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Boundary higher integrability for
the gradient of distributional solutions
of nonlinear systems

by

DANIELA GIACHETTI and ROSANNA SCHIANCHI (Roma)

Abstract. We consider distributional solutions to the Dirichlet problem for nonlinear
elliptic systems of the type
divA{g,w,Du) =divf i §2,
w—uy € W (£2),
with r less than the natural exponent p which appears in the coercivity and growth
agsumptions for the operator A. We prove that Du € WP (2 if |r — p| is small enough.

1. Introduction. In this paper we consider boundary value problems
of the type

(1.1) {div Az, u, Du)=div f in 2,

uw—up € Wy (12, RY),
where (2 is a bounded open set in R® with a Lipschitz boundary 802, A =

Az, 8,8 2% RY x BN — B™V ig a Carathéodory vector-valued function
which satisfies

(1.2) Ale,s,€)6 > alelP, p>1,

ble — nfp-1 fl<p<2,
(1:3)  |Al,5.8) - Alzsm)] < {blf il + = ifp > 2,
(1.4) (A, 5,0)] < dlef"~ + ()]

where @, b, d are positive constants, h € Lp/(=1) and max{l,p—1} < r < p.

Dirichlet problems with f = 0, A not explicitly depending on s and
homogeneous with respect to £, have been studied in [7], where the authors
prove both existence of solutions and higher integrability of the gradient
Du, In 9] we removed the homogeneity assumption, we considered operators
depending explicitly on s and we proved local higher integrability of Du, We
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remark that f = 0 in [9], but it is not difficult to extend the result to the
case f # 0 handling the term f(z) as the term h(z) in (1.4).

In this paper we are concerned with global higher integrability of Du, u
a solution to (1.1).

The exdistence of solution of (1.1) under our assumptions is still an open
problem.

More precisely, we prove:

TuEOREM L1.1. If f € L7/e=U+n(0 RMNYY 0 > 0, ug € WL (2, RV),
g > 0, then under assumptions (1.2)-(1.4) there exisls r1 = r1(a, b, d, p,n,
N,80) with max{l,p~ 1} < r1 < p such that if u € WH(2,RY) is o
distributional solution of (1.1) and ry < r < p, then Du € LY H(0, RMY)
for a suitadble § = &(r,e,n,a,b,n,002).

CororLary L1 If f € LP/P-1(0 BN and ug € WLP(£2,RY) then,
if u € Wh (02, RN is o distributional solution of (1.1) withry < 7 < p,
as in Theorem 1.1, then uw € WL2(02, RV,

Remark 1.1. Let us point out that we do not require f € L&/(P~1+n
and ug € WHPTE in order to have ©w € Wi,

COROLLARY 1.2, fug =0 and f =0, then u = 0.

Classical results on higher integrability of Du for linear problems are
given in [11]. The nonlinear case is studied in [12] for r > p.

In our case, 7 < p, one cannot use test functions proportional to u, since
Du does not have the right summability properties. This difficulty was first
overcome in (7] by using Hodge decomposition (see Lemma 2.4 below), which
is in fact the main tool in the present proofs.

In this framework, r < p, other results can be found, for example, in [8]
and [{13]-[15].

2. Notations and preliminaries. {2 is an open bounded subset of k",
n 2 2; 042 is the boundary of £2; U and V' are neighbourhoods of some point

20 GBQ If = € R" we put
Qr(z)={zeR":|z; —z| <R, i=1,...,n},
Qi(z) ={z € Qr(2) : 2. > 0}, Qx(2) ={z € Qn(s) : m, < 0},
Ta(z) = {z € Qr(2) : z, = 0}.

We denote by Q, QF, @~, I respectively Q1(0), @F(0), Q7 (0), I, (0). For
every set w we deno’ce by @ its closure, and by |w) its Lebesgue measure.

In the following we shall use some lemmas which we state below,
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LEMMA 2.1. Let f: [R,2R] — [0,00) be a bounded function satisfying

A
f(Q)SGf(U)+W+B

for some constants A,B>0,r > 1,0 < ¢ <1 and for every 0,0 such that

0< R<p<o<2R; then

7)< o00)( 2+ B)

gltr 2 1/r -7
e(0,r) = 1_9[(__1+9) _1}

18 increasing with respect to r.

where

For the proof see [3].

LEMMA 2.2 (Gehring’s lemma). If U € L™(Q) and G € L*(Q), 1 <7 < s,
are nonnegative functions such that

& U”dmgc{( S Udas)r+ % G'"d:c}, c>1,
Qr Qzr Qar

for every pair of concentric cubes Qr C Qzr € @Q, then there erists £ > 0
such that U € L7-5(Q).

loc

For the proof see [3]-[5].

LEMMA 2.3 (Sobolev—Poincaré inequality). Let 2 C R" be o bounded
open set with a Lipschitz boundary 62. If u € Wh(Q2), p < n and v =0
in o set A C 2 with o positive measure, then

({S}Iulp* dm)l/p* - c(%) i/p (é}\DuF‘ dm) 1/p

with o positive constant only depending onn and p.
For the proof see [5].
LEvMA 2.4 (Hodge decomposition). Letw C R™ be a regular domain (for

the definition see [7] W € Wy (w,RY), 7 > 1, and let —1 <& <r—1. Then
there exist ¢ :w — RY and H :w — R"N such that H € Lr/Qted (), RPYY,

divEH =0, p € W /0% (4, RY) and

(2.1) \Dw|*Dw = D¢ + H,
(2.2) VH prsirerguy < Colrim, N)lel - | Dwlizrgy:
(2.3) 1D prrarer gy < (L + colryns N)je) i Dwll 55, -

For the proof see [6], [7].
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3. Proofs
Proof of Theorem 1.1. The result will be achieved in several steps.

Step 1: Reduction te a problem in Q. First let us remark that we only
have to prove the regularity near the boundary 22 because of the local
higher integrability result obtained in [9].

Since {2 is compact, 812 can be covered by a finite mimber of neighbour-
hoods V of its points; it will then be enough to prove the higher integrability
of Duin V N 2. Since 842 is Lipschitz, one can find G which is Lipschitz
together with its inverse such that

(B.1) GV)=Q, GWn@) =0, GW\i=0", GVnoN =TI

By standard arguments we can reduce the problem to proving higher
integrability in QT of D% for % = w o G~ which satisfies

(3.2) \ A(z,3,D0)D¢dr= | fDédz Yo Wwhr/r-rtl(gr)
Qt QT
where A is a Carathéodory vector-valued function which satisfies assump-
tions of type (1.2), ..., (1.4) with different constants (see [10], Th. 3.2.5, and
Lemma 3.2.8 of [2]) and f = fo G~L.
In the following, to simplify the notations, we shall denote @, F and
o = ug o G~ by u, f and ug respectively.

Step 2: Higher integrability of Du in Q. By the assumption on wug it
will be encugh to prove higher integrability of D(u — ug) in Q. To this end
we consider uw — ug and its natural extension by zero in Q. It belongs to
W) and we still denote it by u — ug.

We prove a reverse Hélder inequality for D(u — ug} which implies the
statement of Theorem 1.1, by Lemma 2.2. More precisely, for every yo € Q
and for every Qr(y0) C Q2r{y0) & @ we prove

(3.3) boID(u— o)l de

Qryo)
o () .
SC[( S’ fD(u—uD)‘m/(M"r")) d‘w + \_ Fdxn
Qar(vo) Q”; (va)
where
(3.4) F= { [Dug|” -+ Jup|” + [R[™/ @1 4 | £/ =) g g € QF
0 ifze@-.

Let us consider three different situations.

It @ar(yo) C QF inequality (3.3) has been proved in [9], since it is related
to local higher integrability.
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If Qr(ye) C Q@ inequality (3.3) is obvious since its left hand side is
identically equal to zero.

Now we prove (3.3) if Qr(yo) N Q" # §. By Lemmas 3.1 and 3.2 below,
we need only prove it for every yg € I' and this will be done in the next
step 3.

Step 3: Proof of (3.3) foryg € I' and Qr(yo) NQT # 0. In this step the
center yg of all the cubes will be omitted.

Let R < ¢ < o < 2R and p € C5{Q,) be such that x = 1 in @,
and |Dp| < ¢/(o ~ g). We consider w = p(u — ug) € Wy (QF) and apply
Lemma 2.4 to w, e =7 —p and w = @}.

Let us point out that balls and cubes are regular domains for which the
constant ¢, in (2.2} and (2.3) does not depend on the dimension nor on the
center of the domain itself.

A classical reflection argument allows us to consider regular all rectangles
with integer ratio between the two different dimensions, therefore for w =
Q7 (yo) the constant ¢, in (2.2) and (2.3) is independent of o and yo.

Let us also remark that this constant ¢, is independent of r» when »
belongs to a suitable compact set (see [9], p. 290).

We consider p > 2. Analogous calculations hold true for 1 < p < 2.

We insert D¢ given by (2.1) in (3.2). We get

S Az, u, Dw)|Dw|" PDw dz

QF
= S Az, v, Dw)H dx
QF
+ | [A{z,w, Dw) ~ A(z,u, D) D¢ dz + | fD¢dz.
QF QF

By coercivity assumption (1.2) and growth conditions (1.3) and (1.4) we
have

(3.5) a S | Dw|" da < S [b| Dw|P~t + d|u|P~* + h(z)]|H| d

QI Qi
+b X | Dy — Dwi(|Du| + |Dw|)*~*|Dg| dz
Qf
+ § 17| Dg| dee
QF
=71+ II+1II.

For simplicity we give estimates for I, If and TII in the appendix below.
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Collecting them we finally obtain
(36) a | |Dwde<[clr—pl+e] | [Dwl"dz

Qz Q
+ ¢(e) S | Dy — Dug|" da
QINQF
* 1 r »
+ele)| | |1Duol dz + - | lu—uol dz+ | [uol"dz
Q¥ (0= G Qf

£ | fu-uolrdt | e ant | (gD d:r]
a: at Q¥
Now we choose 11 close enough to p and £ small enough in such a way
that ¢jr — p| +e < af2forry <r <p.
Moreover, for R < 1, from (3.6) we have

SEDu—DuD\’dmgc(s) S \Du — Dugp|" dz + 20 S\’M—uarﬂfﬂ:

— s
Qf Qies (@~0) Qf
t+e(e)] | 1Duol dz+ | fuoldz+ | (K7D 4 |f7/ D) dal.
@i Qi ol

Adding c(e) SQQV | D(u — ug)|" dz to both sides we get

"d (E) 5 r (E)
S+\D(u uo){" d "l+c( } 1D~ up)| dm+( o | —uol dz
Qg Qﬂ‘ Q;R
+ele) | (1Duol” +uol" 4+ (A0 4| 77/®D) e,
Qn
Now we apply Lemma 2.1 with
c(e) \
R =c — ug|" di
T o(e)’ A =efg) S [u — up|" d,
Qn
B =cfe) | (|Duol” + luo|" + [h["/®=1) 4 | pr/ie=1hy g,
Qin

Finally, we have
, 1
S |D{u — up)|" da < (8, 7) [ﬁ? S |w — ug|" dz + B|.
Q% 2

Extending all the integrands in the previous inequality by zero in Ggp,
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applying Lemma 2.3 and dividing by R"™, we get
[ 1D - ug)|"de < c[( b ID(u— ug) /()

Qr Q2r
+ § (IDuol" + fuol” + |7~ 4 |77 D) der]
Qzr

which implies (3.3) with F given by (3.4) and concludes the proof of Theo-
rem 1.1,

€

)(W—H')/ﬂd

Let us now prove the following lemmas:
LEMMA 3.1. If yg € Q7, then (3.3) holds true.
LeMMa 3.2. If yo € QF, then (3.3) holds true.
In the proofs of the two lemmas we set

n
n+r

and we confine ourselves to the case n = 2 for simplicity.
In the following estimates the constant ¢ may change from line to line.

g=|D(u—u)", s=

Proof of Lemma 3.1. Qf(yo) is a rectangle with dimensions 2R and
¢ = R — dist (yo, I'). First suppose € > R/2. There exist two squares Qel(zs)

with z; € I' for ¢ = 1,2 such that Qz.(z;) C Qar(y) and Um_ Qe(zi) D
Q7% (yo). Then

S gdei S g dz.

Qrlya) i=1 Qu(z:i)
By (3.3) which has been proved for cubes centered on I', we get
2
1
(3.7) % gdz < — 15 S gdz
2 r{y0) =1 Qe m:)
e\’ & e
Sc(~R~> Z[( % g dm) + % chc]
i=1  Quelws) Qazelx:)
2— 2/3 1/5
SO L
Qan(yu) Qzr(yo)
1/a
a[( g clo:) + S Fdw]
Qur(yo) Qzr (o)

since € > R/2 and 2 — 2/s < 0.
Now we suppose 0 < ¢ < R/2. Then there exist two squares Qrya(zi),

z; € I' for i = 1,2, such that Qgr(z;) € Q2r(yo) and U1~ QR/Q(mz) D
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QE(yo). By applying again (3.3) to Qrya(w:) we have

2
(3.8) & gdmgcz S- gdz
Qe{va) i=1 Qpa{z:)
<ef( § ga)"+ | Fas]
Qrlm) Qr(z)
<e( 4 gsczm)1“+ f Fas).
Q2r(yo) Qanlyn)

By (3.7) and (3.8) the assertion of Lemma 3.1 follows.

Proof of Lemma 3.2. Since yo € @, @%(yo) is a rectangle with
dimensions 2R and R + d with d = dist(ye, I') > 0.

If0 < d < R we can cover Qf(yo) with a finite number n of squares
@Qr(2:), n independent of d, such that Q3. (2;) C Q2r (o) and

(i) if z; € I" then r = R/2,
(ii) if z; € QF(yo) then r == R/4 and Qra(zi) C Q% {w0).

Let now R < d < $R. Then we can cover @} (yo) with a finite number
n of squares Qr/4(2:), n independent of d, such that Qg a(2:) C Qar(vo)
and

i)z, e I'fori=1,2,3,4,
(1) z; € Qf(wo) for 4 > 4 and Qry2(z:i) € QEvo).
Finally, if d > 3R we can cover Q% (yo) with a finite number n of squares
Q@rya(z;), n independent on d, z; € Q% (yo) such that Qr/e(zi) C Qin(yo).
Our estimate is achieved by arguing as in the previous Lemma 3.1 taking
into account that in both cases (i) the estimate (3.3) has been proved and
in the other cases we are reduced to the local estimate proved in [9].

Proof of Corollary 1.1. Set B = {s & [r1,p] : Du € L*(2, R*N)}.
Then F # @ since ry € E.

Following the outline of the proof of Theorem 1.2 of [9] we can prove
that E is both open and closed in [ry, p]; hence B = [r[, p].

Proof of Corollary 1.2. By Corollary 1.1, w € W'2(£2,R"). Since
u € W™ (12, R¥), it follows that u € WIP(2,RN) (see [1], p. 275).

We can use u as test function in the weak form of the equation and, by
coercivity, we conclude v = 0.

4. Appendix. In the following ¢ will denote a constant independent of
7,7, Yo, while £ and c(e) respectively small and large constants coming from
Young'’s inequality which will be used several times. Let us point out that all
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these constants may change from line to line. Moreover, when not explicitly
mentioned, the integrations will be carried out on Q7.

Now we proceed to estimate I, II, III in (3.5).

By using Holder's and Young’s inequalities and Lemma 2.4 we have

I =0{|Dw[*~!|H| do+d{[ul"|H| dz + [ |h(z)] - | H | do
<elr —pl H | Duw|" des + { |u ~ wol" dz + | [uo|" dz + | [B[7/ (P~ dm].

In order to estimate II we recall that Du — Dw = (1 — n)Du + nDug —
(w — ug) Dn, therefore

II < e{|Du — Dw|(|Du ~ Dw[P~? + | Dw|P~*)| D¢| dz
= c“ |Du — Dw|P Y Dg| dz + S |Du — Dw| - | Dw[P~2|Dg)| da:]
<[ [0~ Do~ +InDuolP + | = wol"~* [ DyP )| D d
+§(1(1 — 7Dl + Dol + Ju = wol - | D Do ?~?0¢] da.
Taking into account the properties of the function % and (2.1) we have

IIgc[ [ 1Dy~ DuolP"|Dg| d -+ | | DuolP~} | D¢t| da

Qhet

+ | |Du—Dug|-|Dw|"" d
anel

+ | 1Dy~ Dug| | DulF* H| dx + {|Duo| - | DwlP~* H! da
QINQY

+ x *D'UIOW . |Dw%'r—1 da + E‘Tlps?;:f ‘ lu s uO|P"1\D¢! dx

+

—— ({1 wol - 10wl d -+ §u - wol - |Dw P dz) .

All the terms in the previous inequality can be estimated by using
Hélder's and Young’s inequalities and Lemma 2.4. We get

I < clr — pl| || Dw|" da
- . 1 .
+ ¢(e) { \ [Du — Dug|™ dz + S | Dug|" dz -+ oo S |u ~ | dm} .
paNers
Finally, by the same arguments we get

m < {|f]-1Dglde < e(e) || 7% de +5§|D¢|T/(rmp+1) dx
< e(e) £ dg + 5 § | Dw|" da.
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On a theorem of Gelfand and its local generalizations
by

DRISS DRISST (Kuwait)

Abstract. [n 1941, I. Gelfand proved that if @ is a doubly power-bounded element
of & Banach algebra 4 such that Sp(a) = {1}, then a = L. In [4], thig result has been
extended locally to a larger class of operators. In this note, we first give some guantitative
local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for
wultivariable functions, we give short and elementary proofs of two extensions of Gelfand’s
theorem for m commuting bounded operators, Ty, ..., Tm, on a Banach space X.

1. Introduction. In 1941, I. Gelfand [14] proved that if T' is a bounded
linear operator on a complex Banach space X which satisfies Sp(T") = {1}
and supgez, |T*|| < oo, then T = I. This result was generalized by E. Hille
in 1944 (see [15] or 16, Theorem 4.10.1]), who proved that if Sp(T) = {1}
and || 75| = o{|k|) for k € Z, then T = I. In [4, Theorem 3.4], we generalized
these results locally to a wider class of operators. A natural question arises:
What happens to each of these results if we drop the assumption on the
boundedness of the negative powers of the operator 7?7 On the other hand,
in 1955 H. F. Bohnenblust and S. Karlin [9] asked the following question: Is
0 the only quasi-nilpotent dissipative element in a Banach algebra? In 1961,
G. Lumer and R. S. Phillips [22] gave a negative answer to this question, but
nobody noticed that Shilov’s negative answer to Gelfand’s problem in [28] is
also a negative answer to H. F. Bohnenblust and 5. Karlin’s' question. Just
looking at the Gelfand problem, the condition Sp(T) = {1} implies, using
the F. Riesz and N. Dunford holomorphic functional calculus, that I = es
with § quasi-nilpotent and the hypothesis sup,so |T™|| < oo implies that S
is dissipative for an equivalent norm.

In this paper, we will study these cases locally for a general class of op-
evators. We will also give an extension to n commuting operators T, Ty
in a Banach space X. For this we need to introduce some preliminaries on
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