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On a theorem of Gelfand and its local generalizations
by

DRISS DRISST (Kuwait)

Abstract. [n 1941, I. Gelfand proved that if @ is a doubly power-bounded element
of & Banach algebra 4 such that Sp(a) = {1}, then a = L. In [4], thig result has been
extended locally to a larger class of operators. In this note, we first give some guantitative
local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for
wultivariable functions, we give short and elementary proofs of two extensions of Gelfand’s
theorem for m commuting bounded operators, Ty, ..., Tm, on a Banach space X.

1. Introduction. In 1941, I. Gelfand [14] proved that if T' is a bounded
linear operator on a complex Banach space X which satisfies Sp(T") = {1}
and supgez, |T*|| < oo, then T = I. This result was generalized by E. Hille
in 1944 (see [15] or 16, Theorem 4.10.1]), who proved that if Sp(T) = {1}
and || 75| = o{|k|) for k € Z, then T = I. In [4, Theorem 3.4], we generalized
these results locally to a wider class of operators. A natural question arises:
What happens to each of these results if we drop the assumption on the
boundedness of the negative powers of the operator 7?7 On the other hand,
in 1955 H. F. Bohnenblust and S. Karlin [9] asked the following question: Is
0 the only quasi-nilpotent dissipative element in a Banach algebra? In 1961,
G. Lumer and R. S. Phillips [22] gave a negative answer to this question, but
nobody noticed that Shilov’s negative answer to Gelfand’s problem in [28] is
also a negative answer to H. F. Bohnenblust and 5. Karlin’s' question. Just
looking at the Gelfand problem, the condition Sp(T) = {1} implies, using
the F. Riesz and N. Dunford holomorphic functional calculus, that I = es
with § quasi-nilpotent and the hypothesis sup,so |T™|| < oo implies that S
is dissipative for an equivalent norm.

In this paper, we will study these cases locally for a general class of op-
evators. We will also give an extension to n commuting operators T, Ty
in a Banach space X. For this we need to introduce some preliminaries on
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local spectral theory; for more details on this subject we refer to [11] or [3].

Let T € B(X) and # € X. We define 12, to be the set of o € C for which
there exists a neighbourhood V, of a with w analytic on V,, having values
in X such that (A — T)u()\) = z on V,. This set is open and contains the
complement of the spectrum of 7. The function w is called a local resolvent
of T on V.. By definition the local spectrum of T at z, denoted by Sp,(T),
is the complement of §2,, so it is a compact subset of Sp(T).

In general, this set may be empty even for x # 0 (take the left shift
operator on {2 with 2 = e¢; = (1,0,...)). But for = 5 0, the local spectrum of
T at z is non-empty if T has the unigueness property for the local resolvent.
That is, (A~ T)v{A} = 0 implies v = 0 for any analytic function v defined
on any domain D of C with values in a Banach space X. It is easy to
see that an operator T having spectrum without interior points hag this
property (for more details see [11]). For operators with this property there
is a unique local resolvent which is the analytic extension of (A — 1) ~'z
to £2;. Also in this case the local spectral radius r,(T") = max{|z| : z €
Sp, (T)} is equal to limsupy,_, .. | T%z(|'/*. In general, we only have r,(T) <
lim supy.., o || T2

2. Local properties for a single operator. In [4], using the Levin
subordination theory for entire functions of exponential type (see [19] for
more details), the following generalization of Gelfand’s and Hille's results
was proved:

THEOREM 2.1. Let T ¢ B(X) and z € X. Suppose that

(i) 7=(T) =0, and '

(i) (T -+ T)*z|| = O(|k|") as k| — oo, for some positive integer r.
Then T"z = 0 for everyn > r + 1.

The purpose here is to give a local quantitative extension of Gelfand’s
theorem.

THEOREM 2.2. Let T € B(X) and z € X. Suppose that

(@) |T"z| = O(1) as n — oo, and

(ii) there exists § € B(X) such that T = &5.
Then

Tz — z| < 2tan(r,/2),

where 1, = (2/+/)\/limsupy,_, . k|[S*z][1/k,

Proof. Suppose that ||T“:cz|! = 0(1) as n — oo. Let § € B(X) be such
that e¥ = T. Let g(z) = u(e* Sz), where u is a functional of norm one.
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Then g is an entire function of exponential type 7z, with

7 = limsup ||g(”) (0)||1/”
T—r 00

2
= limsup [|g®*(0) |1/ ®%) < 2= /lim sup k|| S¥z||1/%.
koo Ve koo

So, if limsup, _, ., n||S"z|| ™ < w2e/4, then by Bernstein’s theorem [8, The-
orem 11.4.1, p. 214], we obtain

le’e —a|l = |g(1) - g(0)] < 2tan(rs/2),
which gives us [T — z|| € 2tan(r,/2). If 7, = 0, then we have Tz = «.

THEOREM 2.3. Let T € B(X) and x € X. Suppose that

(i) n||T™z|*/™ — 0, as n — oo, and
(ii) |(I + T)*kz|| = O(k") as k — oo, for some positive integer 7.

Then Tz =0 foralln > r+1.

Proof. The case r = 0 follows from Theorem 2.2, and the rest of the
proof follows the same idea as in [3] but locally.

Remark. Let T be a bounded operator on a Banach space X and let
z € X be such that ||(I + T)"z| = o(|n|"). Suppose that T7z # 0. It
follows from Theorem 2.2 that limsup,_ . n||T"z||*/™ # 0. So the series
S 7| /)| T )| diverges. Consequently, we obtain a result by Ped-
ersen [26], which is an extension of a result of J. Esterle and F. Zouakia’s.

The following two theorems are well known. Esterle’s theorem [13, The-
orem 9.1] was the first significant generalization of Gelfand’s theorem. Sub-
sequently, Y. Katzunelson and L. Tzafriri [17] generalized this result to a
wider class of operators where condition (i) of Theorern. 2.1 is replaced by
Sp(T)NI" € {1}, I" being the unit circle. G. E. Shilov [28] showed that Hille’s
reslt, and G. Allan & T. J. Ransford [2] as well as Vi Quéc Phéng [31]
ghowed that the Esterle-Katznelson-Tzafriri results, are all consequences
of Qelfand’s theorem. So this brings us to think that any improvement
of Gelfand’s theorem has significant consequences on Esterle-Katznelson—
Tyafriri’s results. For other related work see [6], [7], [10], [12], [20], [21], [23]
and [30), Related results in a particular case can also be found in [1].

THEOREM 2.4 [E. Hille]. Let T € B(X) be such that

(i) Sp(T") = {1}, and
(i) |T*| = O(k™) as |k| — oo for some positive integer 1.

Then (T'— I)* =0 for everyn =7+ 1.
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THEOREM 2.5 [J. Esterle]. Let T € B(X) be such that
(i) Sp(T) = {1}, and
(ii) sup,>g T < 0.

Then | T™ — ™+ — 0 as n — oo.

Is it possible to split Hille’s theorem in a way similar to Esterle’s theorew,
at least for the case when ||7™]| = o(n) as n — co? The answer is of course
negative, but if we put restrictions on the behaviour of (I'— I)™ we obtain
from Theorem 2.3 the following local extension.

COROLLARY 2.6. Let T € B(X) and =z € X. Suppose that

(i) n||T"z||*™ — 0 as n — oo, and

(i) [[(T+ TY*a] = o(k) os & — oo.
Then Tz = 0.

In [33] J. Zemének proved the following resuls.
~ THEOREM 2.7. Let T € B(X) be invertible. Suppose that

(i) 8p(T) = {1}, and

(i) |T™ — Tt = O(n™"1)} as |n| — oo, for some positive integer 7.
Then (T — 1" =0 for everyn = r + 1.

Here we give two local extensions relaxing condition (ii) to a more general
class of operators as follows:

THEOREM 2.8. Let T' € B(X) be invertible and © € X. Suppose that
() Sp,(T) = 113,

(it) |77z — T" Pzl = O(nP) as n — —oo, for some integer p > 2, and

(iii) |7z — Tz = O(n) as n — co.
Then (T - I)*z =0,

Proof. By a local version of Theorem 2.7, we have (I' — I)Pz = (0.
Suppose that (T'— NP2z = 0 for some p > 2. Let y = (T' — I)Px. Then
(T — I)?y = 0 which implies

M, (Ty n—1 y 1
A R

where M, (T) = (I+ T + ...+ T Y)/n. On the other hand, from (iii), we
get

MH(T)y — (T — I)p—l(

7

™ —1TI
n2

)(THI):B—N) (as n — 00).

Hence (T'— Iy = 0, which implies (T'— I}?*1z = 0. Therefore, by induction,
we get (T'— )3z =0,
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THEOREM 2.9, Let T € B(X) and z € X. Suppose that

(i) n||T7||*™ — 0 as n — oo, and

(ii) [[TPz — THz| = O(n"™1) as n — oo, for some positive integer T.
Then (I'—-I"z =0 for everyn > r+1.

Proof. Condition (ii) implies |[T™y|| = O(n"), with y = (T' — I)z. Ap-
plying Theorem 2.3 we obtain (7' — I)"y = 0, hence the result.

Here we give an elementary proof of the following local extension to
Theorem 6 [33):
THEOREM 2.10. Let T € B(X) and let z € X be such that
Sp(T) = {1} aend limsup|T"z ~ T < 1,
N—r 0D

Then Tx = .

Proof. The condition imsup,_,, |77z — 77 z||1/™ < 1 is equivalent
to rir_pe(X") < 1. So the local spectrum of T at (T'— Iz is strictly included
in the unit disk. On the other hand, we have

Spir-n=(T) C Sp.(T) = {1}.
So Spir—1yx(T) = 0. Since T has the property of uniqueness of the local
resolvent, we conclude that (T' — Iz = 0.

In [25], M. Mbekhta and J. Zemanek proved the following generalization
of Gelfand’s theorem.

THEOREM 2.11. Let T € B(X) be such thot

(i) Sp(T) = {1}, end

(ii) Mo {T) and M,(T~') are bounded.
Then T =1,

A natural question was raised in [32]: It is interesting to give a charac-
terization of the asymptotic behaviour of order n for the mean My, (1) for
the operator ' as n tends to infinity.

Using ideas from the proof of Theorem 2.1, we give here a partial answer
to this question and thereby give a local extension to the above result.

THrEoREM 2.12. Let T € B(X) and © € X . Suppose that

(i) n||(T ~ D"z{*™ — 0 as n — o, and

(ii) | My (T)z]| = o(n") as n — oo, for some positive integer 7.
Then (T — 1)z = 0 for every n = v + 1. However, if r = 1, then we obtain
T =2
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Proof. From condition (ii) and the relation

=, . (I = T)M,(T)z,

it follows that | T"z|| = o(n"+!). By Theorem 2.3, we get the result.
Tor the second assertion, we have | T™z| = o{n) as n — co. By applying
Theorem 2.2, we get (T — I)z =0.

The following result is an extension of [25, Theorem 2]. It also improves
[18, Corollary 7).

THEOREM 2.13. Let T & B(X) and = € X. Suppose that

(i) Sp,(T) = {1}, and
(i) [|[( = TV M (T)zl| — 0 as n — oo, for some positive inleger k.

Then (I — T)kz =0.
Proof. Case k=2 Let T € B(X) and z € X. It is easy to see that

T

) Ll - e = (- T M (T
So, from condition (i) with k = 2, we get

(2) |7z — T z|| = o(|n|) asn — oo

Let y = (T'— I)z. Then (2) implies | T"y|| = o(|n|) as n ~ oo. On the other
hand,
Spy(T) = Sp(T—I)w (T) c Spw(T) = {l}
Hence, from Theorem 2.1, we then get (T ~ Iy = 0, which implies that
(T — Iz = 0.
Case k = 3. Suppose that ||(I — T')* M, (T)z|| — 0. Then from
-1

(I T2 = (I—-TYM,(T)z,

we have HW“ — 0 asn — co. But

~T™T - I)?z = T™(T =~ N -~ T""NT — Nz
So, if we put y = (I — T)z, we obtain
7%y —T™y| = o(|n]) asn - o0

It follows from the case k = 2 that (I--T)%y = 0, which impliels (j” =Ty = 0.
Fmally, suppose that ||(J — T)* M, (T)z|| — 0 as n — oc, and let ¢y =
(T — I*~2z. Then from (1) we have

[Ty — T™y|| = o(|n]) as n — oo,
and Sp,(T') = {1}. By applying Theorem 2.1, we obtain
(T —DFe= (T - I)?y=0.
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3. Local extensions for n commuting operators. Let IT' = (71, ...
<) € B{X)™ be a commuting multi-operator and let z € X. Then T is
said to be locally power-bounded at x € X if
sup |79 ... Tz < oo.
J1reendn 20

T being locally doubly power-bounded is defined similarly. We can easily
see that if each Ty is locally power-bounded at z, then T = (Th,...,Ty)
is locally power-bounded at z, but the inverse implication is not true. For
related work see [24].

Using the following generalization of Bernstein’s theorem on multivari-
able functions, we give elementary proofs of two local extensions of Gelfand’s
theorem for n commuting operators Ty, ..., T, in a Banach space X.

TueoreM 3.1. Let f:R™ — C be real-analytic. Suppose that
i) |fl €M on K™, and
(i) foreveryk=1,....,m

1/n
<7, <oo onR™.

T

orf
3tn (tla )

Then for every n = 1,2,..., and all non-negative integers ji,...,Jm Such
that 1 4+ ... + Jm = N, we have
81}
}_j_—f—j(tlu -
ol othr

lim gup
n—oee

..,tm)‘ < MT{l coTim on B™.

TusoreM 3.2. Let T = (Tq,...,Ta} € B(X)" be a commuting multi-
operator and let z € X. Suppose that

(i) T is locally doubly power-bounded at x, and
(if) there exists jo such that [|STz('™ — 0 asn - oo, where ¢5ic = T;,.

Then for every n > 1, and all non-negative integers J1yeesdn With N =
d1 ko Ja, we have
(T~ D . (T — IYmg = 0.

Proof. As Ti,..., T, are commuting operators, their local joint spec-
{rum is non-empty. In adchtlon if M is the set of characters on the Banach
algebra generated by Ty, ..., T, then Sp(Th, . . ATy = {0AT), - x(TR))
x € M}.

Consider the following function:

Fltg,. .. tn) = u(et B, eftndng),

where w '€ X*, ||u|l = 1, and &5 = T} for ¢ = 1,...,n. Condition (i) implies
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that f is bounded on R™. On the other hand, we have
n g |1/

oty
Sinee T; are commuting we deduce from condition (i} and Theorern 3.1 that
for every n > 1, and all non-negative integers 1, ..., Jo withon = J1 .. .4,
we have

< limsup\S?mll/" =7 (8) ford=1,...,n.

Te—+ 00

lim
T2 OO

(Ty =D (T, = Ire = 0.

THEOREM 3.3. Let T = (T1,...,T,) € B(X)" be a commuting mulbi-
operator and let » € X. Suppose that

(i) T 4s locally power-bounded ot 2, and 7

(if) there exists a jo such that n||STz|[Y"— 0 as n — oo, where eio =T}, .
Then for every n = 1, and all non-negative integers j1,...,jn with n =
g1+ ...+ Jn, we have

(Ty =D (Th = IY¥rz =0 for every n > 1.

Proof. We use the same idea as in the proof of Theorem 3.2, but with

a new function
f(t]_, L 7tn) — u(et?Sl s et;!u’sf"‘w),

where 4 € X*, |lu[| =1, and € = T} for i = 1,...,n. Condition (1) implies
that f is bounded on R®. On the other hand, we have
Bﬂf 1/n
oLy

lim
Thr QT

2 : ) .
< 7 Ilﬁsogp'nle'm\l/” =7(8) fori=1,...,n.

Since T; are commuting, the result follows from Theorem 3.1 and condi-
tion (ii).
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