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The splitting spectrum differs from the Taylor spectrum
by

V. MULLER (Praha)

Albstract. We construct a pair of commuting Banach space operators for which the
gplitting spectrum is different from the Taylor spectrum.

Let A;,..., A, be mutually commuting operators in a Banach space X.
The Koszul complex of the n-tuple (Ay, ..., Ay) is the complex

0 ba i &1 -1 n
0 — A%X,e) — A X, e) — ... — A" (X,e) — 0

where AP(X,e) denotes the vector space of all forms of degree p in inde-
terminates ey, ...,e, With coefficients in X and the linear mappings &, :
AP(X, ) — APTY(X, e) are defined by

n
5p(m6i1 /\.../\ﬁ-ip) = ZAjmej Nepg Ao he,.
J=1

It is well known that 8,118, == 0 for every p. The Taylor spectrum
or(A4y,...,A,) is the set of all n-tuples (A1,...An) of complex numbers
for which the Koszul complex of (A1 — A1,..., An — Ay) is not exact 5]

Instead of the Taylor spectrum. it is sometimes useful to use the follovx.r—
ing variation (see e.g. [1], [3], [4]). We say that the n-tuple (41,...,4n) is
splitting-regular if its Koszul complex is exact and the ranges of the opera-
tors 6, are complemented in APTH( X €). Equivalently, there exist oper‘ators
gy APTY(X, e) — AP(X,e) (p=0,...,n—1) such that epbptbp—18p—1 is the
identity operator on AP(X,e) for p=0,...,n (formally we set &1 mén:O)n.
The splitting spectrum og(Ay;...,Ay) is the set of all (M, . An) € C
such that the n-tuple (A; — Ag,. .., 4n — An) is not splitting-regular.

The splitting spectrum has similar properties as the Taylor spectrum.
Cleatly, or(Ay,-- ., An) Cos(A1, .., Ayp). For Hilbert space operators ’Fhese
two spectra coincide and the same is true for n-tuples of operators in £
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or in £y (cf[2]). Also, for a single operator A; in an arbitrary Banach
space, or{A41) = og{4;). Consequently, the polynomially convex hulls of
or(41,...,A,) and of og(41,. .., 4,) are equal.

Ti was generally expected that these two spectra are different for
n-tuples of operators on a Banach space but no exampie was known and
it was believed that such an example would be complicated [2]. The aim
of this note is to fill this gap in the theory. Surprisingly, the constructed
example is rather simple.

We denote by R(T’) and N(T') the range and the kernel of an operator 7.
If X and ¥ are Banach spaces then X @Y denotes the direct sum endowed
with the £-norm, [[(z,1)|xey = lelix + lylly (z € X, y € ¥). We use a
similar convention for direct sums of more than two Banach spaces.

Lemma 1. There exists o Banach space Z and closed subspaces Y1, Ys C
Z such that Y1+ Ya = Z and the subspace {{z,2) : @ € Y1 N Y3} is not
complemented in Y1 @ Y5,

Proof Fix a Banach space ¥ and a closed subspace X ¢ ¥ which is
not complemented in Y,

Clearly, M = {(z,—z) : z € X} is a closed subspace of Y & V. Define
Z=(Y®Y)/M andlet 7 : Y ®Y — Z be the canonical projection. Clearly,
m(z,0) = w(0, z) for every « € X. Consider operators Ji, Jz : ¥ — Z defined
by Jiy = w{y,0) and Joy = 7(0,y) (v € Y). It is easy to check that .J; and
Jz are isometries. Let Y1 = J1Y and ¥; = J,Y. Clearly, Z = ¥, + ¥, and
inYs={r(z,0): 2 X} ={r(0,z) : z € X}.

Suppose on the contrary that the space D = {(r(z,0),7(0,z)) : z € X}

Is complemented in Y1 @ ¥ = {(n{y1,0), (0, %2)) : 1,72 € Y}. Then D is
complemented also in the closed subspace

W= {(‘H‘(y,ﬂ),‘n’(o, y)) RS Y} = {(le, Jzy) 'y e Y} CY L dYo.

Let.J : Y — W be defined by Jy = (m{y/2,0),7(0,y/2)). Clearly, J is
an isometry onto W and JX = D, so that X is complemented in Y,a
contradiction.

THEOREM 2. There ewisi a Banach space W and commuting operators
Ay, As & E(W) such that O‘T(Al,Az) 34 O’s(Al,Ag).

Proof Let Z,Y; and Y, be the Banach spaces from the previous lemma.
Fori,j e Z set

Z (4,5 2 1),
¥; (i>1 1 < 0)
Wi‘x 1 =4 3=,
d Y, (10, §21),

Yiny (Z,j < [))
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Clearly, Wz'j C W,‘,+1,j and Wz‘j C Wit Set W = @i,jEZ Wi and let
A, Ay € L{W) be the shift operators to the right and upwards:

Al(@'ﬂ);‘j) = @wi_l,j, Az(@wij) = @wi,j—l-
iy i3 i i

Clearly, A; and A; are commuting isometries. Further, Wi; = Wity ; 0
Wigs1 and W%‘j =W+ Wi,j_1 for all 4,7 € Z. So R{A1) + R(Az) =W.
The Koszul complex of the pair (A1, As) is of the form

&
(1) s W e WO W — W — 0,

where Sow = (Ayw, Agw) and §(w,z) = —~Asw + A1z (w, 2z € W). Clearly,
§p is bounded below and R(61) = R(41) + R(A2) = W. .

To show the exactness of the Koszul complex (1) it is sufficient to prove
N{&) C R(&). Let (Pwi;, B zy) € N(6) for some wyj, zij € Wi;. Then,
for all 4,7 € Z, w; j—1 = Z—1,j, SO that

wij = Zi1,541 € Wiz Wi g41 = Wioy
and

2ij = Wigd g1 € Wi N Wirg -1 = Wi
Set uw = EB'w-,;+1,j = @Zi,j-t-l- Then &u = (A]_'LL, .Az’u.) = (@'w.ﬁj,@zij).
Hence N(6;) = R(6g), the Koszul complex (1) is exact and (0,0) &
or{A1, Az). .

We show that R(6g) is not complemented in W & W. Suppose on the
contraxy that there exists a projection P € L(W @W) with range R(&p). Let
Q € L(W ® W) be defined by Q(D wi;, P 2;5) = (w10, zo,1) € Wi @Wo,l-
Clearly, Q% = @ and PQP = QP, so that (QP)* = Q(PQP) = QP is also
a projection with

R(QP) = {{w1,0,70,1) 1 w10 = 20,0 € Wop} ={{z,z) : 2 €11 MYz}
Clearly, R{QP) is complemented also in Wio & Wo,1 = Y1 @ Y2, which

contradicts Lemma 1.
Hence (0,0) € s(Ay, A2) and os( Ay, Ag) 7 o(As, Ag).
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