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A Phragmén-Lindelsf type quasi-analyticity principle
by

GRZEGORZ LYSIK (Warszawa)

Abstract. Quasi-analyticity theorems of Phragmén—Lindelsf type for holomorphic
functions of exponential type on a half plane are stated and proved. Spaces of Laplace
distributions (ultradistributions) on R are studied and their houndary value representation
ls glven. A generalization of the Painlevé theorem is proved.

1. Introduction and statement of the main results. The well-
known Phragmén-Lindelof theorem consists of two parts. The first one ([H]),
called the maximum principle, says that a function holomorphic and of expo-
nential type on a sector S of opening less than 7 is bounded if it is bounded
on the boundary of §. The second one ([T]), called the quasi-analyticity
principle, says that a holomorphic function F on a sector S vanishes if the
opening of § is greater than v and F is exponentially decreasing in 9.

In the present paper we study the quasi-analyticity principle in the crit-
ical case of a half plane IT. To ensure vanishing of F in that case we assume
that F is of exponential type in IT and decreases exponentially along the
boundary of IT. More precisely, we have

THEOREM 1 {Quasi-analyticity principle, continuous version). Let F &
O({Rez > 0}) N C°({Rez > 0}) be of exponential type, i.c.

(1) |F(2)| < Ce®®l  for Rez > 0 with some C < co and ¢ < co.
I
(2) | F(ir)| < Ce™  forr >0
with some ¢ € R such that ¢t + ¢~ < 0 then F = 0.
The elementary proof of Theorem 1 is based on the Laplace integral

representation of holomorphic functions of exponential type.
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218 G. Lysik

Next we give the distributional version of Theorem 1. In that case it is
more convenient to assume that F is holomorphic in the upper hall plane
{Imz > 0} and of exponential type. The condition (2) is replaced by the
assumption. that the boundary value b(F) of F'is a Laplace distribution on
R {see Section 3). More precisely, we have

THEOREM 2 (Quasi-analyticity principle, distributional version). Let F ¢
O({Imz > 0}) be of exponential type in {Imz > e} for alle > 0. If b(F) €
L;, (R) with some v < w then F = (.

{1ryw)

In fact, Theorem 2 is a consequence of Theorem 1 and

THEOREM 3. Let H € O({0 < Imz < R}) with some R > 0. If H has a
boundary value b(H) € Ly, (R) with some v,w € R then for ecvery a > v
and b < w there ezist 0 < R’ < R and k € N such that

Ce 2Rz /(Tmz)%  for Rez <0, 0 <Imz < R/,
< me— —
() [HE < {Ce‘bR‘”’/(Imz)Jc for Rez >0, 0 <Imz < R'.

In the proof of Theorem 3 we follow an idea presented by Z. Szmydt and
B. Ziemian in [SZ].

In Section 4 we give the ultradistributional versions of Theorems 2 and 3;
namely

THEOREM 4 (Quasianalyticity principle, ultradistributional version). Let
(Mp) be a sequence of positive numbers salisfying the conditions (M.1) and
(M.3") (see Section 4). Let F € O({Imz > 0}) be of exponential type in

{lmz > e} for all s > 0. Ifb(F) € Li2) (R) with some v < w then F = 0.

THEOREM 5. Let (M) be a sequence of positive numbers satisfying the
conditions (M.1), (M.2) and (M.3) (see Section 4). Let H € ({0 < Imz
< R}) with some R > 0. If H has a boundary value b(H) € L%Sﬁ;’ (R) with
some v € RU{—oc} andw € RU{oo} then for everya > v and b < w there
exist 0 < R' < R and I < oo such that

Cexp{—-aRez+ M*(L/Imz)}
for Rez <0, 0<Imz < R,

@) H) < Cexp{—bRez + M*(L/jlmz)}
Jor Rez >0, 0<Imz < R,

In the above M* is the growth function of the sequence (M) defined by

_ I
M*(g) = sup In M?Mp.gp for o > 0.

pENg D
One can try to prove Theorem 5 by the method used in the proof of
Theorem 3, replacing smooth functions by ultradifferentiable ones. In this
way we get a slightly worse estimate than (4) (see Theorem 8), but still good
enough to deduce Theorem 4 and only under the assumptions (M.1) and
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(M.3") on the sequence (M,). To get the precise estimate (4) we represent
the space of Laplace ultradistributions on R as a suitable quotient space of
holomorphic functions on a tubular neighbourhood of R with some growth
restrictions (see Theorem 9).

Theorems 1, 2 and 4 allow us to prove, in the final section, some gener-
alizations of the Painlevé theorem.

2. Proof of the continuous version. Let F € O({Rez > 0}) N
CP({Rez > 0}) satisfy (1) and (2). Let
o
W(¢) = | F(z)e™* dw, Rel < —e,
0
be the Laplace transform of Fig . By the uniqueness theorem for the Laplace

transformation ([W], Theorem 6.8) it is sufficient to show that ¥y = 0. To
this end define for || < 7/2,

T(¢) = | Fle)e*$dz  for ¢ € O,

by

where l, = {2 € C: 2 =re", 0 <7 < oo} and {2, is the set of all ¢ € C
such that
c+Refcosp —Im¢sing <0 if [p| < #/2,

{ﬂmoci if @ = dw/2.
Then ¥, € O(f2,;} and since ¥, (¢) = P,,(¢) for ¢ € 2,, N 2y,, where
1,92 € [—7/2,7/2] with |1 — 2] < 7, it follows that ¥ extends holo-
morphically to a function ¥ € O(f2), where 2 = ), <,./5 2 Now the
assumption ¢ + ¢~ < 0 implies that 2 = C and to end the proof it is
sufficient to note that for all € > 0, ¥ is bounded on {£Im ¢ > ¢* 4} and
F(in) — 0 as n — oo.

3. Laplace distributions on R. Let v € RU {—o0c} and w € RU {oo}.
The space L] y(R) of Laploce disiributions on R is defined ([Z]) as the dual
gpace of

M

L) (R) = lim Lo p(R)

a>w, b<w
where for any a,b € R,
Lop(R) = lim Labm(R)
mENy
with
Lo m(m) = {‘P € Cm(’R) : ”‘P]ia,b,m = sup sup [Da(P(m)ma,b(a:) < OO}
! a<mzcR :
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and

_Je™™® forz <0,
() Kap(@) = {e"b‘" for z > 0.

The spaces Lf, o) (R-) and Li, (R.) of Laplace distributions on R_
and R are defined in an analogous way replacing Lq » m(R) respectively by

Lopm(®-)={pe C™R-): sup sup [D%(z)]e > < oo}
i

AL pel

and )
Lopm(Re) = {p € C™(R,) : sup sup [Dp(z)le™™ < oo}.

a<m e,
We have the topological inclusions
woy(Be) = LY, (R} for any w € RU {oo},
’(mgwj(ﬁRﬁ) —s Lgy,w)(R) for any v € RU {~0c0}.
Since C5°(R) is dense in Ly, ,)(R) we also have the topological inclusion

)R = D'(R). The following theorem characterizes the image of
(R) under the above inclusion.

(vye)
f

(vow)
THEOREM 6 (Structure theorem). In order that a distribution S € I (R)
belong to Lzy,w)(R) it is necessary and sufficient that for anya > v and b < w
there are. differential operators P,(D) and Py(D) and functions S,,S, €
COR) such that supp 8, R-, |Su(x)| < Ce—a= Jor z <0, supp Sy

Ry, |Sy(z)| < Ce™ for z > 0 and
S == PQ(D)SQ -+ Pb(D)Sb in LEa,b) (R)
The proof of Theorem 6 follows easily from the structure theorem for
the Laplace distributions on B and R, (cf. [E1], Theorem 2), and

Lemma 1. Let § € Ly, ) (R). Then one can find §~ € L0 (R-) and

St e LE@,w)(E) such that § = 8~ + 8% in L) (). The decomposition

is unique modulo a distribution with support at(;g;'zy.

Proof. Take a cut-off function y € D(R) equal to one in a neighbour-
hood of zero. Then x5 ¢ E' (R) and so one can find a differential operator
J(D) and a function g € CO(R) such that xS = J(D)g. Put gt =g-H, H
the Heaviside function, g~ = g— g+ and §+ = J(D)gt+(1~x)H -8, §~ ==
J(D)g™ + (L~ x)HY - §, HY(z) = H(—z). Then 8+ and S~ satisfy the

conclusion of Lemma 1.
Let §, 0 € R. Define
(6) chso(2) = 1(e™% + e7%) for z e C.
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Note that the function chs e does not vanish on a tubular neighbourhood
of R-If 6 + o > 0 then multiplication by chs, gives an isomorphism of
Lo p(R) onto Lg_spi,(R) and consequently an isomorphism of I, .)(R)
onto Ly —5u40)(R), and of L’(V‘w)(l&) onto L'&V +5’wﬁg)(R) with the inverse

being multiplication by 1/chy .
The next two lemmas will be useful in the proof of Theorem 3.

LEMMA 2. Let ¢ € C3°(R) with suppp  [~1,1] and let a,b € R and
LeNo. Then foranyZ e R and 0 < r < 1,

e 53 Ca,b
v r

= 1 ﬂﬂ,b(:‘%)“@”a,b,l
where Cqp = ma,x(elalje!b|’e|a~b|).

a,bl r

Proof Assume that £ < —1. Since suppy C [~1,1] we derive

(<)
@
r a,b,i
1 A
= sup — sup D“‘cp(’s ) g%
asl T ccR_ r
< gmup s [D(s — BB

T aglip-g|<1

_ i ma.x(sup sup ‘DC‘QD(:U _ :,:c)|e—a(rn—m)+a(1~1*)(m—m}—a.m,

rt agl _1<z-8<0
o - — b— b &
sup sup |D%p(z — &)|etE—2it{b-ar)e—2) af)
all g<a—8<1
< max(1,e”% e’ e
£ "
The other cases —1 < 2<0,0< %<1 and & > 1 can be treated in the
gaIne way.

Ko (&)@l ap-

LeMMA 3. Let ¢ € C§°(C) be a radial function such thet supp ¢ C {z €
C: |z| < 1} and §o(z,y)dzdy = (2m)~*. Then for any F € O({z € C:
2l < 1}),

Jo(z + i) F(= + iy) dz dy = F(0).

DermNrTion. Let H € O({0 < Imz < R}) with scme R > 0 and let
v € RU{—0o} and w € RU {oc}. Assume that for any @ > v and b < w
I /
there exists R > 0 such that H, € L} ,(R) for 0 <y < R, where
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H, ] = SH(ZL‘ +iy)p(z)dz  for ¢ € Ly p(R).
R

If for every @ € L) (R) the limit lim,,_,q H,[p] =: u[p] exists then, by the
Banach—Steinhaus theorem, u € L, ,(R) and we say that H has boundary
value v = b(H) in LEV w)( ).

Proof of Theorem 3. Suppose H € O({0 < Imz < R}) has
a boundary value u = b(H) € Lj, ,(R). Fix o > v and b < w. By
definition Hy € Lg ,(R) for 0 < y < R’ with some R” > 0 and the limit

limy .o Hy = u € L, ,(R) exists. So one can find & < o0 and [ € Ng such
that

) Hylell, lulell < Cllglloss  for ¢ € Logu(R) and 0 <y < R”.

Take 0 < R’ < min(1, R") and 0 < ¢ < min(1,R"/R' —1). Fix & € R and
5 € (0,R] and set 2= & + 4. Then H ¢ OR+i{y: |y — §| < cif}). Let
Y € O ({z : |z~ 2| < cf}) and define p(z) =+(z+2) and g(2) = H(z+3).
Note that u € C§°({|z| < ¢fi}), g € OR+i{ly| < cij}) and H(Z) = g(0). So
if we take v with f[1h]|a,p; < 1/C then by (7),

®)  |Joe+iv)ul)do| = | [He+ &+ i(y+ )b (o + 5) da

- =|{H @+ iy + )W) da| = (B, gl <1
for y with [y| < eg.

Define g s(x + iy) = g(cfz +icgy). Then 9.5 € OR+i{ly] < 1}) and by
Lemma 3 we get

©) H(2) = 0,9(0) = ol + i) g(cfa + icgy) dody
1

(cy)25 (E “cy) (€ + in) dé dn,

where g is given in Lemuma 3. Now fix n such that |n| < eff. We shall apply
(8) to the function ¢ — o(£,7), where

v _ (eg) £—Z
(g,ﬁ)—Mlaoa,bg( p +z@)n_a,-a(m)

with M; = SUPJy <1 flo(- + tw)[laps and Cup given in Lermnma 2. Then

lo(-ymlaps < 1/C. So by (9) and (8) with (&, n) = o(& + &, 1) in place of
4 we derive
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()l"“——

(ci)?

Mo, . _
< g mes(®)] [dn{ae + (e, v de]

SS@(%+i£§>g(£+in)d£dn‘

MCCap

Ka b(w)

| dn| < gleb\d)
|l <ed
with k = 1+ 1.

Proof of Theorem 2. Let F € O({Imz > 0}) be of exponential
type in {Imz > 0} and have a boundary value b(F) € L, .)(R) with some
v <w. Fix v < a<b<w By Theorem 3 we can find R > 0 and & € N such
that

Ce™@Rez/(Imz)* ifRez <0, 0<Imz <R,
|F(2)] < Ce®Re2/(Imz)* ifRez>0, 0 <Imz <R,

Ceeal?! ' if Imz > R.
Thus, the function H{z) = F(i(z + R)), Rez > 0, satisfies the assumptions
of Theorem 1 with ¢* = ¢ and ¢~ = —b. Since ¢t +¢~ = a -~ b < 0 we get

H =0 and consequently F = 0.

4. Laplace ultradistributions on R. Let (M,),en, be a sequence of
positive numbers. We consider the conditions

(M.1)  M? < Mp_1Mpyy for p € N;
(M2 M, < H M, for p ¢ N with some H < oo
(M.2) M, < HPM;M,_, forpe N, 0 < ¢ <1 with some H < o0;
oo
oy 3 J‘jzl < o0;
pe=l
My M, .
M.3 L L. for g € N with some A < cc.
( ) Z .ﬂ/fp Mq+1

pe=g
We refer to [K] or [M] for the significance of these conditions. We always
agsume (M.1), (M.3") and Mo = L.
Let v € RU {~oo} and w € RU {oo}. The space Lgfgg'(ﬂ{) of Laplace
ultradistributions on B is defined as the dual space of
LEg @) = lm L3R

{me)
a>v, b<w
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where for any a,b € R,

LOI(R) = Jim L (R)
h>0

with

(M) o (My) Dp(@)|a,5(x) }
L5E(R) = eC ”—susu——oo
G®) = {o € 02 - o) —sup sup AL
and &k, given by (5).
Multiplication by the function chg , with §+o > 0 gives an isomorphi%m
of L(M*’ ) (R) onto Lfffg,)b +o(R) and consequently an isomorphism of L M‘“ oy ()

onto LEV T w-f—a')(R)’ and of L(iwjgl(]R) onto Lgﬂﬁ’ﬁ,ww)(R) with Lhe inverse

being multiplication by 1/chs .
As in the case of Laplace distributions we can also define the spaces

Eﬂdg)’(R ) and L M”)’(RQ of Laplace ultradistributions on R_ and R,.
We have the topologmal inclusions
Lgﬂ,)’( Ef,‘"; (R) for any w & RU {oo},
.'

(ﬂ 2 (R., ) = L(V ) (R) for any v € RU {~o0}.

Since DM»)(R) is dense in L( ")(R) the space L(uw "(R) is imbedded into
DMp)(R) and we have a counterpart of Theorem 6.

THEOREM 7 (Structure theorem). Assume (M.1), (M.2) and (M.3). In

order that an wltradistribution S € DWV(R) belong to Lgng( R) it is
necessary and sufficient that for any ¢ > v and b < w there are ulira-
differential operators Jo(D) and Jy(D) of class (M,) (cf. [K]) and func-
tions Sz, Sy € CO(}R) such that supp S, C R_,|S,(z)| < Ce™® for z < 0,

supp Sy C Ry, [Su(z)| < Ce ™= for z > 0 and
§ = Ju(D)Sa+ Jp(D)Sy in LiE)(R).

The proof of Theorem 7 is based on the structure theorem for Laplace

ultradistributions on R.. and Ry (cf. [£.2], Theorem 4), and on the following
analogue of Lemma 1.

LemMa 4. Assume (M.1), (M.2) ond (M.3). Let S € L) (R). Then one

(vyw)
cazL find 5~ € LR (R.) and §* € L= Ry ) such that § = = + S in
! . . .
Eu :g (R). The decomposttion is unique modulo an ultradistribution of cluss

(Mp) with support at zero.
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Proof. We follow the proof of Lemma 1, this time taking x € D(M»)(R),

an ultradifferential operator J(D) of class ( M,,) and a function g € C°(R)
such that xS = J(D)g.

DeriNITION. Let H € O({0 < Imz < R}) with some R > 0 and let
v € RU{-co} and w € R U {oo}. Assume that for any a > v and b < w

there exists ' > 0 such that H, € L(M”)'(R) for 0 < y < R'. If for every
pE LET’S) (R) the limit lim,_,q Hy[p] =: u[] exists then, by the Banach~

Steinhaus theorem, u ¢ LEf{z;'(R} and we say that H has boundery value
u=b(H) in Li}=)'(R).

One would like to prove Theorem 5 by the method used in the proof
of Theorem 3. To this end we should state analogues of Lemmas 2 and 3.
Since there is no problem with Lemma 3 (we only have to replace a smooth
function g by that of class DM=)({z € T : |2| < 1})), we shall concentrate
on Lemma 2.

So take ¢ € DM} (R) with suppyp € [~1,1] and ix 2 e R, 0 < r <1
and a,b € R. Following the proof of Lemma 2 we easily arrive at the estimate

o P

£ || (M)
) < Capriap(®)e1 5,
.y
where r,, ,, is given by (5). Now, in general, we cannot estimate Hlpﬂg‘ff,)h by

bk

O’||go\|a b Ch with some ¢ > 0 independent of 0 < r < 1.
But we have

LeMmMaA 5. Let (M) satisfy (M.1) and (M.3'). Then there exists o se-
quence {Qp) satisfying (M.1) and (M.3') such that (Qp) < (M) (i.e. for any
h > 0 there exists C < 0o such that Qp < Ch?M, for p € Ny). Moreover,
given such sequences (Myp) and (Qp) one can find a sequence (Np) = (p!)
such that

(11) N,Qp £ p\M,  for pe Np.

Purthermore, for ¢ € D@2)(R) with suppp C [-1,1] and for £ € R, a,b €
R, h>0and 0<r <1 we have

o B

Note that the condition (p!) < (Np) is equivalent to the finiteness of the
growth function N* for (Np).

Q * 1 2y
< Cupmaat® eso 1 (1) 11T

b,h
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Proof. The existence of a sequence (@) satisfying (M.1), (M.3') and
{(@Qp) < (Mp) is well known (cf. [R], pp. 66-67). Now if we put
p! My,
Wp

then (p!) < (Np) and (11) holds. Thus, we only have to prove (12), and this
follows by (10) and (11), since

M * ]' »
Il 2 < e v (2 1152

Now following the proof of Theorem 3 with Lemma 5 in place of Lemma 2
we obtain

THEOREM 8. Let (M) satisfy (M.1) and (M.3'). Let H € O({0 < Imz
< R}) with some R > 0 and assume that H has a boundary value b H)
€ LES’B’(R) with some v € RU{—oc} and w € RU {co}. Then there exists

o sequence (Np) such that (Mp) = (N,) = (p!) and for every a > v and
b<wone can find 0 < R < R and L < co such that

(13} |H(z)|
< | Cexp{~aRez+ N*(L/Tmz)} forRez <0, 0<Imz < R,
~ | Cexp{-bRez+ N*(L/Imz)} forRez>0, 0<Imz < R

Proof of Theorem 4. We follow the proof of Theorem 2, this time
using (13) instead of (3).

Ny =

for pe Ng

5. Boundary value representation. Throughout this section W de-
notes a tubular neighbourhood of R, i.e. a set of the type B + iU/, where U
is a bounded neighbourhood of zero in R

Let a,b € R and h > 0. We define the spaces
M
SIEWAR) = {F e O(W\R) ;

qa’f),hﬁ,(F) = sup |F(z)k-q s(Rez) exp{—M"(h/{Imz|)}| < oo
zeW\R o
for any closed tubular subset W ¢ W},

Lo (W \R) = lim S (W \ )

h>0
Lap(W) = {G e O(W): 9, 5.7 (G) = sup |G(z2)k_p —s(Rez)| < oo
zeW

for any closed tubular subset W ¢ W}
It follows by the 3-line theorem that La,6(W) is a closed subspace of
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Rg{\g”)(W \R). Thus, we can define the quotient space

H3 (W, R) = 800 (W \ R/ 80 5 (W),
Now, let ¥ € RU{~oo} and w € R U {oo}. We define
Mp . -
SHWAR = Im 200w\ ®),

a>ub<w
L) (W) = lm  £,,(W)
a>vb<w
and
M, . M,
H((v,w)) (W’ R) == (lll.n_ Hc{a,bp)(W? R)
a>blw
By the Mittag—Leffler lemma {cf. [K]) we also have
HETIW,R) = 00 W\ R)/L0) (W).

Mp)

v,w)

In Theorem 9 we shall prove that the space H (( {(W,R) is isomorphic to

Lgf‘rj§’(R) and consequently, it does not depend on the choice of a tubular

neighbourhood W of R. In the proof we shall use, as a Cauchy kernel, the

function
_ exp{—(( - 2)"}
A(C: Z) - C —z 4
LEMMA 6. Assume (M.1), (M.2) and (M.3"). Piz ( € C\R. Then for any
a,b € R the function R 2 z — A((,z) belongs to LE::‘;I”)(R). In particular,
for any h > 0 one can find C = C(a,b,h) < o¢ and L = L(h) < co such
that
A (My) Chop(Re () exp{M*(L/|Im{|)} for0<|Im¢| <1,
MG Mash =\ Ogp(Re ) exp{(me |+ 1E} for [Img] 2 1.

Proof. Applying the Leibniz formula we get (by (M.1))

Ka,b{) ]DQ(M) |

(M) =
. = SUp su
I!A(gs )”a,,b,h 56153 mEﬁ h,DtMa

< sup sup Kqp(x)

aEMy pER .
29-B|D~B(exp{—(¢ —2)?})| 2°|D% ()]
x> he~BM, g hEMg -
B<e

By (M.2') the second factor under the sum sign can be estimated by
Cexp{M*(L/|Im(|)} with some L < oco. To estimate the first factor de-

fine
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Fe(z) =exp{—((~2)’} forzeC, (el
Using the formula

' 2n
D7F(z) = S Felz+e¥)e ™ dp forzeR yeN

we easily obtain
|DTF()] < erlexp{(lnl + 1% — (|6 — <l 12} where ¢ = & +in.
Now, by calculations in the spirit of thoese in the proof of Lemma 2 we get
sup b (2)| DV Fe (2)] £ Copy! o p(Re ¢) exp{ (T ¢ + 1)%}

with some ;3 < co. Finally,

N i Clud. LN

since {p!) < by (M.1) and (M.3")), and this ends the proof.
( Y

PROPOSITION 1. Assume (M.1), (M.2) and (M.3"). Let S € Lgfjg’(m)
and put

(14 CaS(Q) = 5SIAQ)] for CeC\R
Then CaS € O(C\R) and for any a > v and b < w one cen find C =
C(a,b) < co and L = L{a,b) < oo such that

Crap(Re() exp{M*(L/|Im{|}} for0 < |Im{| <1,
19 eSOl { G e ol 1) o Jomd] o

Thus, CaS € £ (C\R).

We call the map
L35 ®) 5 5 Ca8 € L) (C\R)

(v,w)
the A-Cauchy transformation.
Proof. Since the holomorphy of C45 follows from the continuity of S
by standard arguments we only need to prove (15). To this end fix a > v

and b < w. Then by the continuity of S one can find €' < co and h > 0 such
that

SIS Cllglln  for o€ O (R).
So (15) is & consequence of Lemma, 6.

PROPOSITION 2. Assume (M.1), (M.2) and (M.3). Let H € O({0 <
Imz < R}) be such that for every e > v and b < w one can find L < 0o

A Phragmén-Lindelsf iype principle 229
such that
|H(z)| < Ckop(Rez) exp{M*(L/[Imz))} for0<Imz< R
Then H has the boundary value b(H) € LM )I(]R)

(v,w)

Proof Fixa>vandb<w.Choosea>a' > v, b<b <wand§occR
such that ' +6 > 0, ~o <0and 640 > 0 (if v > 0 and w < 0 we can
take § = o = 0). Consider the function

H;s o(2) = chso(2) - H(z) for 0 <Imz < R.
Then we can find R’ > 0 and L < oo such that
|Hs.0(2)| € Ckorpop-o(Rez) exp{M*(L/|Imz|)} for 0<Imz< R
Now for z € C with 0 <Imz < R" := R'/2 put
I?[gia(z) = zs G(i(z — w)}Hs o (w) dw,
7

where v is a closed curve starting from 2 = %R’ -4, encircling z once in the
positive direction and such that {argi(z — 2)| < 7/2 for 2 € v; G is the

Green kernel for
PO =0+ I (14 )
p=1 Mip

(mp = Mp/Mp_1 for p € N) defined for Rez < 0 by
L T e

and holomorphically continued to the Riemann domain {~w/2 < argz <
57/2}. Then by Lemma 11.4 of [K] and the observation made in the proof
of Proposition 2 of [£.2] we have

P(D)Hs,(2) = Hsp(z) for0<Imz< R",
Hip e O({0 <Imz < RPN NC°({0 <Imz < R'})
and
|H5,0(2)] < Cubiargsbep—o—c(Rez) for 0<Imz < R with any £ > 0.

Thus, choosing £ > 0 small enough, we find that

Hs ol +iy) € Liggly (R for0<y <R
and the limit _

31_% Hy o +iy) = hso € Lgi\fi’i’b-—a)(R)



icm

230 G. Lysik

exists. Now observe that for ¢ & Léfg’))(]R) and y > 0 small enough,

()

H(+ i)y = | Hoo(e + Y hen o+ 1)

R

_ o p(=)
= HiP(D)st,c(m + W)m i

77 had
= Hs, | P"(D)——1.
S, l: ( )Chﬁ,cr(' -+ M])J
Thus H(- +1dy) € Léfg))'(]l@) and if we put

1
Ch§ o

H

h= ———P(D)hs. € LT (R)

{a
then

lim H (- +iy)l¢] = hso | P*(D)=2— | = Rlg] for p € LMP(R).
y-—0 Chﬁ,a (a's )

Since o > v and b < w were arbitrary this ends the proof.

In the proof of Theorem 9 we shall use the lemma stated below. To
formulate it let us define for ¥ € RU {—c0} and w € R U {oo},

Livw)(R) = lim lim Lo (W),
WOR a>w, b<w

where for any a,b € R and any tubular neighbourhood W of R,

Lap(W) = {F € O(W)NCUW) : papw(F):= sup |F(2)k,p(Rez)| < oo}
zeW

LEmMA 7. Assume (M.1), (M.2') and (M.3'). The space Ly (R) s
contained in Lgﬁ‘j%(ﬂ@.) Therefore it is o dense subset of L§MPJ(R).

vy01)

Proof. Since functions from L. (R) are holomorphic on a tubular
neighbourhood of R the first assertion is clear. To prove the second one
observe that it is sufficient to show that for all a,b e R and h > 0, cach
function » € Lg\f") (R) can be approximated by elements of Lo (W) with
some W D R in the topology of Li{‘;ﬁ’}f(l@). So fix a,b € R, A > 0 and
P& L-g‘:‘f”)(R). Since the spaces Li{f” )(}R) (resp. Las(W) with W narrow

enough} and Lg‘g”)(R) (resp. Lo,o{W)) are isomorphic with the isomorphism
being multiplication by ch, _p if @ > b and by 1/ch oy if @ < b (see (6))
we can assume o = b= 0. Put

b

Fi{z) = LW Vexp{~32(z — )%}p(t)dt forzeC, je N
R
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If W is contained in R + i[— R, R} with some R < oo and ¢ is bounded by

C' then poow(F;} < Cexp{j2R?} for j € N. Next observe that for & € R
and o € N,

™

D*(Fy(z) - p(z)) = JT Jexp{—72r2}D% (ol + 1) — (r)) dr.
®

Thus, since by (M.2'),
sup D% p(z)| < Ch(HR)* M, for a € Ny
2¢cR

with some Cp < oo and H < oo, we obtain

C
15 = ¢lloon < ‘JT”‘PHO,O,h/H
proving the lemina.

Let h € Hi») (W, ). Then h = [H] with some H € S (W A\ R).
By Proposition 2, H admits boundary values from above b+ {H) and from
below b7 (H). Since if G € £,y (W) then b7 (G) = b~ (@), the difference
b*(H) - b"(H) does not depend on the choice of a defining function H for
h. Thus, the boundary value map

b: H{ (W, R) — L% (1),

b(h) :=b¥(H) —b~(H), where h=[H]mod L, (W),
is well defined.

THEOREM 9, Assume (M.1), (M.2) and (M.3). Let W be a tubular neigh-
bourhood of R and v e RU {—o0}, w € RU {c0}. Then the mapping
C: LYY (R) - HYB(WR), L™ (R) 3 8 - [CaS] mod £y, (W),

v,w) ) (2w)
with CaS given by (14) is a lopological isomorphism with inverse C~1 = b,
where b is the boundary value map.
Proof. Let S € LE™)'(R) and let C.§ = h € Hy (R). Then by defi-

(s Yy

nition h = [H] with H{(} = 55 S[A({,)] for { € C\ R Put S = b(k) a}'ld
observe that to prove the equality § = §, by Lemma 7, it is sufficient to
show that Sp] = Sy] for ¢ € Ly, ) (R). To this end fix ¢ € Ly, .y (R) and

let @ > v, b <w and W D R be such that ¢ € Lq(W). Note that
lim | H( % ie)(p(¢ £ ie) — p(€)) dE = 0
R

and that the integral {; H (& £ie)yp(£Ltic) df does not depend on £ for £ > 0
small enough. Thus, choosing & > 0 small enough we derive
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Sle] = 5T (H)[] — b (H) o]
= VH(E+i8)p(t +i8) de — [ H(& — i8)p(£ — i&) de

R R
= 2“_1 § S1A(e + 8, o€ + i8) dé + % [ s1a(e —i2, V(e - gy de
e k i )
- _2‘_;;1%5[5/1(5 + 8, (€ + i8) dé — | A(E — i, Yp(€ — i) dE] — Sy,
R R

since for ¢ € Ly 3(W), € > 0 small enough and z € R,

s |AE+ 2 D00(c )8 5 LA~ 8, 2)ol6 ~i2) = o)

To prove the second part of the theorem take h = [H] € H ((3/{;)) (W,R),

where H € L{7NW \R). Put § = b(H) € L{7)'(R) and let F' = (45 &

£{)(C\ R). We have to show that G := H — F & £ (W \ R) extends
holomorphically to a function G & Levwy(W). To this end fix a > v, b < w
and a closed tubular subset W of W. By the proof of the first part of the
theorem, for € > 0 small enough and ¢ € L, ,(W), we have
Slel = VH(E + i)o(¢ +18) d — [ H(E - i&)p(e — 8) de

R R

Sldl = 5 Bi SIAE + 2, Yo(é +i8) d —  SLACE — 32, (€ — ) dt.

and

So for @ € Ln(W),

(16) §Gle +ig)p(e + &) de — [ Gle —i8)p(t — i8) dé = 0.
R R
Now, for R > £ close to & put

() = % Hg G{E +iR)A(€ + iR, ) dé + 5% {é Gl& ~ iR)A(£ — iR, ) dé

for z € C with |Im z| < R.
Then ¥ € O({{Imz| < R}) N £q5({|Tm 2| < &}) and by (16), ¥(z) = G(z)
for & < [Im 2| < R. Thus, if we define
&= G(z) for z € W\R,
T ¥(2) for Imz| < R,

then G € O(W) N Ea,b(ﬁ). Since @ > v, b < w and W C W were arbitrary
this ends the proof.
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Proof of Theorem 5. Suppose H ¢ O({0 < Im =z < R}) with some
R > 0 has a boundary value % := b(H) e Lgﬁ%’(ﬂ%} Then by Theorem 8,
H satisfies (13). Next as in the proof of the second part of Theorem 9 we
show that the difference H —Cau belongs to L) (W), where W = {—R' <
Imz < R'} with some 0 < R’ < R and H is extended by zero to {Imz < 0}.

Since C u € EEfg?(W \R) this ends the proof.

6. Final remarks. Let U be a complex neighbourhood of R and set
U= = UnN{+Imz > 0}. Then the well known Painlevé theorem states that
if #* € O(U*) and b* (F*) = b~(F~) (in CO(W) or D'(W) or DMe) (W)
then there exists an F' € @(U) such that F¥ = Fiy+. The results of The-
orems 1, 2 and 4 allow us to formulate some generalization of the Painlevé
theorem. Namely, if we assume that F* € O({%Imz > 0}) is of exponen-
tial type and the difference of the boundary values b* (F+)—b~(F~)isin a
sense small then F'~ determines F* and conversely. More precisely, we have

CoroLLARY 1. Let F* € O({£Imz > 0}) N CO({*Imz > 0}) be of
exponential type. If

(17) [FH{z) — F™ ()| < Ckaplz) forzeR
with some o < b then F'~ determines Ft and conversely.

Proof. Fix F~ € O({lmz < 0}) N C°({Im z < 0}) and let F+, F+ e
O{Imz > 0}) N C%{Im=z > 0}) be of exponential type and satisfy (17).
Then F* — Ft ¢ O({Imz > 0}) N C°({Imz > 0}) is of exponential type
and

|FH(z) — FH(z)] < Croplz) forzeR
Thus, by Theorem 1, F* = F+. Note that until now we have not used the

fact that F~ is of exponential type. The proof that £ determines F'~ is
the same.

Remark. Under the assumption of Corollary 1 there need not exist an
F & O(C) such that F* = FY+1me>0}. The counter-example is given by
the pair of functions {F*+, F~}, where '

sy fzlnz for z #0, £Imz > 0,
F (z)”{o for z = 0.

COROLLARY 2. Let (Mp) satisfy (M.l) and (M.3'). Let F* ¢
O({Imz > 0}) be of ezxponential type in {£Imz > e}) for alle > 0. As-
sume that F~ has a boundary value ut in Li 4 (R) (resp. Lgﬂl‘é‘zi)(R})
with some v* € RU{—o00} and w* € RU{oo}. Ifut—u~ € L, (R) (resp.

Lgyg%’(ﬂ&)) with some v < w then F~ determines Ft and conversely.



234 G. Lysik

Proof. The proof goes along the same lines as the one of Corollary 1,
with Theorem 2 (resp. Theorem 4) in place of Theorem 1.

Analogously we get

COROLLARY 3. Let (M,) satisfy (M.1) end (M.3'), and let 4 & L’(&ﬁ)(ﬂ@)

(resp. LEMP; (R)) with some & € RU {~oo} and w € RU{oo}. Then there
exists at most one F* € O({Imz > 0}) of emponentiai type in {£Imz > £})

for all € > 0 such that b(F*) € L'(,fx,wm)(R) (resp. L fﬁ”wﬁ)(]&)) with some
vt € RU {~o0} and w* € RU {oo}, and b(F=) — i € Li, ,(R) (resp.
L(M” (R)) with some v < w. Furthermore, if § < & then F= = 0,

(v)
We remark that in the case # > &, in general, the problem of existence
of such an F* remains open.
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Compact homomorphisms between algebras of analytic functions
by

RICHARD ARON (Kent, Ohio), PABLO GALINDO (Valencia),
and MIKAEL LINDSTROM (Abo)

Abstract. We prove that every weakly compact raultiplicative linear continuous map
frax H* (D) into H® (D) is compact. We also give an example which shows that this is
not generally true for uniform algebras. Finally, we characterize the spectra of compact
composition operators acting on the uniform algebra H°(Bg), where By is the open unit
ball of an infinite-dimensional Banach space E.

Let E denote a complex Banach space with open unit ball Bz and let
¢ : Bgp — Bg be an analytic map. We will consider the composition oper-
ator Cy defined by Cy4(f) = f o ¢, acting on the uniform algebra H*(Bg)
of all bounded analytic functions on Bg. This operator may alse be re-
garded as acting on the smaller uniform algebra A,(Bg) of all analytic
functions on By which are uniformly continuous, in which case we assume
that fo¢ € Ay (Bg) whenever f isin A,(Bg). These algebras, which are nat-
ural generalizations of the classical algebras H*°(D) and A(D) of analytic
funections on the complex open disc D, have been studied in [ACG].

Several results automatically vielding compactness of composition oper-
ators from weak compactness have appeared recently. For instance, D. Sara-
son in [Sa] proved that every weakly compact composition operator on
HY(D) is compact, and K. Madigan and A. Matheson [MM] obtained the
analogue {or the little Bloch space By. In the first section we study com-
pactness of Cy and prove that every weakly compact homomorphism from
H™ (D) into H*(D) is automatically compact. This result has also inde-
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