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Minimality in asymmetry classes
by

MICHAEL WIERNOWOLSKI (Poznad)

Abstract. We examine minimality in asymmetry classes of convex compact sets with
respect to inclusion. We prove that each class has a minimal element. Moreover, we show
there is a connection between asymmetry classes and the Radstrém-Hérmander lattice.
This is used to present an alternative solution to the problem of minimality posed by
G. Ewald and G. C. Shephard in (4],

1. Introduction. We will denote by (X)) the space of non-empty con-
vex compact subsets of a topological vector space X. The space K{X) has
been widely investigated, especially in connection with the Minkowski sum
defined by A+ B := {a+b:a € A, b € B}. Although KC(X) with the
Minkowski sum forms a commutative semigroup with the cancellation law
(see R. Urbanski [5]), it is not a vector space. In [4] G. Ewald and G. C. Shep-
hard introduced some normed vector spaces consisting of classes of convex
compact sets. Let us recall one of those concepts, the so called asymmetry
classes. As in [4] we will restrict our examination to the finite-dimensional
case (X = R", n € N). We define the relation of asymmetry: A ~ B iff
there exist centrally syrnmetric (1) sets S, T such that A+ S is a translation
of B+ T (we can require S and T to be symmetric instead of centrally
symmetric). It has been proved in [4] that ~ is an equivalence relation and
K(R™)/~ is a normed vector space.

In [4] the authors posed the question whether each class of asymmetry
can be expressed in the form {M + S : 9 centrally symmetric}, where
M e K(X) is a certain “minimal” clement. This problem has been solved
by R. Schneider [3]. It is proved there that for n = 2 every asymmetry
class contains a minimal member (Theorem I). In the proof, measure theory
as well as surface area functions are employed. We will present a different
approach.
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(1) Centrally symmetric sets are translations of certain symmetric gets.
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First of all, notice that if M is “minimal” then it must be minimal with
respect to inclusion. This suggests examining the ordering

A<B if A~B, ACB.

We will show that in each asymmetry class there are minimal elements with
respect to this ordering.

Secondly, we will show that asymmetry classes have a connection with
the Radstrom-Hérmander lattice. Recall that this is the quotient space
K2(X)/~ where (4,B) ~ (C,D) if A+ D = B+ C. We will also use a
special ordering in K?(X), namely

(A,By<(C,D) iff ACB, CCD, (4,B)~(C,D).

It has been proved by D. Pallaschke, S. Scholtes and R. Urbariski [2] that
in each class of ~ there exists a minimal element with respect to <.

2. Auxilliary lemmas. In this section we assume that X is a normed
vector space. We use the Hausdorff metric which is defined for closed bound-
ed subsets of X by the formula

du(A, B):=inf{A>0: AC B+ U, BC A+ U},
where U denotes the closed unit ball.

LemmMa 1. If o family {A.} of compact sets is a chain then there exists
a countable subfamily {A,_} such that

QAQ = OA% and  lim dg (Aan,OAa) = 0.

Proof Assume that Ay C Ag for o < 3. Let B := (), Aq. The set B
is non-empty as the intersection of a chain of compact sets. Since for o < 8
we have 0 < dy(Aq, B) < du(4g, B), the limit lim,| dg(A,, B) exists. We
show that it is 0. If this is not the case then J;¢Vadu(Aq, B) > &. This
is equivalent to Vodz,ca, ¢(Ta, B) > £, where g is the standard distance
between a point and a set. Let C be the closure of the set {z5 : 8 < a}.
The family {C} is a chain of compact sets, therefore C := [, Cy is not
empty. Plainly C' C B, while on the other hand Y,egp(z, B) > &. This
contradiction proves that A, converges to B. Now, it is enough to choose
an satisfying dy(Aq,,B) < 1/nand ope; < oy

LeMMA 2. If {Ba} is a chain of compact sets then A + (), Ba =
N, (A+ Ba) for every compact set A.
Proof C always holds.

2 In view of the previous lemma we can assume to have a countable
family {B,}. Moreover, we assume Bnyy C B,. Let B :=), By. We have
to show that for a given z € N, (4 + B,) there exist a.€ A and b € B
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such that z = @ + b. Obviously 2 = a,, + b, for some a,, € 4 and b, € B,.
The sequences {a,} and {b,} are contained in compact sets, thus there are
subsequences {an,} and {b,,} converging to some o and b. Plainly a € A,
be B and a+ b =lima,, +limb,, =lim(a,, + b, ) =limz =2 n

3. Minimality with respect to inclusion. Now we present several
properties of the relations ~ and <.

PROPOSITION 3. A ~ B iff A — B is centrally symmetric.

Proof = If A = B then there exist symmetric sets §, T and z € X
such that A+ 8 = B 4T+ . This implies —A+5 = ~B+7T —z. Let us add
the above two equations crosswise: A+S—B+T -z =—-A4+S5-+B+T+z.
Using the cancellation law we get A — B =B~ A+ 2z.

<« If A — B is centrally symmetric then 4 — B = B — A + z for some
z € X. By adding B we get A+ (B — B) = B+ (B — A) + . Observe that
B — B and B — A are centrally symmetric, hence A = B, »

PROPOSITION 4, If A a2 B and B = A+ P then P is centrally symmetric.

Proof. By Proposition 3 the set A - B is centrally symmetric, so there
exists € X such that A — B = B — A + z. Replacing B with A+ P gives
A—A—~P=A4+ P — A+ x This implies that —P = P+ =z, thus P is
centrally symmetric. »

THEOREM 5. Each asymmetry class has a minimal element with respect
to the ordering <.

Proof. We use the Kuratowski~Zorn Lemma. Let {A.} be a chain con-
tained in an asymmetry class [B]. We will show that A 1= (), Aa is a lower
bound of this chain. First observe A is non-empty and convex, since A, are
compact and convex. In view of Lemma 1 we can skip to a countable chain
{An}. Without loss of generality we can assume 0 € ANB and Ap1 € A,

From Proposition 3 it follows that A, — B = B — An + 2y, for some z,.
Using Lemma 2 we can derive

A~B=(An-B=(\4n-B)=[](B—4n+2m)
= B+ ﬂ(mn-An)..

Since 0 € BN A, we have @, € Ap,—B C Ay ~B. The last set is compact, so
(z») must have a cluster point. Since we can always skip to a subsequence,
we will assume even more, namely 2, — z. We will show that N, (@n—An) =
z— A (notice that {2, — A} is a chain). Using the properties of the Hausdor{t
metric we get : :
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du (a: — A, ﬂ(mn - An))
n
<dylz — A,z — A) + du(zn — A, 2, ~ A)
+ dy (wn - An:- (mn - An))

n
= d(z, 5n) + dia(4, An) + dr (50 = Any (Y0 = 4r)).
"
Lemma 1 guarantees the above distances to be arbitrarily small. This yields
A—B =B+ (x—A) = B— A+ z. Again from Proposition 3 we get
A= B. Finally, ¥, 4 < A,. Since every chain has a lower bound there exists
a minimal element in the class [B]. m

THEOREM 6. The set A is minimal {with respect to <) iff the pair (A, —A)
is minimal (with respect to <}.

Proof <« Assume that the pair {4, —A) is minimal, while the set A4 is
not. In this case there exists a set B such that B < A, B # A. Proposi-
tion 3 gives A — B = B — A+ z for some z € X. Using this equality and
the cancellation law we get (B,—B — z) < (A4, —A). This contradicts the
minimality of (A, —A).

= Suppose that 4 is minimal but (A, —A) is not. Then there exists a pair
(B,C) £ (A,—4), (B,C) # (A,—A). From the definition of ~ it follows
that A+C = B— A. Multiplying this equatiod by —1 gives —4—C = A—B.
By adding the above equations crosswise we get 244+C —B = —2A+B-C.
This leads to the equation

2 2
Finally, £5¢ < A, which contradicts the minimality of A. =

4. Applications to the minimality problem of G. Ewald and
G. C. Shephard. In order to apply our observations from the previous
section we need some more definitions.

In {1] J. Grzybowski proved that for X = R? minimal pairs are unique
up to translation. We will use J. Grzybowski’s approach using arc-length
functions.

Let A be the set of all functions f : [0, 27r] — Ry. such that

1. f is non-decreasing, f(0} == 0,

2. 2f(a) = fla+) + f(e—) for a € (0, 27),

3. f(2m) = F(0+) + f(2m—),
where f(z-+), f(z—) denote the right and left limits of f at z. We define an
ordering in A in the following manmer: f £ giff g— f € A. For any f,g € A
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there exists A € A such that h = min(f, g) with respect to £. We will denote
by B the subset of A consisting of all functions f such that f£([0,2x]) has
no more than 3 elements.

Let ¢ = (cos a,sin a) and A € K(X). For a € [0, 27] we denote by h4{a)
the center of the set Ha(a) = {r € A: (e, z) = maxyca(e’® y)}, where
{-,-) is the scalar multiplication in RZ. The set Ha(a) is either 2 point or a
line segment in R2. For any A € K(X) we define f4 € A by

n

fale) = lim > |ha{aess) - halaw)],
§(P)—0 =0

where §(P) is the diameter of the partition P = {0 =0y < ... < ap41 = a}.

Note that fa(a) is the length of the boundary arc of A connecting h4(0)

and hy(a). For f € A we define a function Ay : [0, 27] — R? by

T

hy(e) = lim > (flaptr) — flax))eot=/2,

H(P)—0 =0

If hy(2r) = 0 for f & A then we denote by Ay the smallest convex compact
set containing hy{[0, 27]). :

LEMMA 7. A is o summand (*) of B iff fa £ fs.

Proof. = See Proposition 3.4 of [1].

< 1If falfs then fg = fa + (fs — fa). Using Proposition 4.8 of [1] we
deduce that fg — fs +g = fc for some g € B and € € K(X). This gives
fa+g=fa+ fo = Ffa+c. Observe that

hg(2m) = by (2m) = hyg (27}
= hate(27) — hato(0) ~ (hs(27) — hp(0)) =0
(see [1], Proposition 4.2). Since g € B we have ||hy(27)| = g(27) = 0, thus
g = 0. This implies fg = fatc. By Proposition 4.5 of (1}, B=A+C+z
for some z € X, =

LeMMA 8. If (4, B) ~ (C, D) and min(fa, fg) = 0 then A is a summand
of O,

Proof. Using Theorem 2.5 of [1] for the functions fa, fo ~min(j_“g, )fD),
fa, fo — min(fo, fo) we deduce that f4 = fo — min(fe, fp). This gives
fa L fo. From Lemma 7 it follows that A is a summand of C. m

THEOREM 9. Each asymmetry class [B] € K(R?)/~ containg a “mini-
mal” element M such that [B] = {M + 5 : § centrally symmetric}. More-
over, the set M s minimal with respect fo the ordering <.

(%) A is called a summand of B if there exists a set C such that A+ C = B.



154 M. Wiernowolski

Proof Let A € [B] be a minimal element with respect to the ordering
<. By Theorem 5 the pair (4, —A) is minimal. According to Lemma 5.1 of
1] the function d = min(f4, f-4) belongs to B. Note that

Zmin(fA(ak+l) — Falak), f-alaps1) — f-alar)),
k=0

where §(P) is the diameter of the partition P = {0=ao < ... < @n41 = a}.
Assume that d s 0. If a € [0,27] is a point of discontinuity of d then
Ha(a), H_a(a) are both non-trivial line segrnents in R?. For b € [0, 27| such
that |a — b| = = we have Ha(b) = —H_a(a). In this case Ha(a), Ha(b)
and H_4(a), H- 4(b) are non-trivial, parallel line segments contained in the
boundaries of A and ~A respectively. Let I be the shortest of them. Then
I is a surnmand of both A and —A, thus the pair (4, —A) is not minimal.
Therefore d = 0. Now, observe that (4, —A) = (B, —B—z) for some z € R,
In this case we can use Lemma 8 and Proposition 4, which gives the desired
result. w

d(a)= A

Let us finally remark that a minimal element in a class [B] € K(R?)/~
is given by the formula Az, _rin(sg,7_5)- Since all the functions necessary to
evaluate this expression are given directly our approach to the minimality
is constructive.
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Operators determining the complete norm topology of C(K)
by
A, R. VILLENA (Granada)

Abstract. For any uniformly closed subalgebra A of C(K) for a compact Hausdorff
space K without isolated points and zg € A, we show that every complete norm on
A which makes continuous the multiplication by xq is equivalent to || - loo provided that
25 }{X) has no interior points whenever A lies in C. Actually, these assertions are equivalent
if A=C(K).

0. Introduction. It is well known that for any infinite-dimensional Ba-
nach space X there exists an uncountable set of pairwise nonequivalent
complete norms. The situation becomes nicer if we restrict our attention
to those complete norms on X which make continuous a sufficiently good
bilinear map from X x X into X (see [1] and [2]).

Our purpose is t0 look for continuous linear operators T on the Banach
space C'(K), of all continuous functions on a compact Hausdorff space K,
endowed with its traditional supremum norm ||| oo, for which every complete
norm ||| on C(K) making continuous the operator T' from (C(K), |{-[!) into
(C(K),]| - ||) is automatically equivalent to || - |- Such an operator is said
to determine the complete norm topology of C(K). In the first section we
prove that the complete norm topology of any uniformly closed subalgebra
of C(K) is determined by the multiplication operator by zo if zg'(X) is
nowhere dense whenever A lies on C. From this fact we deduce unexpected
characterizations of multiplication operators determining the complete norm
topology either of C{K) or the disc algebra A([?). In the second section we
exhibit a class of continuous linear operators that determine the complete
norm topology on & given Banach space. Further we show that this class
is nonempty for the Banach space C(K) whenever K is a compact metric
space.

1. Multiplication operators. In order to measure the continuity of a
linear operator T' from a Banach space X into a Banach space ¥ we will
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