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Singular integrals with holomorphic kernels and
Fourier multipliers on star-shaped closed Lipschitz curves

by
TAO QIAN {Armidale, N.S.W.)

Dedicated to Professor Alan McIntosh

Abstract. The paper presents a theory of Fourier transforms of bounded holomorphic
functions defined in sectors. The theary is then vsed to study singular integral operators
on utar -shaped Lipschitz curves, which extends the result of Coifman-Mclntosh-Meyer on
the L%boundedness of the Cauchy integral operator on Lipschitz curves. The operator
theory has a counterpart in Fourier mu]ﬁlpher theory, as well as a counterpart in functional
caleulus of the differential operator % a‘— on the curves.

1. Introduction. Let « be a Lipschitz graph with the parameterization
v = {y(x) =z +ia(z) 1 —00 < & < oo},

where ¢ is a bounded Lipschitz function, m = min.cescea{a(z)}, M =
MaX - go<z<ooi@(®)}. In [CMI1] the authors introduce the dense subclass

Af) = { J : f is holomorphic in m — ¢ < Im(z) < M + ¢ for some £ and

S |Flz+iy)Pde < c for somec<oo}
m—e<y<M+¢e

of L?(v) and define the Fourier transform of functions in A(vy). They es-
tablish that the H-functions, i.e. the bounded and holomorphic functions,
on the double sectors that contain the difference set D = {0 # »—n :
z,m € v} give rise to L*-bounded Fourier multiplier operators. The Lip-
schitz graphs they consider are restricted to be of small Lipschitz con-
stants because of the use of a result of A. P. Calderdén. The restriction can
be eliminated owing to the later result of Coifman, McIntosh and Meyer
([CMcM]).

1991 Mathematics Subject Classificetion: Primary 42B15, 42B20, 47A60; Secondary
42A16.
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196 T. Qian

In [McQ1] the authors deal with an analogous theory on infinite Lips-
chitz graphs. They prove that the singular integral kernels associated with
the above-mentioned H*-functions are those which are holomorphic, of the
Calderén-Zygmund type, and satisfy a kind of weak-boundedness condition
(see (ii) of Theorem A below). In [McQ2] the converse result is proved. An-
other version of the theory in [McQL], [McQ2] is the H**-functional calculus
of the differential operator %a‘%, which has also been considered for instance
in [DJIS] and [Mc].

In [LMcS] and [LMcQ] the authors develop a high-dimensional theory
using Clifford algebras and several complex variables which, in view of the
non-commutativity of Clifford algebras, is by no means a parallel general-
ization of the one-dimensional case.

It is now natural to ask: Is there an analogous theory for closed curves?
In this paper we shall answer this question for the star-shaped Lipschitz
curves given by the parameterization I" = {exp(iz) : z € I'}, where I' =
{z+1A(z): A" € L®([~m,n]), A(—n) = A(x)}. It may be shown that star-
shaped Lipschitz curves defined using this parameterization are the same as
those defined as star-shaped and Lipschitz in the ordinary sense (see e.g.
[Q3]).

One can define, in the same pattern as in the standard case, the Fourier
series of L? functions on I', and the question can now be specified into
the following two. The first, what kind of holomorphic kernels give rise to
L*-bounded operators on the curves? The second, is there a corresponding
Fourier multiplier theory? In other words, what complex number sequences
act as LP-bounded Fourier multipliers on those curves? Note that the ques-
tion is non-trivial even for the case p = 2, as the Plancherel theorem does
not hold in this case. On the other hand, the case p = 2 is essential, as the
boundedness for 1 < p < 0o can be deduced from the L? theory using the
standard Calderén-Zygmund techniques (see [S], for example).

The basic method of the paper is the use of the Poisson summation
formula in a sense closely related to the properties of the function pairs
(¢, ¢1) obtained in [McQ1]. Section 2 recalls the related previously known
results together with an account of notation and terminology. §3 contains the
theory of Fourier transform between the H-functions defined on sectors
and the corresponding holomorphic kernels on truncated sectors. §4 contains
the singular integral theory and its version for the H*-functional calculus
of the operator zad;. ‘We also include some results on holomorphic extension,
which is an interpretation of the theory in terms of complex analysis. §5
contains some results on general LP(I") Fourier multipliers. In the whole
paper we shall omit the proofs which are similar to the infinite Lipschitz

graph case, and devote ourselves to those which reveal new features of the
theory.
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The reason why we restrict ourselves to the star-shaped Lipschitz curves
is as follows. Firstly, if a closed curve I is not star-shaped, then the corre-
sponding difference set D ={0% z — 5 : 2,9 € I'}, where

r={t= Ry [, e,

is not contained in any double sector defined in §2, and it may eventually
spread over a region 0 < |z| < a, in case I' is winding enough. We are
considering holomorphic kernels on I', and they should be defined on open
connected sets containing D. However, such holomorphic kernels with the
2r-periodicity satisfying the standard Calderén—Zygmund size conditions at

‘z = ( are of the form Acot(z/2) 4 +(z), where A is a constant and 7 is

a bounded holomorphic function on a bounded neighbdurhood of D. The
Fourier transform of cot(z/2) is a constant multiple of the signum function
(see Example (i) of §4) and the corresponding singular integral theory can be
deduced, for example, from Coifman-McIntosh-Meyer’s theorem ([CMcM])
using a partition of unity or Guy David’s theory ([D]).

The second reason is related to the potential solutions of the Dirichlet
and the Neumann boundary value problems on Lipschitz domains (see [FJR]
and [V], for example}. The star-shaped Lipschitz domains are general enough
to serve this purpose, owing to the fact that every simply connected Lipschitz
domain of the complex plane is the image of a star-shaped Lipschitz domain
under a conformal mapping, and the fact that conformal mappings preserve
harmonic functions.

The subjects presented in this paper have been further developed to
various higher-dimensional cases including Lipschitz perturbations of the
m-torus, the unit spheres of quaternionic and Clifford spaces and of the
euclidean spaces. They are not trivial generalizations. For instance, there
is no Poisson sumrmation formula for the higher-dimensional spheres. The
references are [Q1-5].

Special thanks are due to Alan McIntosh and Carlos E. Kenig for their
suggestions on this topic. The author also wishes to thank Garth Gaudry,
Gengkal Zhang, Joachim Hempel and Zhongming Guo for their comments,
suggestions and their interest in this topic during my stay at the Flinders
University of South Australia, Mittag-Leffler Institute, and the New England
University, respectively. This work was partly supported by the Australian
Research Council in the form of Research Fellowship for the period when
this study was being carried out.

9. Preliminaries. Let I be a Lipschitz curve defined on the interval
[, 7] with the parameterization I'(z) = z + iA(z), 4 : [-m, 7] — K,
where R denotes the real number field, A(--7) = A(w), A’ € L*®([—=,x]),
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and |[A'llee = N < oc. Denote by pI" the 2m-periodic extension of I' to
—o0 < & < o0, and by I" the closed curve
= {exp(iz) : 2 € I'} = {exp(i(m + iA(z)) : ~7 < & < 7).

We will call T the star-shaped Lipschitz curve associated with T

. We will use f, F' and F, etc., to denote functions defined on pI", I" and
I, respectively. For F € L?(I"), define
= 1 ¢+ - =~ . dz
Fam) =55 ) 2,
r

the nth Fourier coefficient of F with respect to I'. We will sometimes sup-
press the subscript and write F(n) if no confusion can occur.

Set

o = exp(—max A(z)), 7 =exp(—minA(z)).

Similarly to [CM1] we consider the following dense subclass of L2(I) (see
also [GQW]):

A(I) = {F(2) : F(z) is holomorphic in ¢ — n<lzl<T4+7

‘ for some n > 0}.

Without loss of generality, we assume that min A(z) < 0, maxA(z) > 0.
In this case the domains of the functions in A(I") always contain the unit
circle T, and owing to Cauchy’s theorem we have F}:(n) = Fy(n). If F and

G belong to A(f‘), this remark, together with Laurent series theory, implies
$he Fourier inversion formula

oo

(1 F)= Y Frme,

n=—0o

where z is in the annulus in which F is defined; and a use of Cauchy’s
theorem gives the Parseval formula

) '2%,5, F@G@ L= 3 FamBa-n).

r ThES e OO

We shall use the following half and double sectors in the complex plane
C: for w € (0,7/2),
824 = {2 €C:larg(z)| <w, z #0},

o _ 1IN
8)_=-8%,, s%=s0, US_,

icm

Singular integrals with holomorphic kernels 199

and the sets
Cg,+:SgU{z€C:Im(z)>0},
C)._ =8 U{z€C:Im(z) <0}
Let X be a set defined above. Denote by

X(r)=XnNn{z€C: |Re(z)] < 7}
the truncated set, and by

o
pX(r) = | J {X(r)+ 2k}
k=—oc0

the periodic set associated with the truncated one. We shall use sets of the
form exp(i0) = {exp(iz) : z € O}, where O will be the truncated sets
defined above. In the sequel H°°{Q) denotes the function space {f : Q —
C : f is holomorphic and hounded in Q}, where Q will be a double or half
sector defined above. We will use || ||oo to denote || ||ge¢q) if no confusion
can ocecur,

Let b € H°(S), w € (0,7/2]. Ther b can be decomposed into two parts:
b= bT - b, where

bt = bX{z:Re(z)>0}a b = bX{z:Re(z)<0}:
and so b= € H Oo(Sff;,i), respectively.
In each of the following statements “£” should be read as either all “+”
or all “~",
The following transforms are used in [McQ1]:
1 .
G=(5)() = %(2) = o | expliz)b(()dl, 2 € Cl 4,

H

where g;,t is the ray sexp(if), 0 < s < oo, and & is chosen, dependi-ng on
z € CY . sothat of C 87 4, and exp(iz() is exponentially decaying as
93: 3 ¢~ 00; and

GEWH) () =¢E(2) = | 5 d(, zeS) .,
5% (2)

where the integral is along any path §%(2) from —z to z in e ..

In what follows, ¢g, ¢1, and C will denote universal constants and C,, ,
will denote constants that depend on w, 14, and so on, and they may vary
from one occurrence to another.

Our theory is based on the main results in [McQ1], which we now refor-
mulate for the reader’s convenience.
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THEOREM A. Letw € (0,7/2] and b* € H™(SD, 1), Then ¢F = G=(b¥)
and ¢F = GE(b*) defined as above are holomorphic functions in their do-
mains, and for every p € (0,w),

. Cy ul|bE
g 5] < Sl e
() 65 e H(S0,), 6lnmisy ) < Collt]oo, and

7' (2) = ¢=(2) + ¢%(—2), ze€8S?

Wt

i) o | EQOf-0d =ln { | ¢i(m)f(m)czm+¢?(s)f(o)}

o0 B

,  2€Cy 4

for all f in the Schwariz class S(R), where ¥ stands for the standard Fourier
transform of f.

For b € H>(80) using the decomposition b = b + b~ and Theorem A,
and then letting ¢ = ¢T 4 ¢, ¢ = ¢] + ¢, we obtain the following

COROLLARY 1. Let w € (0,7/2] and b € H®(SC). Then there exists a
pair of holomorphic functions (¢, ¢1) defined in 82 and SS,, +» Tespectively,
satisfying, for every u &€ (0,w),

) PEPTILIC

() #1€ H=(S0.) (61 mmss ) < Cunebloos and
¢,1(z) = qb(z) + ¢(_z)1 z e Sw .

(—Qac=1m{ | s@)f()do+a(e)f(0)}

@) (2m)~" | (A
—00 im\>s
Jor all f in S(R).

THEOREM B. Letw & (0 /2] and (¢, 1) be a pair of holomorphic func-
tions defined in 82 and S -+ Tespectively, satisfying

(i) there is a constant cg such that

é(2) < — ‘ ‘ 2 € 80;

(i) there is a constant cy such that ||$1fjzr=(so L, <c ond
#1(2) = ¢(2) + d(—2), ze€8]

Then there exisis a unique function b € H™ S°) for every i € (0,w) such
that

1bll rre=sey < Cuyuleo + e1),

icm

Singular integrals with holomorphic kernels 201

and the function pair determined by b according to Theorem A is identical to
(@, d1). Moreover, for all complex numbers ¢ € 82 the function b is given by

(3) bO)=lim lim { | exp(~ica)p(z) do + ga(c) ).

e<m|<N
Remark. If ¢|g, the restriction of ¢ to R, is a good enough function,
say, for instance, if ¢|g is in L*(R)N L} (R), then blg is the standard Fourier

transform of Glg, lime—,q¢1(ez) = 0, for z € SY | and (iii) of Theorem A
reduces to the standard Parseval identity.

3. Fourier transforms between 8¢ and pS? (7)

THEOREM 1. Let w € (0,7/2] and b € H>=(S), and (¢, 1) be the
Junction pair associated with b in the pattern of Corollary 1. Then there
exists a pair of holomorphic functions (&, 1) defined in S (1) and SE‘,,Jr (),
respectively, satisfying, for every p € (0, w),

(1) ® can be periodically and holomorphically extended to pSP (x) and
Cuo 8]
& < ZWLRITH00 g0 .
o)< =l e sim)
Moreover,
B(2) = 9(z) + dola), = € 8(),
where ¢p 18 a bounded holomorphic function Sg(ﬂ');
(i) @1 € H=(SD , (r)), |%1]gmst ) < Cullb]oe, amd

O\ (z) = B(z) +8(~2), 2z € SL(r);

(iii) ¢ and &1 are uniquely determined (modulo constants) by the Par-
seval formula

o Z - =;1_x5(1]{ | #@)F(@)dz+B1()F(0)}
n=—20 e<la|<r

for any 2w -periodic and smooth functions F defined on R, where ﬁ(n) stands
for the nth Fourier coefficient of F, and b(0) = 5=@1(x).

Proof Define & by the Poisson summation formula:

(4) $(z) = 2m i &(z + 2km),

k=—o0

zE PS ("T):

where the summation takes the following sense: there is a subsequence (n;)
of (n) such that for all z € 8J(r) the partial sum

Sn,(2) =2 Z ¢z+2k7r)

k=—mn
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locally uniformly converges, as [ — o0, t0 a 2n-periodic and holomorphic
function satisfying the assertion (i). In the sequel we shall call such sequences
applicable sequences. Moreover, we shall show that limit functions defined
through different applicable sequences differ from one another by constants
bounded by ¢||b]/cc-

To proceed, we use the decomposition

Z $(z + 2km) = p(2) + Z &+ 2km) — (2km)) + Y ¢ (2kn)

k=-n ks£0 k=1
— 0+ X, + X,
We shall show that the series ), locally uniformly converges to a bounded
holomorphic function in S%(w), and some subsequence of the partial sums

of 37, converges to a constant dominated by C[|b]|co-
The convergence of 3, follows from the estimate

C.
[¢'(2)| < 3 iz '2, z €8,
deduced from the estimate in Corollary 1({i), the fact that ¢ is holomorphic

in the sectors and Cauchy’s theorem. To deal with >, we use the mean
value theorem for integrals and we have

n 2(n+1im n
SNogh@kmy = | @i(r)dr+) (¢ (2km) - Re(@)(€)) ~ i Im(¢} (mx)))
=1 2 k=1
= ¢1(2(n + 1)w) — ¢1(27)
+ 3 () (2k7) - Re($) () ~ 1 Im(] (mx))),
k=1

where &, € (2km,2(k + 1)7). Owing to the estimate of ¢ again, the
series in the above expression converges absolutely. The boundedness of
¢1 then guarantees the existence of an applicable sequence (n;) such that

#1(2(n; + 1)7) converges to a constant ¢y with the desired bounds. We
therefore have

—@(z) #(2) —|—Z(q§ (z 4+ 2km) — ¢(2km)) + 111-n Z(f)’ (2n7r)

k=0 n.—-l
= ¢(2) + do(2) + o,
where ¢¢ is a bounded holomorphic function in Sﬂ(ﬂ-), and ¢p is a constant

depending on the subsequence () chosen. The argument also shows that
$ can be holomorphically extended to pS> («), and the different $'s asso-
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ciated with different applicable sequences may differ from one another by
constants dominated by ¢[/b]| .

Now we prove (ii) and (iii). We use the decomposition b = b+ + b~
indicated in §2. Define b5%(z) = exp(Faz)b* (2), a > 0. Let ¢* and ¢ be
associated, according to Theorem A, with b= and ¥, respectively. Owing
to the remark made after Theorem B, ¢=°(+) = ¢*(- £ ic), and the latter
are the inverse Fourier transforms of b*:®. We now define the corresponding
holomorphic and periodic functions #* and $+: in pC, | (r), respectively,
which satisfy the size condition in the assertion (i). If is to be noted that for
all %% we may, and we actually do, choose the same applicable sequence
(ny) for 5% as we have chosen for . Using the estimate in Corollary 1(i)
and the fact that ¢ is holomorphic, we can show that the convergence of 3>
is locally (in z) uniform for @ — 0, and is absolute. Let

1
__gp:l:,ot
5-97"(2)

1
‘g@ (2)

= ¢5(2) + 65
= #5() + 652+

(2) +Cg:1a’

where (bat’a and ¢F are holomorphic and uniformly (for @ — 0) bounded
in C% (). Since the convergence as n; — oo is uniform for oo — 0, we
can exchdnge the order of takmg the limits as ny — oo a.nd a — 0, and
conclude that ¢+, ¢ri ® and ¢® converge to ¢F, ¢ and cF, respectively,
locally uniformly in CY (7). Therefore, limgo () = *(z). Since for
a fixed o, $5¢ € L°°([—"7r 1)), and the series which defines $** converges
uniformly in & € [—7, 7| as n; — oo, we have

. j exp(~iga) 0™ (o) do = | expl(=itz) Jim, k;ﬂ F5 (@ + 2k dit
= | exp(—itw)g(z) du = b*=(¢)

for all non-zero real £ in the sense of (3) in Theorem B. In particular,
{b5%(r)}, n # 0, are the standard Fourier coeflicients of $== If F is
any smooth and periodic function on [—m, 7], then the standard Parseval
identity holds:
[= >3 ks
2 Y v () F(-n) = | 85%(2)F(z) dz,
== 00 —T
where b5 (0) = (27) {7 _&*(z ia) de. Now we proceed as in [McQ1].
Let € > 0. Since ﬁ(n) decays rapidly as n — oo, on letting & — 0+, we
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have
2 Z bE(n)F(~n) = al—igh- S *(z £ i) F(z) do
=00 ['_7"17"]\(_5’5)
+ | % (z kia)(F(z) - F(0)) de
|| <e
+ | #* (@ +ia)F(0) da:}.
BEC
Now
lim | o*(z+ia)F(z)dz = | = (z) F(z) dz,
T e (—ese) [—mr\(—ee)
and

1
limsup | |6%(z xia)| |F(z) - F(0)|dz <lmsup | = - |z|de < Ce.
|=|<e o0+ |z|<e |$|

()= | &5(n)dn,
6+ (z)

where §%(2) is any path in C? . () from —=z to z. The assertion (i) for &;
then follows, and

lim | 8% (z ia)F(0)ds = % (=) F(0).
|z]<e

We have therefore established the Parseval identities for b™:

2 Z V() F(—n) =§£1(1) S
=00 [=mmi\(—E,E)
where 5%(0) = %@ih(ﬂ') Note that if in the above formulas we replace &%
by &= + ¢*, then correspondingly we need to replace bt (0) by bE(0) -+ c*
in order to make the formulas still hold. Since & = &+ + &=, on letting

®; = &F + 7, we see that (i) and (i) hold. The proof is complete.

&*(2) F(z) dz + B3 (E’)F(U)},

Remark. When we consider the Parseval formula associated with the
given function b € H*°(S?), the value of b at the origin is naturally involved.
The convention for this value should be 5(0) = 5=&1 (1) in consistency with
the formula as shown in the theorem. The proof of the theorem indicates
that adding a constant to & (which does not change the Fourier coefficients
®(n) = b(n) for n # 0) results in adding the same constant to b(0). The
special & defined through the formula (6) below has the property b(0) = 0.
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THEOREM 2. Let w € (0,7/2] and (&, d;) be a pair of holomorphic func-
tions defined in psg('fr) and sg, (), respectively, satisfying
(i) @ is 2mw-periodic, and there is a constant co such that
¢
@< zeSiimy

(ii) there is a constant ¢; such that Hi’lﬂﬂm(sg)_}(w)) < e, and

B1(z) =B(2) +B(—2), z¢€ SS),+(7T).
Then for every u € (0,w) there exists a function b* such that b* € H™(S)),
and
(18] ree (59 < Clules + ca),
and the function pair determined by the function b* gecording to Theorem 1
ig identical to (@, ®1) (modulo constants). Moreover, b* = b 4 bt~

1
sk I i
(5) b)) = 513&{ [ exp(-in2)e(z)dz+ 21(e) },
At(e,8,Ini=")

n € SD,:l;1
where 0 = (u+w)/2, A%(e,0,0) = Ie,0) U c=(6,0) U 4%(8,0), and for
esm,

We,o)={z=a+iy:y=0, e <|z| < o},
ct(8, 0) = {z = pexplic) : « goes from 7 £ 0 to m,
and then from 0 to F 8},
A9, 0) = {z ¢ ngi(:rr) :z = rexp(i{r 1 6)), v goes from wsech to g,
and then z == rexp(Fif), r goes from g to wsech},
and, for p > w,
Z(E: Q) == l(E, 71")! c:i:(e’ Q) - Ci(a,ﬂ"), Ai (9: 9) = A:I:(g, ﬂ-)'
Proof. Fix p € (0,w), and write b* as b in the rest of the proof. For all
g € (0,7) and n € 83U {0}, define be(n) = b} (n) + b7 (1), where bE are the
functions in the definition of the functions b* in the theorem before taking
the limit as ¢ — 0. We observe that b, (0) = 51 () for all . For 7]~ <,
we can show, using the estimates in [McQ1], that b.(#) is uniformly bounded
with the bounds indicated in the theorem, and that lime_.o4 bz(n) = b(n)
exists. For |n|~* > m, to the integral over the contour (s, ) we use the
same argument and estimates as to the integral over I{e, |77|‘j:1) for the case
In|~t < . To estimate the integrals over ¢=(6,m) and A (6,7) we use
Cauchy’s theorem to change the contour of integration and so to integrate
over the set {z =z +4y : & = —, y goes from —(&r) tané to 0, and then
z =m, y goes from 0 to —(£x) tan 8}. It is easy, however, to show that the
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integral over the last mentioned contour is bounded, using only the fact that
+Re(z) > 0. Therefore b is well defined with the desired bounds. We leave
the details to the interested reader {or refer to [Q4]).

Let F' be any 2#-periodic smooth function on [, 7]. Expanding F in a
Fourier series and using the definition of b,, we have

27 i bs(n)ﬁ[wmw](—n) = S $(z)F(z)dz + P1(e) F(0).

n=—0co e< el <

On letting ¢ — 0, we get

27 i b(n)ﬁ[_.,rm](—n)=;i__r}%{ | @(m)F(m)dmwl(e)F(u)}.

n=—00 e<|z| <

Denoting by (G(b), G1(b)) a pair of holomorphic functions associated
with & in the pattern of Theorem 1, from the Parseval identity it follows
that

lim{ | (GE)) - B(a)F(z)do + (Gale) - &:())F(0)}

g0
e<|z|<x

=2 (b1(0) — b(0)) Fi— ., (0),

where b;(0) is associated with (G(b), G1{b)) in the Parseval identity (iii)
of Theorem 1. According to Theorem 1 (see also the argument at the end
of its proof), we can add any constant to G(b) and accordingly adjust the
value of b1 (0) in order to make (iii} of Theorem 3 still hold. In particular,
we can choose a constant such that b;(0) — b(0) = 0. The right hand side
of the last displayed equality then becomes zero. Using an approximation
to identity (F,) with the property F,(0) = 0 for all n, we conclude that
G(b)(z) = @(z) for z # 0, which implies G(b)(2) = H(z) for all z € 8%(x)
owing to analyticity. Using the assertion (ii) of Thecrem 1 on Gy (b) and the
assumption (ii) on the function &, we have & = G/ (b) and so &1 — Gy is
a constant. Together with the property lim._.o(G1(b)(g) — ®1(c)) = 0, this
implies that &) = Gy(b). The uniqueness of b can be proved similarly. The
proof is complete.

4. Singular integrals on star-shaped Lipschitz curves. The results
obtained in §3 can be used to study the relations between singular integrals
and multiplier transforms on periodic Lipschitz curves. Alternatively we can
consider the closed star-shaped Lipschitz curves defined in §2. By perform-
ing the change of variable z — exp(iz) and substituting $ = Po (ﬂ ln)

and &, = Py 0 (-z 111) in Theorems 1 and 2, we obtain the following thec-
rems. :
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THEOREM 3. Let w € (0,7/2] and be H®(SD). Then there exists a pair

of functions (B, ®,) such that & and &, are holomorphic in exp(iS2% () end
exp('LSD (7)), respectively and for every p € (0,w),

. =y Ow, b oo .
) 18| < —H—ﬂ“r 2 € expl(iS(r));

(i) éﬁ1Eflwo(exp(isﬂ( N “§1”H°°(exp(iso(7r) < Cu,pliblleos and

& (2) = ( B(z)+ B(z7"), =€ exp(iSy, (m))

(i) 2 Z b(n —n)

== 00

= lim { S B(z )F(z) G @ﬂexp(ze))F(l)}

e~0
|inzj>e,z€T

for all smooth functions F defined on T, where Fy(n) is the nth Fourier
coefficient of F and b(0) = o=@ (exp(i)).

THEOREM 4. Let w € (0,7/2] and (B, $,) be a pair of holomorphif: funec-
tions defined in exp(iS2(m)) and exp(iSY, . (), respectively, satisfying

(i) there is a constant ¢y such that

z € exp(i82(m));
(ii) there is a constant ¢y such that Hallle(EXP(isg,_{_(,r))) < ¢y, and

- 1 o~ - _
Bi(e) = (@) + Be), 2 € expliSL, ().
Then for every u € (0,w), there exists a function b in H>(89),
6" || mree(s0) < Culeo + 1),

and the function pair determined by b* according to Theorem 3 is identical
to (@,8;) modulo additive constants. Moreover, b* = b T b

~ dz )
b5 () = L lim { S z“”@(z)iz— + @1(exp(ze))}, n €S, .,
2m =0 —ilnzeA®(e,0,0)
where the contour A*(g,0, p) is defined in Theorem 2, and

& (explic)) = | Blexp(iz))dz,
i(e)

where I(g) is any path from —& to £ lying in Cla
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The following corollaries are versions of Theorems 3 and 4 in terms of
holomeorphic extension of series of positive and negative powers (see also the
paragraph following the statement of Theorem 6 below).

COROLLARY 2. Let (b,)E2., € 1° and 8(2) = 1022, bua™, |2¥] < 1,

and w € (0,7/2). If there emist § > 0 such that w+ 6 < /2, and a function
b e H°°(Sg+5 +) such that b(n) = b, for all £n = +1,+2, ..., then the

function & can be holomorphically extended to the region exp(CJ 5= (T))
Moreover, we have

B < T2, 2 € expliCEu(m),
COROLLARY 3. Let w € (0,7/2], and & be holomorphic and satisfy
Bl < g, =€ expliCSulm)
Then for every p € (0,w) there esists a function b* such b* € H*(S) )
and B(z) = 25, b4 (n)z"™. Moreover, b = b+ 4 p—
B=(n) = 5= I m { ] exp(-ina)Blexnliz)) du+ B (explic)) ),

—ilnze A% (e,0,0)

7 ESLa
where A% (e,0, g) is defined as in Theorem 2, and
F(explie) = | Hlexplin)) dz,
is)
where I(g) is any path from —e to e lying in Cf
_ Remark. Asindicated in Corollary 3 the mapping & — b satisfying
= 3. b(n)z" is not single-valued. In fact, if u; £ 12, then both bt and

b2 satisfy the requirement, but &' 3 b”* in general. This can be verified
by using &(2) = 2™, n € Z*, for example (see also [Q4]).

Joachim Hempel observed the following application of Corollary 2.

COROLLARY 4. For any w € (0,7/2] there does not exist any function
b satisfying b € H*(S, 4) and b(n) = 1 forn = 25 k = 1,2,..., and
b(n) =0 for any other positive integers. '

Proof Consider the function
P) =242+ +..

It is well known that & does not have any holomorphic extension across
intervals on the unit circle, and hence, according to Corollary 2, it is not
induced by a fanction b in H “(Sg, +) in the pattern of Corollary 2.
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For a function b and a function F defined in Theorem 3, by Laurent

series theory, the series
oo

S b(n)Fp(n)e"

=00
locally uniformly converges to a hOlOI’IlOI‘pth function in the annulus on
which F is defined. Recalling the fact that FT(n)

an operator My : A(T) — A(T) by

f;(n), we can define

Mbﬁ(z) =2 Z b(n)ﬁf(n)z”.
n=—0co
On the other hand, for a pair of functions (5, 51) specified in Theorem 4
we can formally write

T(rigl)F(z)

-im{

(zn_l)F(n + él(exp(aat(z)))F(z)}
*2|Re(i~t Inf{nz=1))|>e, nel’
where #(z) is the normalized tangent vector to I at z lying inside 82, | ().
We have the following theorem:
THEOREM 5. Let w € (arctan N,7/2], b € H*(8°) and (&,3,) be the
function pair associated with b in the pattern of Theorem 3. Then the fol-
lowing hold:

s o well-defined operator from .A(f) to A(f’), and T(g5 3y =

©) Tz 3,
My modulo o constant multiple of the identity operator;
{ii) My estends to a bounded operator on L?(I") whose operator norm is

dominated by ¢||b||oo-
Proof. (i) For any a > 0, define b¥%(() = —2z~$b®%(~(), where b=
are the functions defined in the proof of Theorem 1. Let (652, ($5:2),) be

the function pair associated with b:‘: % in the pattern of Theorem 3. Owing
to (iii) of Theorem 3 and Cauchy’s theorem, we have

gaF(s)=2n 3 WemFam=2r Y 52%(m)Fa(n)
n—;w = d _ N:i:,ne_—l = d_"?
W (n )F();—lez (™ Em)

Taking the limit & — 0 as in the proof of Theorem 1 and noticing that
SE(™) = (7Y,

we obtain the desired equality for b*, and hence for b.
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(ii) One can alternatively prove the boundedness of the operator

Tip,5,)F(z) = lim S Bz~ n)F(n)dn+ @ﬂst(z))F(z)},

E—!

=2 |Re(z—n)| >

F e AD),

where ¢(z) is the normalized tangent vector of I" at z lying inside Sg, (),
and A(I') is the class of 2m-periodic and holomorphic functions defined by
the condition F' € A(I") if and only if F' = Fo (i"'In) € A(I"). Owing to
the decomposition of @ in the assertion (i) of Theorem 1, we have

Tioey)Flz) = lim { | ¢(z = n)F(n) dn
i w2 |Re(z—n)|>en
-} delz-mFm)do)

rZ\Re(z:—n)beﬂ,
m
+a | Findn+eF(z),
where £, — 0 is an appropriate subsequence of € — 0, and ¢; and ¢y are
constants.
The second and the third integrals are dominated by the L?-norm of F,
while the first integral is dominated by

sup‘ i ¢(z»—77)Fl(n)dn|+cMFl(z), Re(z) € [, 7],

>0 |Ra(z—m)|>e

where F1(n) == F(n) for |Re(n}| < 2, and Fi () = 0 otherwise, and MF, is
the Hardy-Littlewood maximal operator of F; on the curve. Owing to the
boundedness results for the operator introduced by (¢, ¢1) (see [McQ1]) and
for the Hardy-Littlewood maximal function, we obtain the desired bound-
edness.

Remark. There is some interest in direct proofs of Theorem 5(if), for
which we refer to [GQW] and [Q2].

We state without proof the following theorem. For a proof we refer the
reader to [McQ2].

THEOREM 6. Let w € (arctan N,7/2], & be holomorphic in exp(i8%)
and satisfy (i) of Theorem 4 with respect to w. If T is o bounded operator
on L*(I') and

T(F)(z) = | 5(z¢—1)§(092_¢, 2 & supp(F),
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for all F € C‘D(ﬁ), the class of continuous functions, then there exists a
unique function &1 € H™(exp(iSS ,)), u € (0,w), such that

- 1 ~ -
P (z) = ;;(Qi(z) +8(z71), ze exp(i83’+(7r)),
and
o TF) =Tz, F)
for all F € Co(I).
As stated in Corollary 2, for b € 82 the function §+(z) =Yoo, b(n)zm,
|z| < 1, can be holomorphically extended to exp(icg, 4+ (), and &7 (2)

Z:Liwoo b{n)z", [z} > 1, can be holomorphically extended to exp(CY, _{m)).
So, we have the expression

(6) F(z)= Y bn)a", =z e exp(iSd(r)).

=00

In many cases using (6) is more convenient than using (4) in finding an
explicit formuls for @, and hence for &.

EXAMPLE (i). If b(z) = —isgn(z), then from [McQ1] we get ¢(z) = £ .1

z
¢1 = 0, which corresponds to the Hilbert transform with kernel ¢(z). Uzrsing
the expression (6} we obtain &(z) = cot §, #; = 0, &(2) = —i}E2, and

$1 = (. From the assertion (i) of Theorem 5, the Fourier multiplier —i sgn
corresponds to the kernels 2‘—; . %ﬁ—; and % cot 3 on I" and I', respectively.
ExAMPLE (ii). Let A ¢ S%. Then b(z) = L5 corresponds to the resol-

vent of the surface Dirac operator om every star-shaped Lipschitz curve. If
Im(A) > 0, then from [McQ1] we have
_ Jiexp(irz) if Re(z) > 0,
a(2) = { 0 if Re(z) < 0.
If Tm(A) < 0, then we have
_Jo if Re(z) > 0,
o) = { —sexp(idz) if Re(z) < 0.
It is casy to see that in each of the two cases ¢, is in L*(R) N L*(R), and
50 the remark we made after Theorem B applies to both cases.
From the definition, for Im(}X) > 0, we have
Texp(iA(z + 27))
1 — exp(iA2m)
i exp(tAz)
1 — exp(iA27)

if —w < Re(z) < 0,

‘P)\(z) =
if 0 < Re(2) < .
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For Im(}) < 0,

—iexp{iA(z — 2m))
1 — exp(—iA2)
—iexp(iAz)

1 — exp(—iA2x)

if 0 < Re(2) < m,
®)(2) =
if —7 < Re(z) < 0.

For Im(}) > 0,

.o . by
fexp(iA2m)z” e | Re lﬂf) <0,
~ 1 — exp(sA27) i
2a(z) = iz In z
et if sl
L 1~ exp(iA2m) 10<Re(i)<7r
For Im()) < 0,

r i _ . A
1exp(iA2M)20 e o Re (mTz> <,

1 — exp(—iA27)
1
if —m < Re (—?) < 0.

A
As in the above example, :?1? times the above functions will be the kernels
of the resolvents on the curves I" and I', respectively.

Balz) = ¢ :
—z

L 1 — exp(—iA2mr)

We now outline how the H°-functional calculus developed in [Mc] can
be applied to the present case (see [McQ1], McQ3] for the infinite Lipschitz
graph case), and indicate the relation between this functional calculus and
the operator classes My and T(g’gj).

For a function F ¢ A(I") we define the differential operator |~ by

d| ~ o - F -
—| F(z)= ’llim Plzth) - Fz) forzel
T

dz —0_ h
z+hel

For 1 <p < oo,~(Lp(f),LpI(f)) is a pairing of Banach spaces given by
(F,G) = {3 F(2)G(z) dz, where p’ = (1—-p~*)~t. Now use duality to define
DFp as the closed operator with the largest domain in Lp(f) which satisfies

(07, F.6) = (F. a5

dl ~
J
ars
for all F and & in A(F).
Let w € (arctan N, #/2] and A ¢ 8°. It is easy to verify that DFp is the

surface Dirac operator on I' and the function 517;5 a given in Example (ii) is

the convolution kernel of the resolvent operator (D;;P — A)7! in the sense
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of Theorem 5. Moreover,

1 ~
25"

(D5, — N7 <

> Al + 2xm)l Ly

<
I n=Teo
= |l gallrrpry € V1 + N2{dist(X, 820},
where we have used the bounds of |j¢a]|z1(pr) obtained in [McQ1].
The above estimate implies that Df;p is a type-w operator ([Mc]) that

allows us to define b(D p) via gpectral integrals firat for those H*°-functions
b with gocd decay properties at bath 0 and oc:

1 -
oDz ,) =5 Yo Dz, —nD) " dn,
3

where & is a path consisting of four rays: {sexp(—i8) : s goes from oo to 0}
U {sexp(if) : s goes from 0 to oo} U {sexp(i{r — §)) : 5 goes from co to 0}
U {sexp(i(m + #)) : s goes from 0 to oo}, where arctan N < § < w.

It is not difficult to show, using the above estimate, that each b(le:p) is
a bounded operator, and ¥(D5 ) = My = T 70y
of Calderén-Zygmund operators (see [Mc] or {CM2]}, one can then extend
the definition of b(DFp) to all the functions in H*(SY), and prove

Taking limits of sequences

b(DF,p) = M, = T(S,El)’

with the properties
16D ) < Collblloes
(bub2)}(D5 ) = b(Dg )ba(Dy ),
(o1b1 + agbz)(DF’p) = o1bi(Dg )+ b2 (D5 )

whenever by, by € H®(S?) and oy, a are complex numbers.

5. Fourier multipliers on star-shaped Lipschitz curves. In this
section we shall not restrict ourselves to the A °°-multipliers. We wish to
point out that all the results and methods of the Fourier multiplier theory
for the infinite Lipschitz graph case developed in [Mc‘QLﬂ can be adapted
to the present case. The major changes are: the class A(I") is good enough
for our purpose, and whenever we deal with a kernel on I" we refer to its
corresponding kernel on pl” via the Poisson summation formula. We shall
state two results without proofs. Both can be proved using the corresponding
Schur lemma in the present case (see [McQ3]).
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For b= (b,)0% _ €

18113, 35 = 50 {| S 0 F )z 1B oy < 1},

€ [?°, define

and
Mp(L) = {b =[]l
Functions b in M,(I") are called LP(F)-Foumer multipliers.

<oo}

THEOREM 7, Let & be a holomorphic function defined in a simply con-
nected open neighbourhood of the difference set I' —I' = {2 ~ ( : z,{ € I'}
sa.tisfy'ing |@(r exp(if))| < (exp(iB)), where {7 _t(exp(if))df < co. Then

(@(n))n_wm € Mp(T'), 1 < p < oo, and the associated convolution
opemtor I is given by

ToF(z) = | 8o Fln) 5‘5'5’1, Fe A,
¥

Let I} and I be two curves of the type under consideration. Define

Myp(T3, o) ={b € 1°° : Bl 7 7, < o}

where

122 bn Fn)z ‘ELp(p;,)
|Fl

¥l 5, 75 =500 { F e A n Al .

Lr(Th)
If Iy is a third such curve, and by € M, (1’1,1“2) by € M, (1“2,1“3) then
beby € M, (F1,F3) and

6281]l T Ty S lo2lly (37| IHM,,(n )

'THEOREM 8. Let b € I*° and fa(n) = b{n) exp(26|n|). If f5 € Mp(T) for
some 8> M = max A(z), where T is the unit circle and 1 < p < oo, then
be My(I') and

< (2mBY*(8* — M) 7ML+ N2V 5| ag, emy

The following example shows that we cannot expect the relation ||b|| Ma(F)

< Cxllbllo to hold in general ([McQa]), although it does hold when the curve
Iis ﬂat
Take I'(z) = z-+iA(2) to be a piece of Lipschitz curve defined on [, 7]
with A{~7) = A(m), A(0) > 0 and m = min A(z) < 0. For any integer S
let bs be the sequence in I*° defined by bg(n) = L if n < 5 and bg(n) =0

160 % <
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otherwise. Using F'(z) =
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iTa:p("m as a test function one can show that for

any € > 0,
1Bs 1l (7 2 Ceexp(—5(m + ).
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A Phragmén-Lindelsf type quasi-analyticity principle
by

GRZEGORZ LYSIK (Warszawa)

Abstract. Quasi-analyticity theorems of Phragmén—Lindelsf type for holomorphic
functions of exponential type on a half plane are stated and proved. Spaces of Laplace
distributions (ultradistributions) on R are studied and their houndary value representation
ls glven. A generalization of the Painlevé theorem is proved.

1. Introduction and statement of the main results. The well-
known Phragmén-Lindelof theorem consists of two parts. The first one ([H]),
called the maximum principle, says that a function holomorphic and of expo-
nential type on a sector S of opening less than 7 is bounded if it is bounded
on the boundary of §. The second one ([T]), called the quasi-analyticity
principle, says that a holomorphic function F on a sector S vanishes if the
opening of § is greater than v and F is exponentially decreasing in 9.

In the present paper we study the quasi-analyticity principle in the crit-
ical case of a half plane IT. To ensure vanishing of F in that case we assume
that F is of exponential type in IT and decreases exponentially along the
boundary of IT. More precisely, we have

THEOREM 1 {Quasi-analyticity principle, continuous version). Let F &
O({Rez > 0}) N C°({Rez > 0}) be of exponential type, i.c.

(1) |F(2)| < Ce®®l  for Rez > 0 with some C < co and ¢ < co.
I
(2) | F(ir)| < Ce™  forr >0
with some ¢ € R such that ¢t + ¢~ < 0 then F = 0.
The elementary proof of Theorem 1 is based on the Laplace integral

representation of holomorphic functions of exponential type.
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