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Proof Let A € [B] be a minimal element with respect to the ordering
<. By Theorem 5 the pair (4, —A) is minimal. According to Lemma 5.1 of
1] the function d = min(f4, f-4) belongs to B. Note that

Zmin(fA(ak+l) — Falak), f-alaps1) — f-alar)),
k=0

where §(P) is the diameter of the partition P = {0=ao < ... < @n41 = a}.
Assume that d s 0. If a € [0,27] is a point of discontinuity of d then
Ha(a), H_a(a) are both non-trivial line segrnents in R?. For b € [0, 27| such
that |a — b| = = we have Ha(b) = —H_a(a). In this case Ha(a), Ha(b)
and H_4(a), H- 4(b) are non-trivial, parallel line segments contained in the
boundaries of A and ~A respectively. Let I be the shortest of them. Then
I is a surnmand of both A and —A, thus the pair (4, —A) is not minimal.
Therefore d = 0. Now, observe that (4, —A) = (B, —B—z) for some z € R,
In this case we can use Lemma 8 and Proposition 4, which gives the desired
result. w

d(a)= A

Let us finally remark that a minimal element in a class [B] € K(R?)/~
is given by the formula Az, _rin(sg,7_5)- Since all the functions necessary to
evaluate this expression are given directly our approach to the minimality
is constructive.
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Operators determining the complete norm topology of C(K)
by
A, R. VILLENA (Granada)

Abstract. For any uniformly closed subalgebra A of C(K) for a compact Hausdorff
space K without isolated points and zg € A, we show that every complete norm on
A which makes continuous the multiplication by xq is equivalent to || - loo provided that
25 }{X) has no interior points whenever A lies in C. Actually, these assertions are equivalent
if A=C(K).

0. Introduction. It is well known that for any infinite-dimensional Ba-
nach space X there exists an uncountable set of pairwise nonequivalent
complete norms. The situation becomes nicer if we restrict our attention
to those complete norms on X which make continuous a sufficiently good
bilinear map from X x X into X (see [1] and [2]).

Our purpose is t0 look for continuous linear operators T on the Banach
space C'(K), of all continuous functions on a compact Hausdorff space K,
endowed with its traditional supremum norm ||| oo, for which every complete
norm ||| on C(K) making continuous the operator T' from (C(K), |{-[!) into
(C(K),]| - ||) is automatically equivalent to || - |- Such an operator is said
to determine the complete norm topology of C(K). In the first section we
prove that the complete norm topology of any uniformly closed subalgebra
of C(K) is determined by the multiplication operator by zo if zg'(X) is
nowhere dense whenever A lies on C. From this fact we deduce unexpected
characterizations of multiplication operators determining the complete norm
topology either of C{K) or the disc algebra A([?). In the second section we
exhibit a class of continuous linear operators that determine the complete
norm topology on & given Banach space. Further we show that this class
is nonempty for the Banach space C(K) whenever K is a compact metric
space.

1. Multiplication operators. In order to measure the continuity of a
linear operator T' from a Banach space X into a Banach space ¥ we will
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use its separating subspace, which is defined af the subspace S(T') of those
elements y in Y for which there exists a sequence {z,} in X with limz, =0
and lim Tz,, = y. The closed graph theorem shows that T' is continuous if,
and only if, S(T) = 0.

LEMMA 1 [4; Lemma 1.6]. Let X and Y be Banach spaces and let {R,}
and {8} be sequences of continuous linear operators on X and Y, respec-
tively, If T is o linear operator from X into Y satisfying S, T = TR, for
all n € N, then there is N € N such that {51 ... S0 )8(T) = (S1...58)S(T)
forallnz N.

THEOREM L. Let A be a uniformly closed subalgebra of C{K) for some
compact Hausdorff space K without isolated points and let mg € A. If g 1(/\)
has no interior points for all A € C, then the multiplication operator by zo
determines the complete norm topology of A.

Proof Assume that =g has the required property and let || - || be a
complete norm on A making continuous the multiplication operator by zo.
Denote by & the separating subspace for the identity map from the Banach
space (4, - ||) into the Banach space (4, - [«) and consider the closed
subset Kg of K given by

Ko={te K :z(t)=0vYz S}

If we prove that K = K, then § = 0, which shows that the identity map
is continuous and consequently | - || is equivalent to || - [ To obtain a
contradiction, suppose that there is a g in the open subset G = K\ Kj. Since
g (zo(to)) has no interior points we have G ¢ g '(zo(to)). Accordingly
we could find t; € G with z¢(t1) # zo(tg). Now we suppose inductively
that elements £1, ..., t, € G have been chosen with zq(tg), zo(t1), . - ., @o(tn)
pairwise different. The open subset {t € G : 2o(t) # zo(ty), k= 1,...,n}
contains #, and therefore it is not contained in z5 ' (20(t0)). Hence we could
find tp41 € G such that zo(tn41) # zo(te) for & = 0,1,...,n. For every
n € N the map z — (2o — 2o(tn) )}z defines a continuous linear operator, say
R.,on (4,]- ) and also a continuous linear operator, say Sy, on (A, || o).
On account of Lemma 1, we have

(@0 — co(ta)) (70 — 2a(tn))S =
= (oo~ molt)) - (o — wolin))S '™
for all n > N, for a suitable N € N. We thus get
(2o — zo(t1)). .. (w0 — zo(tn ))}S
Flles

C (2o — zolt1)) .. . (ko — zo(tn4+1))S

icm
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which clearly forces

(zo(twsi) — Zo(tr)) - - - (To(tavs1) — zoltn))z(tn41) = 0
and therefore z(ty+1) = 0 for all x &€ &, which contradicts the choice of
tN.q_l. L

It should be noted that the converse of the preceding theorem is false.
We illustrate this fact in the following.

ExaMPLE 1. Let A = {f € C([-1,1]) : £([~1,0]) = 0} and consider the
function in A defined by

0 if~1<t<0,
zo(t) = {t if0<t< 1.
Note that the restriction map z — ;0 ) gives an isometric isomorphism
from A onto B = {f € C([0,1]) : f(0) = 0}. From Theorem 1 we deduce
that zg)[o,1; determines the complete norm topology of B and from this it
follows easily that 7y determines the complete norm topology of A.
For C(K) the converse of Theorem 1 is true.

TrEOREM 2. Let K be a compact Housdorff space without isolated points
ond let g € C(K). Then the multiplication operator by xo deiermines the
complete norm topology of C(K) if, and only if, 3 (\) has no interior
points for all A € C,

Proof. Suppose that there is A & C for which the set =5 ()) has a
nonempty interior, say G. Since K has no isolated points, it may be con-
cluded that & is infinite. Let £y & G and let 4 be a continuous function on
K that takes the value 1 at ¢y and the value 0 at all points of K \ G. Since
G is infinite, it follows that dim C(G) = oo. Consequently, there exists a
discontinuous linear functional g on C(G) with g9{ug) = 1. We get a discon-
tinuous linear functional f on C(X) by defining f(x) = g(z5) which satisfies
F(u) = 1. As mp—A vanishes on G we have 0 = f({mo—A)z) = f(zox)—Af(z)
for all & € C(X). The map = +— 2z~ f(z)u defines a discontinuocus linear bi-
jection from C'(K) onto itself and therefore we may define a complete norm
||| en C(K) which is not equivalent to || - [ by

2] = (|22 = f(2)tlce-
It remains to prove that this norm makes continuous the multiplication by

9. Let {zy} be a sequence in C(K) with lim [|z,| = 0. For every n € N we
have

280Ty — f(fﬂoibn)u = 200Ty — Af(mn)u
= T0(2@n — Fl@n)u) + F(@n)(2o — A
= zp{22n — fTn)u)-
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From this we conclude that ||zo%s|] £ ||Zollco[Znll and therefore lim ||z, ||
= 0, which concludes the proof. =

In the following we exhibit examples of continuous functions on the in-
terval [0,1] whose multiplication operators determine the complete norm
topology of C([0,1]), although each of the subalgebras generated by them
is far from being C([0, 1]).

ExAMPLES 2. 1. The function zq defined on [0,1] by 20(0} = 0 and
zo(t) = tsin(1/t) otherwise satisfies the requirement of the preceding theo-
rem.

2. If 0 < p < 1, then there exists a Cantor set ' with Lebesgue measure
0. Define the continuous function zg on [0, 1] to be 0 on € and if |a, b[ is one
of the open intervals forming [0, 1]\ C, then define zg on |a, b by

t ifo<t£1/2,
Hﬂo((lwt)aﬁb):{l_t 1f1/§<t</1.

Since no Cantor set contains an open interval we deduce that z5'(}) is
nowhere dense, although the set z5(0) could have a nonzero Lebesgue
measure. ' - ’

Theorem 1 and the uniqueness theorem for holomorphic functions gives
a surprising property of the disc algebra.

COROLLARY 1. The multiplication operator by o € A(D) determines the
complete norm topology of A(D) if, and only if, o is not constant.

Two questions still unanswered are the following.

Q1. Is Theorem 2 true for any uniform algebra?

Q2. Does every uniform algebra have a function 2y satisfying the require-
ments of Theorem 1?

2. Shift operators. By a shift operator on a Banach space X we mean
a continuous linear operator T on X for which ker T = 0 and | J;-; ker(T™)"
separates the points of X, where T* stands for the dual operator of 1.

ExampLES 3. 1. If a Banach space X has a shift operator 7 and & is an
isomorphism from X onto another Banach space Y, then T~ is a shift
operator on Y,

2. The traditional shift operators on the Banach spaces ¢p and I, (1 £
p < co) defined by (Tz)(1) = 0 and (Tz)(n+1) = z{n) satisfy our preceding
requirements. In fact, for every Banach space X, the Banach sequence spaces
co(X) and I, (X)) are endowed with a shift operator defined in an obvious way.
In particular, every infinite-dimensional Hilbert space H may be equipped
with a shift operator, since in such a case H is isomorphic to I (H).
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3. The operator T defined on L,([0, 1}) by

0 f0<t<1/2
T: A = b= )
(Tz)(1) {:c(zt ~1) #12<t<1,
is easily seen to be a shift operator.
4. Tt is a simple matter to show that

vy O #0<t<1/2,
(Tz)(t) = { (t - 1/2)x(2t — 1) i 1/2 §t§/1.

defines a shift operator on C([0, 1]).

THROREM 3. Bvery shift operator on a Banach space (X, |-{|) determines
the complete norm topology of X,

Proof. Let |-{ be a complete norm on X and let S denote the separating
subspace for the identity map from the Banach space (X, |-|) into the Banach
space (X, | - ||). Lemma 1 now yields N € N such that 778 = TN for all
n > N. Accordingly, for every f € [J3_y ., ker(T™)™ we have f{TNS) =0
and therefore TN (8) = 0, since (5.1 ker(T™)™ separates the points of
X. Since kerT' = 0, it may be concluded that & = 0, which shows that |- |
is equivalent to || - j|. m

THEOREM 4. Let K be an infinite compact meiric space. Then C(K) is
equipped with a shift operator.

Proof. If K is uncountable, then the Milyutin theorem [3; Theo-
rem 21.5.10] shows that C(K) is isomorphic to C([0,1]). On account of
Examples 3.1 and 3.4 there is a shift operator on C{K).

If X is countable, then by the Mazurkiewicz—Sierpinski theorem [3; The-
orem 8.6.1], there are a countable ordinal 7 and a finite ordinal n such
that K is homeomorphic to w™n + 1. Consequently, C(K) is isomorphic to
C(w™n + 1). We only need to show that a shift operator may be defined
on C{w™n + 1). For every @ € C{w™n + 1) we define Tz to be zero at ev-
ery limit ordinal in w™n + 1, at 0, and at every nonzero nonlimit ordinal
in w™n -+ 1 whose predecessor is a limit ordinal, and otherwise we define
(Tz)(a) = w(predecessor of o)d(, min{limit ordinals greater than a}). It
is easy to check that 7' is a well-defined shift operator on C(w™n + 1). m

It would be desirable to answer the following question.
Q3. Is the preceding theorem true for nonmetrizable compact Hausdorff

spaces?
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Order functions of plurisubharmonic functions
by

HALIL IBRAHIM CELIK and
EVGENY A. POLETSKY (Syracuse, N.Y.)

Abstract. We consider the following problem: find on 2a plurisubkarmonic function
with a given order function. In particular, we prove that any positive ambiguous function
on CP! which is constant outside a polar set is the order function of a plurisubharmonic
function.

1. The order function for plurisubharmonic functions. In this pa-
per we study pointwise singularities of plurisubharmonic functions, i.e., the
behavior of a plurisubharmonic function near isclated points where the func-
tion’s value is ~oo. Singularities of plurisubharmonic functions on subsets
of C* have been studied by many authors (see [7] for references), in general
using the notion of the Lelong number. Unfortunately, this number does
not provide a detailed description of the singularity, For example, another
important characteristic of singularities—the mass of the Monge—Ampére
operator at these points—has little to do with their Lelong numbers (see
Ex. 5.7in [4]).

We concentrate on the notion of the order function which reflects more
features of the function’s behavior. Given a plurisubharmonic function u on
the unit ball B < C", centered at the origin, the order function o, of v at
0 is defined as

e u(vE)
. = f ——V—=
oule) = iy M Tog el
where z is in €7 \ {0} and 4 € C. Since 04(2) = ou(y2), 7 # 0, we may
assume that the order function is defined on the unit sphere § in C" or on
the complex projective space CP"~*, which for n = 2 coincides with the

Riemann gphere C.
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