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Spectral sets
by

JoJ. KOLIHA (Melbourne, Vie.)
Dedicated to the memory of Petr Pdcalt

Abstract. The paper studies spectral sets of clements of Banach algebras as the
zerog of holomorphic functions and describes them in terms of existence of idempotents.
A new decomposition theorem characterizing spectral sets is obtained for bounded linear
operators,

Introduction. Traditionally, spectral sets of bounded linear operators
are studied with the help of restrictions of operators o invariant subspaces
(2, 4, 13]. An alternative approach which works also for elements of Banach
algebras is studied in [9] for the case of isolated spectral points. In the present
paper we study spectral sets as the zeros of suitable holomorphic functions,
and give a characterization in terms of existence of idempotents satisfying
certain conditions. The main tools for the study of this characterization are
the result of the present author [9, Theorem 1.1} and a theorem of Dunford
and Schwartz [4, Theorem VIL3.19].

A denotes a complex unital Banach algebra with unit e. For any a € A,
o{a) denotes the spectrum of a, g{a) its resolvent set, and A — R(X;a) its
resolvent, An element a € 4 is quasinilpotent if o(a) = {0}, and idempotent
if a*> = a. By Inv(4) and gNil(4) we denote the sets of all invertible and
quasinilpotent elements of A, respectively. Poles and essential singularities
of the resolvent of & will be referred to as poles and essential singularities of
the element a. If K is a compact subset of the complex plane, then H(K)
is the set of all complex-valued functions, each holomorphic in some open
neighbourhood of /. The holomorphic functional calculus for an element a
of A is defined for functions in H(c(a)). If f € H(o(a)) is defined on an
open neighbourhood 2 of o(a}, then

F(@) = o | VRO 0) a0,
¥
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98 J.J. Koliha

where v is a cycle in 2\ (a) with ind(A,v) = 0 for all A € 2 and ind(A, v} =
1 for all X € o(a). The set of all elements of A of the form f(a), where a € A
and f € H{o(a)), will be dencted by F(a), and its closure in 4 by F(a).

A spectral set of a € A (or an isolated part of the spectrum of o} is a
subset of o{a) which is both open and closed in o(a). The spectral idempotent
plo; a) corresponding to a spectral set o of a is defined to be the clement
p(oa) = e{a), where e € H(r(a)) is equal to 1 in a neighbourhood of o and
to 0 in a neighbourhood of o{a) \ o. For an isolated spectral point p of o we
write p(u; a) instead of p({u}; a)-

By L{X) we denote the Banach algebra of all bounded lincar operators
on a complex Banach space X. If T' € L{X), we write N(T) for the nullspace
T-1({0}) and R(T) for the range T(X) of T. If ¢ is a spectral set of T' €
L(X), we write P{o; T) for the spectral projection of T' corresponding to o.

1. A general spectral set. In [9] the following characterization was
obtained for an isolated spectral point of an element a € A.

THEOREM 1.1. 0 is an isolated spectral point of o € A if and only if there
erists o nonzero idempotent p € A commuting with A such that
(1.1 ap € qNil(4), a+p € Inv(4).
The element p is the speciral idempotent of a corresponding to 0.

Let us remark that the second condition, a+p € Inv(A}, can be replaced
by p € F(a).

Also, we need the following result of Dunford and Schwartz (interpreted
for elements of a Banach algebra):

THEOREM 1.2 [4, Theorem VIL3.19]. Let f € H(o(a)). If 7 i5 a spectral
set of fla), then o = o(a) N F7H(7) is a spectral set of a, and plo;a) =
p(7; f(a)).

We use Theorems 1.1 and 1.2 to give a characterization of an arbitrary

spectral set as the inverse image of 0 under a holomorphic function provided
there exists a suitable idempotent.

THEOREM 1.3. Let o = o(a) N F~({0}) for some f € H(o(a)). Then o
is a spectral set of a if and only if there is an idempotent p € A commuting
with a such that

(1.2} Flo)p e qNil(4), fla)+p€Inv(Ad) (orp € Fla)).
p is then the spectral idempotent p(o;a) = p(0; f(a)).

Proof Suppose that there is p € A satisfying the conditions of the
theorem. If p == 0, then f(a) is invertible, and ¢ = @. Assume that p # 0.
By Theorem 1.1, 0 is an isolated spectral point of f(a). By Theorem 1.2 for
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the special case of 7 = {0} we conclude that o is spectral for @, and that
p(o;a) = p(0; f(a)). Theorem 1.1 also implies that p = p(c;a).

Conversely, suppose that o is a spectral set of a. If ¢ = 0, then p(o; a) =
0, and (1.2) hold with p = 0. Let o # 0. The spectral mapping theorem. and
the compactness of o(a) ensure that 0 is an isolated spectral point of f{a).
The conclusion follows from Theorem 1.1 with a replaced by f(a).

We introduce the following notation: If o = o(a) N f71({0}) for some
I € H(o(a)), we define

o= {pcao: f(m)(,u) # 0 for somem >0}, ca=0\oy, oz=o(e)\o.

Since zeros of finite order of a holomorphic function are isclated and since
o{a} is compact, each point of oy is isclated in the compact set o, and o;
is finite, say o1 = {p1,...,ux}. The sets o3 and &3 can be separated by
open sets as f vanishes in some neighbourhood of o3 and is nonzero in some
neighbourhood of os. ;

If each point of ¢y is isolated in o(a), then the sets o = o3 U oz and o3
can be separated by open sets, which shows that ¢ is a spectral set of a.
Conversely, if o is a spectral set of a, then the sets o and o3 can be separated
by open sets; since each point of oy is isolated in o, it is also isolated in o{a).
This proves the following criterion for a spectral set.

THEOREM 1.4. Let o = o{a) N f~1({0}) for some f € H(o(a)). Then o
is o spectral set of a if and only if, for each zero u € o of f of finite order,
w48 an isoloted spectral point of a.

2. A finite spectral set. In this section we are concerned with a par-
tial converse to the following result from Bonsall and Duncan [1]. We are
particularly interested in the case when all but one of the o; are singletons.

ProrosiTioN 2.1 (see [1, Proposition 1.7.9]). Let o(a) be the disjoint
union of nonempty spectral sets oy,...,0m,. If pi = ploy;a), the elements
D1, .., P commute with o and form a complete set of idempotents, that is,

pi=pi, pip;=0 (i#j), pP+.. +tpm=e
If o; = {p;}, then by = (o — pe)p; is quasinilpotent.
We will also need the following lemma, stated without proof:

LEMMA 2.2, Let p1,. .., pm be a complete set of idempotents in o Banach
algebra A. If uy, ..., um are tnvertible elements of A commuting with each

Piy then
m -1 ™
(Z 'U'ipi) => ui'pi
=1 =1
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The following result is a multipoint version of Theorem. 1.1 of [9]. It will
be convenient, for the case of several isolated spectral points, to define the
element c slightly differently than in [9].

THEOREM 2.3. Suppose that a € A, that py,...,pux are distinct complex
numbers, and that the following conditions are satisfied:

(a) There are nonzero idempotentsp; (i =1,. .., k) in A commuting with
a such thot p;p; = 0 if i # 7.
{b) Each element b; = (o — use)p; is quasinilpotent.

If {og, ..., on} is a set of complex numbers disjoint from {g1, .-, pr} and
if

k
(2.1) c=>oip; +ale - p),

=1

where p=p; -+ ...+ pg, then
(2.2) ole) U{pn, e} =c{a)U{e,...,ax}.
Furihermore, if f € H(o(a) U {ay,...,ar}), then

_ B £ S £ () o
_(2'3) f(a')“ f(c)(e p)"I'“ZZ il (a' f-‘"ze) Di,

i==] n==0
and
k
(2.4) fle) = f(a)e—p) + > floa)pi.
B
Proof Note that e ~ p,p1,...,px is a complete set of idempotents in

the sense of Proposition 2.1. We calculate that

K
Ae—a=e—c)e—p)+ > (A - p)e—b)p:.
i=]
It A ¢ ole) U{p,. .., pux}, we use Lemma 2.2 to conclude that e — o is
invertible. Similarly,

k
Ae—c=(e—alle—p)+ Y (A —a)ps;
d=ml
A ¢ oa)U{o,...,a}, we conclude that Me — e is invertible using
Lemma 2.2. Equations (2.2)~(2.4) then follow by a standard argument.

Note 2.4. We observe that, for k = 1, we define ¢ in the preceding
theorem by ¢ = ap + a(e — p) for a # p, whereas in [9] we have c = ép+a
for € #£ 0.
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THEOREM 2.5. A set {1, ..., uy} is spectral for an element @ € A if and
only if conditions (a) and (b) of Theorem 2.3 are sotisfied together with one
of the following:

(c) Foraset{ai,...,ar} of compler numbers disjoint from {p1, ..., e},
we have p; € e(c), where ¢ is given by (2.1).

{d) For a function f € H(c(a)) whose only zeros in o(a) are pa, ..., ok,
the element p + f(a) is invertible, where p=py + ... + pg.

For each i € {1,...,k}, p; is then the spectral idempotent corresponding
to the spectral set {p;}, (c) holds for any set {an,...,ax} disjoint from
{pe1;- -, e}, and (d) holds for any f € H(o(a)) whose only zeros in o(a)
GTE 1, - - s [k

Proof. First assume that {u1,..., 1} is a spectral set for a. In Propo-
sition 2.1 set m = k+1, oy = {u;}, pi = ploy;a) for ¢ = 1,...,%, and
op+1 = o(a)\ {p1,..., m}; (2} and (b) then follow. The proof of (c) and
(d), based on the holomorphic caleulus for a, is routine.

Conversely, suppose that {a)~(c) are satisfied for some {oa,...,ap} dis-
joint from {u1,..., ux}. By (2.2), each u; is an isolated spectral point of a.

Next suppose that (a), (b) and (d) are satisfied. For each 4 = 1,...,k
there is g; € H(o(a)) such that f(A} = g(A\){A — w). Since fla)p =
Efml gi(a)(a— pse)p; is a sum of commuting quasinilpotent elements, f(a)p
is quasinilpotent. Thus the set o = {y1,..., ux} is a spectral set for a by
Theorem 1.3, and each p; is an isolated spectral point of a.

To show that p; = p{us; @) in both cases, choose a set {@y,...,ar} of
complex numbers disjoint from {;,..., uz}, and define ¢ by (2.1). There
is a function e; € H(o(a) U {eq,...,ax}) equal to 1 in a neighbourhood of
i and to 0 in a neighbourhood of (a(a) \ {p:}) U {a1,...,ax}. By (2.2), e;
vanishes on o(¢). By (2.4),

plui;a) = eia) = ei(cie~p) + > exus)p; = pi.

F=1
THEOREM 2.6. A set {u1, ..., bk} is spectral for an element o € A if and
ondy tf o admits a splitting

k
(2.5) a=c+b+2(mma’¢)m,
i=1

where
(i) {ou,...,cx} is o set disjoint from {u1, ..., pe},
(i) p1,...,Px ore nonzero idempotents with p;p; =0 if 1 # 7,
(iil) p; € p(e) and cp; = aup; for alls,
(iv) b is quasinilpotent and b(ps + ...+ px) = b,
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(v) the elements ¢,b,p1,. .., pr all commute.

For each i € {1,...,k}, p; 1s then the spectral idempotent corresponding
to 1.

Proof. If o admits the splitting (2.5), then (@ — pe)p; = bp;, which is a
quasinilpotent element as p; commutes with b. We can check that ¢ satisfies
(2.1). 'Then each y; is an isolated spectral point of a in view of (2.2).

The converse follows from Theorem 2.3 if we set p; = p(uga), b =

Sl we)p; and ¢ = 8 cyp; + ale — p).

Ifo{a) = {p1,- .., us}, then p = e. Theorem 2.6 then yields the following
Banach algebra version of the Jordan form:

COROLLARY 2.7. Let o € A. Then o(a) = {p1,-.., Y if and only if a
admits o splitting

k
(2.6) a= b‘f'ZMz'P«;,

de=1
where py, ..., pr form a complete set of idempotents, b is quasinilpotent, and

bp; = p;b for all i.

3. Examples. We give three examples illustrating the theorems of the
previous section.

EXAMPLE 3.1 (see [7] and [5]). Let .D be the closed unit disc in the com-
plex plane, DY the interior of D and 8D the boundary of D. The {ollowing
conditions on o € A are equivalent:

(i) The monothetic semigroup {a™ : n € N} is relatively compact in A.

(i1) {a™ : n € N} is weakly relatively compact in A.

(iii) o(e) C D and o(a) N 3D is a finite (possibly empty) set of simple
poles of a.

(iv) Either 7(e) < 1 or @ has a unique decomposition g = pipy ...k
tipr + ¢, where p; € 8D, p; are nonzero idempotents with pep; = 0if i 5£ 4,
epi = pic= 0 and o(c) ¢ DY,

The implications (i)=>(ii)=>(iii} are proved in [5].

(iii)=(iv). Let o(a) N 8D = {u1,..., s} be simple poles of a. Set
pi = p{pisa) and o5 = 0, ¢ = 1,...,k Then (2.5) holds with b =
Ele(a— pie}p; = 0 and ¢ = a(e —p), where p = p; +...+p;. The inclusion
o(c) < D° follows from (2.2).

(iv)=>(i). Using the splitting (iii) for a, we deduce that

o™ = pPpy + ...+ ulpy + o,
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where ul'o +. ..+ Pk 15 a bounded sequence in a finite-dimensional sub-
space of 4, and ¢ — 0. So the set {a" : n & N} has compact closure in
A. The uniqueness of the decomposition follows from the fact that p; is the
spectral idempotent corresponding to s (Theorem 2.6).

We give two more examples with a sketch of proofs.

ExAMPLE 3.2. Let H be the closed left half-plane of the complex plane,
H" the interior and 8H the boundary of H. The following conditions on
¢ € A are equivalent;

(1) The semigroup {exp(sa) : s > 0} is relatively compact in A.

(ii) {exp(sa) : s > 0} is weakly relatively compact in A.

(iii) o(a) C H and o{a) N OH is a finite (possibly empty) set of simple
poles of a.

(iv) Either o{a) C H" or a has a unique decomposition a = (u1 + Dps +
oo o+ (e +1)pr+c, where y; € OH, p; are nonzero idempotents with pip; =0
if i # 4, ep; = esp = —p; and o(c) ¢ HO.

(i}=>(ii)=(iit). This follows from Example 3.1 and the observaticn that
the monothetic semigroup {w™ : n € N}, where w = exp{a), is relatively
compact whenever {exp(sa) : s > 0} is.

(iii)=>(iv). Let o(a) N OH = {u1,..., ux} be a set of simple poles of a.
Let py = p(pi; @), oy = ~1 for 4 = 1,..., k. Then (2.5) holds with b = C,
¢ = —p-+ale—p), where p = p1 + ...+ pg, and g € p(c) (Theorem 2.6).
The inclusion o(e) C HC holds in view of (2.2).

(iv)=(i). If o admits the splitting (iii), then (2.1) holds with a; = —1
for all ©. Setting f(\) = e®* in (2.3}, we get

k
exp(sa) = exp(sc)(e — p) + Zes“ip,-, 5> 0,
i=1
where p = py + ... =+ py, and where {Zle e*Hip; 1 8 > 0} is a bounded set
in a finite-dimensional subspace of A; also, exp(sc) — 0 {as s ~3 0o) since
a(e¢) C H Then {exp(se): s > 0} is a compact subset of A.

The elements wuy, of the following example are of interest as lim,, oo Um,
if it exists, is a generalized inverse of a (see [8]).

ExAMPLE 3.3. Let M be the set {)\: [A% — 1| < 1}, M© the interior of
M and M the boundary of M. For a € A define up = a and

m
Uy =Za(e—-a:2)”', m=12,...
n=0

Then the following conditions are equivalent:

(1) {tp, : m € N} is relatively compact in A.
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(i1} {um : m € N} is weakly relatively compact in A.

(iii) o(a) C M and o(a) N &M is a finite (possibly empty) set. of simple
poles of a.

(iv} Either o(a) C MY or @ has a unique decomposition a = (u; — 1)p; +
oo (ke —1)pr+e, where p; € M, p; are nonzero idempotents with pip; =0
for i # 7, cps = pic = py, and o(c) C MO,

(i)=+() is clear.

(ii)=>(iii). If w = ¢ — o*, then the monothetic semigroup {w™ : m € N}
is weakly relatively compact as w™ = e — gu,,. The result is then deduced
from Example 3.1, the spectral mapping theorem applied to g(\) = 1 — X2
and Theorem 2.5.

(iii)=(iv). Let o{a) NOM = {u1, ..., px} be simple poles of a. Set p; =
p(uisa) and o =1 for all ¢ in Theorem 2.6. Then (2.5) holds with b = 0,
c=p+ale—p), where p = p1 -+ ... + pi, and u; € p(c). So o(e) € MO by
(2.2).

(iv)=(i). If o admits the splitting (iii), then (2.1) holds with a; =1 for
all i, Let frn(A) = 3on g A(1 — A%)™. By (2.4),

k
Um, = fm(c)(e - p) + me(#i)Pz'-
i=1

Furthermore, f(c)(e~p) — ¢ *(e—p), and 2%, f, (u;)p; lie in a bounded
subset of a finite-dimensional subspace of A. Then the set {u, ~ ¢~ (e — p)}
has a compact closure, and so does {uy,}.

4. Decomposition theorems for operators. Let 7' be a bounded
linear operator on a Banach space X. It is then well known (6, 13] that u is
an isolated spectral point of 7' if and only if X can be decomposed into a
topological direct sum X = M @ N such that M # 0, T'|M is quasinilpotent
and T|N is invertible. Mbekhta [10, 11] gave an explicit description of the
subspaces M and N in terms of T

M = Ho(T ~ pl), N =K(T - ul),
where
Ho(T)={z € X : lim ||T"z|['/" =0},

K(T) = {zeX: (Fz,, € X)(Vn e N) TTpi1 = 2y,

Tz =, sup |z, |/
T

< oo}

For a general spectral set of T we get the following result, which follows
from Mbekhta’s theorem applied to f(T') and from Theorems 1.3 and 1.4.
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TrHEOREM 4.1. Let f € H(o(T)) and let o = o(T) N F~1({0}). Then the
following are eguivalent:

(i) X is o topological sum X = Hy(f(T)) ® K(f(T).
(ii) There is a projection P commuting with T' such that f(T)P is quasi-
nilpotent and P + f(T) is invertible (or P € F(T)).
(iil) The set ¢ is spectral for T, and

(4.1) R(P(e;T)) = Ho(£(T)),  N(P(o;T)) = K(f(T)).

(iv) If p € o is a zero of f of a finite order, then u is an isolated spectral
point of T.

The theorem reduces to the characterization of an isolated spectral point
pu of T' when we take f(A) = A — u. As in Schmoeger [12] it is possible to
relax condition (i) in the preceding theorem by assuming that only K (f “8))
in the direct sum is closed. By Koliha [9], (i) can be further relaxed to

(i) X = M ® N, where M, N are invariant under 7', N(f(T)) € M C
Ho(f(T)), N is closed and N C R(f(T)).

Added in proof. The author and Pak Wai Poon proved that it is enough to assume
in (i) that only one of the spaces Hy(f{T)), K(F(T)) is closed.

The next theorem ig a special case of the preceding decomposition. It
generalizes a well-known result for operators (see [3, Theorem 2.23)) in two
ways: instead of a polynomial it considers an arbitrary holomorphic function
[, and it adds a new condition (ii). If f(A) = (A — u)}™, the theorem can be
used to characterize a pole of the resolvent R(X; T') as a point 4 for which the
ascent and descent of T'—pI are both finite. See [2, 1.54], [13, V.10.2] and [6,
Proposition 50.2]. We give a proof of the result independent of Theorem 4.1,
a proof which is shorter and we hope more transparent than proofs based
on the restriction of operators to subspaces.

THEOREM 4.2. Let f € H(o(T)) and let o = o(T) N F~1({0}). Then the
Jollowing are equivalent:
() X = N(f(T) & R(f(T)).
(i) There is a projection P commuting with T such that f(T)P =0 and

P+ F(T) is invertidle (or P € F(T)).

(iii) The set o 1s speciral for T, and
(4.2) R(P(a; 1)y = N(f(T)), N(P(o;T)}=R(f(T)).

(iv) If u € o 18 o zero of f of a finite order m, then u is a pole of T of
order at mogt m.

Proof. (i)=-(ii). If (i) holds, then R(f(T)) is closed by Heuser [6, Propo-
sition 36.2]. Let P be the projection of X onto N(f(T)) associated with the
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direct sum. Then P € L(X) and P commutes with T since N(f(T")) and
R(f(T)) are invariant under T Also, f(T)P = 0.

Suppose that (P + f(T))z = 0. Then Pz =w = — f{T)z, and w = 0 as
we N(f(T))NR(f(T)). So z € N(f(T)), and ¢ = Pz = 0. Thus P + §(T)
is injective.

Let z € X. There is u € X with x = Pz + f(T)u. Then

(P+F(1)(Pz + (I - Plu) ==,

and P+ f(T') is in fact bijective. This proves (ii). ‘
(ii)=>(iii). By Theorem 1.3, o = o(T) N f~1({0}) is a spectral set for T
and P = P(c; T"). We prove that

(4.3) N(f(T)) = R(P), R(f(T))= N(P).

From f(T)P = 0 it follows that R(P) C N(f(T}) and R(f(T)) < N(P).
Write § = P + f(T'). Then

PS4 ST =T = f(T)§ + 8P,

This implies that N(f(T)) C R(P) and N(P) C R{f(T)).

(iii)=>(1) is clear.

The proof of (ii)+(iv) is fairly routine, and can be based on Theorems 1.3
and 1.4.

Acknowledgements. The author is indebted to the referee for several
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References

[i] F.F.BomsallandJ, Duncan, Complete Normed Algebros, Springer, Berlin, 1973.

[2] H. R. Dowson, Spectral Theory of Linear Operators, Academie Press, Londen,
1978.

(3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math.
Soc. 54 (1943), 185-217.

[4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New Youk,
1957. -

[5] J. E. Galg, Weakly compact homemorphisms and semigroups in Banach algebras,
J. Lendon Math. Soc. 45 (1992), 113-125.

(6] H. Heuser, Functional Analysis, Wiley, New York, 1982,

[77 M. A Kaashoek and T. T. West, Locally Compact Semi-Algedbras with Appli-
cations to Speciral Theory of Positive Operators, North-Holland Math. Stud. 9,
North-Holland, Amsterdam, 1974,

[8] 1. ). Koliha, Convergence of an operator series, Aequationes Math. 16 (1977),
31-35.

[8] ~—, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424.

{10 M.Mbekhta, Généralisotion de la décomposition de Kate auz opérateurs paranor-
maur et spectraus, Glasgow Math. J. 29 (1987), 159-175.

Spectral sets 107

[11] M. Mbekhta, Sur le théorie spectrale locale et limite des nilpotents, Proc. Amer.
Math. Soc. 110 (1990), 621-631.

[12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator,
ibid. 117 (1993), 715-7190.

[13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysia, Wiley, New
York, 1980,

Department of Mathematics
Univarsity of Melbourne

Parkville, Victoria 3052

Australia

E-mail: j.koliha@maths. unimelh.edu,au

Received August 84, 1995 {3520)
Revised version November 18, 1996



