(c’;)'l(mg/Z)““(l - g/2)”+“g(A).
This estimate concludes the proof of (4.30). m
We summarize the above resuits as follows.

COROLLARY 1. There erists a constani Cs = Cs{n, o, A) such that for
all Q € OD and v € (0, Ro/2),

(4.36) ol < wpB@T) < g,

T B(Q, 2r).
- TH—HG(mlAgr/2(Q)) GD\ (Q T)

5. Proof of the boundary Harnack principle. For Lipschitz domains
D, we have frequently considered the intersections D n B(Q,r) with balls
centered at the boundary points of D. This method of localization has the
disadvantage that the sets obtained need not be Lipschitz domains them-
selves, and the estimates for a-harmonic measure we have proved above do
not apply. However, it is well known that Lipschitz domains can be localized
near the boundary, in a slightly different way described below, enabling us
to overcome this obstacle (see [12]).

P4 (Localization property) There is a constant R = R{n,X) > 1 such
that for all Q € 8D and 7 € (0, Ro), there is a Lipschitz domain 12 with the
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Lipschitz constant X = AR and localization radius Ry = Rg /R, having the
property
(5.1) DnB(@r/R)c 2 cCDNBQ,7).

Remark 5. The set {2 above may be obtained in local coordinates C'Sq
as the intersection of D and a cylinder about the y, axis.

LEMMA 13. There exists a constant Cg = Cg(n, e, A} such that for all
O € 8D and r € (0, Rp/2), and functions u,v > 0, reqular a-harmonic in
DN B(@Q, 2r), which vanish on D° N B(Q, 2r), we have
(5.2) Cilu(e) < ulz) < Ceu(z), =z€DN B(Q,r),
provided u(A(Q)) = v(4.(Q)).

Proof We fizst prove that there is a constant C§ = Cg(n,a, A) such
that

(5.3) (CHMu(z) < ulz) < Ciul(z), =eDNB(Q,r/{2R)),
under all the assumptions of the lemma except that u(A4.(Q)) = v(A-(@))
is replaced by u(4) = v(A4) > 0 with A = A,;r)(Q) (see P2).

Let 2 = 2(D,Q,r) be the set of P4 and let A’ be its Lipschitz constant.
Let ¢ = ¢(n, A) be a constant to be specified below. We define

Fy = {5 € 812:0 < dist(S, D%) < er},
Fy = {8 € 802 : dist(9, D) 2 er},
A={ze D\ Q:dist(z, FL UF,) < cr/2}.
‘We observe that, for every point = on the axis 7 of the inner cone Cb, we

have dist(z, (€3)°) = & — Q}/v1+ A? (see Remark 1). It follows that for
S1 enn{S €N 0 < dist(S, D)}, we have

dist(Sy, D°) > min{dist(St, (Co)), dist(S1, B(Q, 2r))} > r/(R/1 + A2).

Now we stipulate that the constant ¢ above satisfy ¢ < 1/(4Rv1+ A2). It
follows that S; € Fy. In fact, the ball By = B(Sy, cr) satisfies dist( By, D®) >
cr. Also, there exist a constant d = d(n,c} = d(n, A) € N and a family of
balls B; = B;(S;,er), i = 1,...,d, (including By) such that §; € Fy U Fy,
t=1,...,d, and

d
(5.4) Ac|)B.

g==l
Indeed, such a covering may be easily constructed from a covering of R* by
balls of diameter cr/4, with equally spaced centers, by means of moving each
ball B in this covering which intersects A so as to position its center at a
point 5 € FyUF5 sufficiently close to B, and, subsequently, by expanding the
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resulting ball B’ by a factor of 4, to assure that the new ball 4B’ = B(S5, cr)
covers B. Since |@—S;| > r/R and ¢ £ 1/(4R), for allz € DNB(Q,r/(2R)}
we clearly have z & 2B;, i = 1,...,d. By (4.36), there is a constant ¢; =
c1{n,a, ') = ¢1{n, o, A) such that
b4

r.r -1 < wﬂ(‘Bl) <

(‘) 'J) & = (c,,,.)n—aGn(m,Ai) = d, z€ DN B(Q? T/(2R)),
where 4; = Agcr/z(si): i=1,...,d, 0= Q(n,a,)\l) (cf. Lemnma 10). The
points {A;} depend on 2 and in particular on X' via P2.

We fix z € B(Q,r/(2R)). The Green function Gp(z,y) is nonnegative
and o-harmonic in y € 2\ {z}. Lemma 2 easily yields

- Golz, A) .
. b 0 < =1,...,d
(5 6) G = GQ(.’B,A]_) > C3, 4 ) 5 By
with a constant ¢z = ca(n,a, ). Alternatively we could use the chain

Harnack argument from the proof of Lemma 1, and the connectedness of
FyUF, =080\ 0D, for 2 described in Remark 5.
By (5.4)-(5.6), we get

d
(5.7) whH(A) <Y _wh(B:) € eswh(Ba),
with a constant cg = cz(n,a, A). To end the proof of (5.3), we define func-
tions uq1, ug, regular a-harmonic in (2, by stipulating the following “houndary
conditions™:

_ July), veAa, _ [0, yeA,

ua(y) = {o, Ve m={uy, yema

50 that 21, us > 0 and uy +up = u. In the same way we define vy, ve. There
is a constant ¢q = ca{m, o, A) such that (by (3.29) and (3.3))

(5.8) ur(y) = w(y) S cu(4), y€ACB(Q )
and (by {3.3))
(5.9) vi(y) =v(y) 2 citv(4), wEBINA

Therefore by (6.7) and (5.8), we obtain

'u,l(a:) < C3C4U(A)w?3(Bl),
and similarly, by (5.9), we get
(5.10) v (z) > g w(Aywh(Bi)-
We conclude that
(5.11) ug (z)/vi(2) < esc-
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To estimate uy(z)/va(z), we use Lemma 8, for the Lipschitz domain (2 and
M o= or/ (214 A2diam(£2)) > ¢/(4V1 + A2), to get

uz( )/UQ A) ¢s

va(a) ! va(d) =

with a constant ¢5 = cs{n, o, \). We notice that ua(A} < u(4). By (3.3)
and (2.7), it is not difficult to see that v2(A) > egv(A4), with a constant
cg = cg(n, o, A). Therefore, by (5.11) and (5.12}, there is another constant
¢r = er(n, @, A) such that

u(z)/v(z) < er,
and, by symruetry,
u(z)/v(z) 2 7", = € B(Q,r/(2R)).

The proof of {5.3) is now complete. The estimate (5.2) is an easy consequence
of (5.3) and (3.3). We omit the details. w

(5.12) et <

z € B(Q,r/(2R)},

Let dy be a nonempty open subset of D\ B(Q, 2r). We recall that the a-
harmonic measure w}, (dy) is a regular a-harmonic function in = € D. Hence,

by Lemma 13, for any two such sets dy, dyg, and every zo € D N B(Q,7),
we have

- wD (dy) , wh(dyo)
Co" < Saay) o )

When dy and dyg shrink to 4,y € int D\ B(Q, 2r), respectively, we get
the following result on the density function f*(y) of w%(dy).

<C¢ zeDNBQ,r).

COROLLARY 2. Let Q € 0D and v € (0, Ro/2). For any two pairs y,yg €
int D¢\ B(Q,2r) and 2,20 € DN B(Q,r), we have

—a . Iy, P(ye) _ o
19 %" S i ) < O

with the constant Cs = Cg{n,a, ) of Lemma 183.

We note that analogous estimates are deductible, under more stringent
assumptions, from (4.14) and (4.22). We also observe that for mg, 3o fixed,
(5.13) yields an approximate factorization of the density function

T () = £ (yo) £ (W) /£ (o)

where the first term on the right hand side depends only on z, the second
on y, and the third is a normalizing constant (cf. (2.6)). As a matter of fact,

this is equivalent (see the proof of Lemma 8) to the (local) BHP stated in
Lemma 13.
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The proof of the full statement of Theorem 1 requires some additional
preparation. The exponential estimate (5.14) in the following lemmma may be
regarded as an approximate principle of localization for a-harmonic func-
tions.

Levma 14. There exist constants £ = £(n, o, A) < 1 and C7 = Cr(n, o, A)
such that for oll Q € 8D and r € (0, Ro/2), and functions u > 0, regular
a-harmonic in D N B(Q, 2r), which vanish on DN B(Q, 2r), we have

(5.14)  E™{w(XTypnm,0)s XTions, s € BS} < Créfu(z), =& DN By,

for By = B(Q,27%r), k=10,1,...

Proof. We may and do assume that 7 = 1 and sup, g, u(z) = 1 (see
Lemma 4 and the beginning of the proof of Lemma 3). We define

uk(x) = Em{u(XTwan)C); XT(Dan)" € BS}, z R,

(so that up = u) and A; = 4, (@), k = 0,1, ... Clearly, each u; is non-
negative and regular a-harmonic in D N.By. By an argument similar to that
justifying (3.10) we get wpr1(z) < up(z), z € R™, and (using also (3.14)
from the proof of Lemma 3) there is a constant ¢ = ¢{n, @, A) such that

(5.15)  wrl(A) < EA"{u(XTBi); Xz, € B3} < c27he k=12,...

By Lemmas 4 and 5, u(Az) > My  Ma(x27%)7, with v < o, Ms of Lemma, 5,
and M, of Lemma 4. Finally, by Lemma 13 and (5.15), for ¥ = 1,2, ... and
z € DN By, we have

ug(z) . up—1(x) G'Uk—l(Ak—l)
u(z) — w(z) = u(Ag—1)

which completes the proof. m

< CeMgMglcm_"'Z_(k“l)(“—"'),

LeMMA 15. Assume thaet nonnegative numbers up, Uy, .- - ., Uk U0, V1, .. -

Uk @ b1, .o, by and €4, .. ., 6k satisfy the following conditions:
(5.16) a<b, i=1,...,k,
(5.17) uy < by, v S gwe, 1=1,...,k
(5.18) ug < aug.
Then
k

(5.19) Zu;, < [a+2(b —a) em] Z'”“

=0 i=0
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Proof. The verification is straightforward:

k k ke
Zui < up + Zbivi < avg + szﬂ)z’
=0 tm=] i=1

k

k k k
= CLZU,- + Z(bz -y < GZ’U:»: -+ X:(bz — a)Eyg

i=0 i=1 j=0 i=]

< [a.+ i(bi . a)e,—} ivi‘ n
i=1 =0

The following lemma may be seen as a culmination of our study, yielding
the most precise estimates for the ratio of nonnegative regular c-harmonic
functions in Lipschitz domains, with possible application in determining the
Martin boundary of Lipschitz domains for e-harmonic functions,

LeMMA 16. There exist constants Cg = Cg(n, o, A) and v = v{n, o, A)

such that for all Q € 0D and r € (0, Ry/2), and functions u,v > 0, regular

a-harmonic in D N B(Q,2r), which vanish on DN B(Q,2r) and satisfy

uw(A{Q)) = v(Ar(Q)) > 0, the limit g = limps,—,ou(z)/v(z) exists, and
we have

3L@—g

(5.20) o

<Cylz—-Q", =zeDNBQ,r).

The proof uses elements of the corresponding proofs from [2] and [12].
However, the maximum principle exploited there does not hold for a-har-
monic functions. Instead we use the approximate localization principle stated
in Lemma 14, which naturally complicates the estimates.

Proof of Lemma 16. We may and do assume that + = 1 and
u(Ar(Q)) = v(A,(Q)) = 1. In what follows, kg denotes a positive integer, to
be specified in a suitable moment so that kg = ko(n, o, A). Let ¢ = 2% For
k=0,1,..., we define

'rk=c—k7 Bk _: B(Qr‘rk)u Dk':DﬂBki
Iy = Dg\ Dpy1, 1.1 = B,
and for l = -1,0,1,...,k—1,
(5.21) ui(z) = B*{u(Xr(pe))i Xrpoey € I}, @ €RY,
(5.22) vk (@) = B {v(Xrps)); Xrws) € L}, zeR"

Let & denote a number in (0, 1), to be specified below, so that ¢ = g(n, a, A).
By Lemma 14, for k= 0,1,... and 2 € Dy, we have

(5.23) (@) < Cr(E)elufa),  1=—1,0,1,... k2,
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and

k-2
(5.24) Z ul(z) < CrePoulz).

i=-1

Therefore we can define kg = ko(e) by stipulating, for ¥ = 1,2,... and
I=—1,0,1,... k=2,

(5.25) ub(z) € * TN 2), =z e Dy,
and, by symmetry,
(5.26) vh(z) < Pkl w),  z € Dy

We claim. that there exist constants ¢1 = ci{n,a,A) and ¢ = {(n, o, A) €
(0,1) such that for [ = 0,1,...,

u(z) b (E)

—L < f —.
(5.27) o (@)~ (1+exd )mlélb.; v(z)
Clearly, in view of (5.2), (5.27) is equivalent to (5.20). We prove (5.27) by
induction. Let &k = 0,1,... Assume that (5.27) holds for [ = 0,1,...,k. By
definitions (5.21) and (5.22) we have

k
(5.28) w(z) = Z uhy(z), zeR",
[=-1
k
(5.29) viz)= Y k() z€R,

j=1
sach summand in the above sums being a nonnegative regular c-harmonic

function in Dpgq.
For a function f on a set A we define

Oscaf = igﬁf(m) *iﬁif(‘”)‘

Let g(x) = uf,y (2)/vk.1(2), z € Dy. We claim that
(5.30) Osep, 09 < 60scp, 4,

1 ] = i d az =
with § = &(n,o,A) € (0,1). Indeed, let a1 = infaep, g(z) and as
§UPgep, 9(2). We note that 0 <ay < ag < o0 by .(5.21), (5.22) and (5.2). If
a1 = (g, then (5.30) is proved with § = 0; otherwise, let
ufy (7) — “1”1?§+1(33)

”1?4-1(‘3)(@2 - a1)
and we see that ¢’ is a quotient of nonnegative (nonzero) functiox;xs regular
a-harmonic in Dy41: Clearly Oscp, g = 1. The functions g and g satisfy

(5.31} 08¢y 59 = 08CD,4, 9 OsCDLY-

y meDks

; _ g(a:)—-al
g'(e) = A
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Now, if supyep, ., §'(z) < 1/2, we are satisfied with the conclusion

(5.32) Oscp,,.9 < 1/2.

Otherwise, by Lemma 13, we have infsep,,, ¢'(z) = $C52, with Cs =

Cs{n, e, A) of Lemma 13. Then, obviously,
(5.33) Oscp,,g' < 1-—3C52

By (5.31)(5.33), we get (5.30) with § = max (3,1~ $C5%) =1-1C% ¢

{0, 1}. Taking into account the inequalities
u(w)

k k
uf o (z U (x
~7f,;+1( ) > inf t'*'l( ) > inf —t
2€Dkt2 UE o {m) ~ w€Dw v, () T o€Dy v(z)

and

k
U
sup Z-«-l(w) < u(x)
weDy Vg () ™ zeD, v(z)

(see (5.21) and (5.22)), we easily check that {5.30) yields
k k
(5.34) sup ui"'l(m) inf u;:"'l(m) -1
8€ D2 Vit {Z) ' ©€Dki2 vF,;(2)
<6 —=/ inf ——=< ~1].
(fg%’,g v(m)/mle%h v{x) l)
Using (5.34), and (5.27) for { = k, we obtain

k &
(535) sup uk"’“—l(@ — (]_ -+ clédck) inf uk-{-l(m)

T€Dgyn "U}icc-f—l(w) @€ D2 ij:+1 (:L‘) '

with a suitably chosen number d € [0, 1] (independent of & & Dis1). We
note that this is equivalent to

ol k
(5.36) sup 2*1@ = (14 eibdct) inf (@)
€Dy a Uy () 2€Du4a uf ()

‘We next observe that

k
inf Ek_‘i‘}@ > inf u(z) 1=0.1 &
#E Dbt '”I’g+1(~’0) ~ wed wiz)’ physey it

Thus (5.27) yields

ks
(5.37) sup Eg,’?_z <1+ inf uk+1(m) _
ceD;, v{z) ~ (1+e )a:El.Bk.,.q —“_—Up}:q-l(m) , I=0,1,...,k

We now fix & € Dy,p. Using (5.25), we have

u(z) - Elkxo U () + “!:il(m) 41 Ef:o “gc-|-1(m)
v(z) Z?_—_o ”§c+1 () + U;il(m) < {1+ E?:o vlle+jl($) '
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We are in a position to apply Lemma 15, with the corresponding notation
k
Up = uk+1(w)= Vg = vi;cc+1(m)=

k
a = (1 + C}_tSde) inf u;:..}-l(y) )
¥EDk+2 VU1 ()

w =upi(z), v=viii(a),
k
, u
b.,; = (] + Clck—!) inf :+1(y),
YEDy 42 ’uk_l_l(y)

g =¢, i=1,...,k

Indeed, (5.18) of Lemma 15 follows from (5.35), (5.17) follows from (5.37),
(5.21), (5.22), and from (5.26). Hence, by (5.28), (5.29) and Lemma 15,
k
(5.38) ule) o gy Y W)
v{z) y&€Dk42 Vi, (V)
with 7 = (1 + ebT1)(1 + c16d¢* + e Thy ¢F~e?). Using (5.36) instead of
(5.35}, we also get

- v(z) , vE 1 (y)
(5.39) o) < 7B _mu’éil(y)'

Using (5.38), (5.35) and (5.39) results in

ulz) <r i uf 1 (1) - T ”:;:-)-1 (v)

P @) = yeDies vE, () L+ c1BACY yeDnys TE (1)

2€Dhse V(E) VEDksa U g (W) ¢ yEDgy2 Ypii\Y
T f u(y)

L e .
- 14 clédC"’ ye%ln+2 (y)

We note that for I < k; € N, by a suitable choice of ¢1 = ¢1(n, o, A, k1),
and by (5.2), we clearly have (5.27) provided (say) ¢ > 1/2. The proof will
be concluded if we can choose constants € = e(n, o, A) and ¢ = {(n,a,A) €
(1/2,1) so that for k > k1 = ks(n, o, ) € N, 72/(1 +e1dd(F) S 1+ crCh e,
with the very ¢; chosen for k < ky. This is possible, elementary, and lengthy,
and is left to the reader (( = +/(1-6)/2 and € = (1 — §)/20 will do). =

The following lemma enables us to translate the results on regular o-
harmonic functions into those on a-harmonic functions continuously van-
ishing at the boundary of a domain (cf. {14, Proposition 24.10]).

LeMMA 17. Let V. C R™ be a bounded open set with the outer come
property. Let u be a function bounded from below (above), a-harmonic in D
ond bounded on V. Then u is regular a-harmonic in V.
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Proof Let V4, n=1,2,..., be an increasing sequence of (bounded)
open sets such that ¥, ¢ V, and U, Vo = V. We claim that

(5.40) nlE]go Pm{XT(V:) = XT(V")} = 1, reV.

This is proved as follows. We note that {T'(V;)} is an increasing sequence
of stopping times. We define T' = sup{T(V?) : n = 1,2,...}. This is a
stopping time finite a.s. and clearly T < T(V°®). Since the process (X) is
quasi-left-continuous (see [3]), we have
(5.41) lim XT(V;) =Xr a.s

N—O0
By closedness of ¥V, n = 1,2,..., and by the right-continuity of the paths
of (X;), V¢ = N2, V¢ implies that Xp € V¢ a.s., hence T > T'(V°) as.
Thus we have
(5.42) lim XT(V,‘.:) == ..XT(VG) a. 8.

n—>00
By Lemma, 6, we have Xqye) € int V© P®-a.s. In view of (5.42), this is only
possible when (5.40} is satisfied.
Without loosing generality, we further assume that v is nonnegative. Fix
z € V. Using (2.4) {for n large enough}, we have

u(x) = EZU(XT(V'::))
= E*{u(Xpey); Xowsy € Ve + B {u(Xrwey); Xrve € VWl

The second term on the right hand side tends to 0 as n — o0, by (5.40) and
the boundedness of u on V. Monotone convergence proves that the first term
tends to B*u(Xr(ye)). Therefore u(x) = E*u(Xppye), and the regularity
is proved. m

The reader may have noticed that the crucial assertion (5.40) in the proof
of Lemma 17 is implicit in the proof of Lemma 6 (see (4.9)). The proof of
(5.40) given above has the advantage that it applies to more general sets V
such that w§; is concentrated on int V°.

Proof of Theorem 1. First we note that, by an application of
Lemma 17, functions u and v satisfying the assumptions of the theorem are
regular a-harmonic in D NV, where V' is an (arbitrary) open (bounded)
set such that K ¢ V' ¢ V' € V. It is also noteworthy that, conversely, if
u and v are regular c-harmonic in D N V/, then their continuous decay at
points of 3D N V' is a consequence of the other hypotheses of the theorem
and of Lemmas 3 and 4.

Taking this into account, the first part of the theorem follows easily from
the compactness of DN K, and Lemrmas 2 and 13. In particular, by taking

K = V', we see that the quotient g{z) = u(z)/v(z) is bounded away from
zero and infinity on V.
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We note that the full strength of Lemma 13, that is, the independence
of Cg from r in (5.2), is not used in this argument.

We now gketch the proof of the Holder continuity of ¢ on D K. By
Lemma 16, we may and do extend ¢ to DNV, Let z,y € DNK, d = [z —y|
and r = dist({z,y}, V'), with V' as above. We claim that

(6.43) lg(z) ~ q()| < erd/r,
with ¢; = ¢1(D, V, K, ). Indeed, if d < r/2, then z,y € B(z, ir). By (2.7)
for the ball B(z,7), and by the boundedness of g on V', we get (5.43) (see also
the verification of (3.7)). For d > r/2, (5.43) follows from the boundedness
alone.

Next, for a suitable @ € 8D N K, by Lemma 16 we have

(5.44) la(z) — a(y)| < lg{z) — a(@)] +la(y) — Q)] < c2(d +7)",

with g = (D, V, K, @) and v of Lemma 16, provided d+r < % dist(K, V')).
Actually, by the boundedness of ¢ on V’, the inequality (5.44) also holds for
the remaining values of d,r. The combination of (5.43) and (5.44) easily
vields

(5.45) lglz) —qly)| € esd”, 4=,

with constants ¢z = c3(D,V, K,a) and n = v/(1 + v). The proof of the
theorem is complete. m

Remark 6. The formula (2.6) also holds for n = 1 (see [15]). Simple
structure of open sets in R* and (2.7) immediately extend the validity of
BHP to the case n = 1.
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Isoperimetric problem for uniform enlargement
by
S, G. BOBKOV (Syktyvkar and Bielefeld)

Abstract. We consider an isoperimetric problem for product measures with respect
to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets
for the infinite produet of the exponential measure.

1. Introduction. Let (X, ) be a separable topological space equipped
with a Borel probability measure. Assume that to each point z € X there
corresponds an open neighborhood D(z) with the following symmetry prop-
erty: for any z,y € X,

(1.1) if z¢€D(y), then ye& D(z).
For every non-empty set A C X, we define its enlargement by
(1.2) enl(4) = {_| D(a),

acA

and consider the problem of finding the function
1.3 R = inf u{enl(A4)),
(1.3 up) = inf p(enl(4))

where the sup is over all Borel sets A C X of measure u(4) = p.

Usually the enlargement is built with the help of a metric {or pseudo-
metric) in X, say d, by taking for D(z) the open ball D(z,h) with center
2 and radius & > 0. Then enl(4) = A" is the open h-neighbourhood of
A, and R,(p) = R,(p, h) depends also on h. Next, in applications of (1.3)
to distribution of Lipschitz functions f on X, one fixes p and varies h. For
A= {z: f(z) £ m}, where m is the median of f, we have AP c{z: f(z) <
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