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Dedicated to Professor Stanistaw Eojasiewicz

Abstract. For any subanalytic C’“~Whitney field (k finite), we construct its subana-
Iytic C¥-extension to R”. Our method also applies to other o-minimal structures; e.g., to
sexnialgebraic Whitney felds.

1. Introduction. Let F be a subanalytic subset of B", In this article
we adopt the following definition of a subanalytic function. Let 7: R 5 ¢ —
R(t,1) € P*. A function f : E — R is called subenalytic if the graph of 7o f
is subanalytic in R" x P!, A mapping f = (fiy.- -y fm) - B — R™ is called
subanalytic if f1,..., fm are subanalytic. For the properties of subanalytic
mappings the reader is referred to [2, Sect. 3] or/and [9, Sect. 2]. Other
fundamental results of the theory of subanalytic sets can be found in 1, 4,
3, 6, 8,9, 12].

We shall prove the following:

THEOREM 1. Let E be a closed subanalytic subset of R™, and let p and
q be positive integers, p < q. Let

) 1
Fla,X)= Y SF @)X (X = (X1,..., X))
fe|<p
be o CP-Whilney field subanalytic on B (i.e., F* are subanalytic functions

on E). Then there exists a subanalytic CP-function f : R — R , C7 on
R™\ E, such that D* f == F* on E whenever k € N*, || < p.

Whitney’s construction [18] does not give subanalyticity. Qur method
also applies to the semialgebraic case (the corresponding results on semial-
gebraic sets are found in {3, 11]). Actually, it can even be used in a much
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more general setting; viz., in any o-minimal structure on the real field (see
[17]). . 0 -

The proof of Theorem 1 is based on subtle differential properties of
subanalytic sets described in the next two sections.

The authors thank Professor Stanistaw Eojasiewicz for helpful comments
which improved the article.

2. An estimate for the derivatives of a subanalytic function. In
this section we will follow an idea from Gromov [7].

LEMMA 1. Let A : A — R be a C2-function of one variable such that either
M >00nA or A <0 on A Then, for any interval [t —r,t + 7] C A,
|A,(t)| <2 SUD{t—p 37 |A|/'f‘

Proof. Suppose that A < 0. Then X is concave and
AD) = M)t —s) S A = AE-7))/r <2 sup [Al/r

t—rt+r]
whenever t — r < s < £. It follows that A'() < 2supj,_, 44y [A|/7. Applying
this to A(—t), we obtain —A'(£) < 28upp_, 14, [Al/7-

Lemma 1 generalizes easily by induction:

LeMMA 2. Let A : A — R be a CPM-function (p = 1) of one variable
such that, fori=2,....p+1, A9 >0 on A or AY <0 on A. Then, for

+2
any interval [t —r,t+7] C A, |AP)(8)] < 2(F37)-2 SUP[_p ger] [A/TP.

ProrosiTION 1. Let ¢ : {2 — R be a subonaolytic function on an open
subanalytic subset 2 of R™. Let o € N™. Then there exists a closed nowhere
dense subset Z of (2, subanalytic in B™, such that, for any open ball K =
K(u,r) € 2\ Z, |D%(u)| < Cusupg |9|/r°!, where C, is a constant
depending only on .

Proof. Clearly, we can assume that (2 is connected. Put p = |a| and
g= ("™""""). Then we have

g
D*= " c,87/0ek,
v=1

where {e, } are suitably chosen unit vectors in R™, {c,} are real coefficients
and 97/0e? stands for the directional derivative. Let Z be the union of
the zero-sets of all those functions &*¢/8ef (i = 2,....,p+L;v =1,...,q)
which do not vanish identically. Suppose that K = K(u,r) C 22\ Z. Put
A(t) = (u + te, ). Then AE(t) = (8°¢/8el)(u + te,). Applying Lemma 2
to A,, we obtain the needed inequality.

icm

Whitney's extension theorem 271

COROLLARY. For each u € 2\ Z,
|D%d(u)| < Casup{|¢(v)] : ju—o| < dist(u, Z U A} /dist(u, Z U 8)l.

PROPOSITION 2. Let ¢ : 2 = R be a subanalytic, analytic function on
an open subanalylic subset £ of R™. Suppose that i0¢/0z;| < M on 2,
j=1,...,m. Let p € N, p > 0. Then there exists o closed nowhere dense
subset Z of 2, subanalytic in R™ and such that

|D¥d(w)| < C(m,p)M dist{u, Z U 9£2)*~lel
whenever v € R\ Z, o € N, 1 < |a| < p, C(m,p) being o constant
depending only on m and p.
Proof Apply Proposition 1 to the derivatives 8¢/ dz;.

Remark 1. In the subanalytic case (but not in the general o-minimal
case) our Proposition 2 follows from Parusifski’s [15, Prop. 3.1] (compare
also [14, §4]). (One should consider as vector fields the products of a unit
vector and the function of distance from the union of strata of smaller di-
mension. )

3. Ap-regular mappings. Let 2 be an open bounded subset of R¥, Let
¢+ §2 — R" be a CP-mapping. We will call ¢ A,-regular (in £2) if there exists
a constant C > 0 such that

LD*p(y)| € C/dist(y, 0N fora e N¥,1< |0 < p;
in other words, D*¢(y) = O(dist(y, 82)~1%!) as dist(y, 82) — 0, for all
o€ NF with 1 <|a| < p.

Remark 2. Let ¢ be Ay-regular and let A C f2. Suppose that A has
the following Whitney arc property with exponent 1 (WAP(1)): there exists
a constant ¢ > 0 such that any two points a1,az2 € A can be joined in 4
by an arc of length < C"|ay — as|. Then ¢ is a Lipschitz mapping on A and
thus ¢4 extends continuously to A.

We shall use the following theorem of Whitney [19]:
THEOREM 2. Let A be a locally closed subset of R* having WAP(L). If
1 {21
Gl.Y)= D =G n)y*
o <p

is a CP-Whitney field on A, AC B C A and all the G*’s have continuous
extensions G* to B, then

oW Y)= Y =G WY
| <p

is o CP-Whitney field on B.
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Proof. It is enough to repeat the argument from p. 76 in [16, Rem. 25|.

‘We say that two closed subsets K and L of R™ are regulorly separated

with exponent 1 if there exists a constant C > 0 such that dist(u, K N L) <
C dist(u, L) for each u € K.

The following proposition motivates our interest in A,-regular mappings.

PROPOSITION 3. Suppose that & : 2 - R® 13 Ap-regqular, and A is o
closed subset of {2 having WAP(1) and such that A and 892 are regularly
separoted with exponent 1. Let B be a compact subset of R™ such that $(A) C
B and let F be a CP-Whitney field on B flat on $(A\ A). Let G be a CP-
Whitney field on A defined by the formula

G(y,Y) = F(&(y), TP(Y)) mod ()P,  where Y = (Yi,...,Y3),

and N 1
P(Y)= Y D).
1<|el<p

Then G extends to a CP-Whitney field on A flat on A\ A.

Proof. By the Newton formula, we have
G(y,Y)
-3 %F’“(@(y))( ) éD"‘é(y)Y‘J‘) mod (V)P

[=]<p 1<]a|<p

=Y F0w) ¥ 111 @) ye=! mod vy

Ko !
|&]<p mec,,‘:n @ o

= 3 [TTv/klat™h]FEm @)

Ea i"’fxisp “

x [J(D*®(y)) =vinel mod (v)P+L.,

Hence, for any ¢ € N™ such that |o| < p,

Gy =0l D [1F=r=(@(y) [[(Dos(y)) =

Eu|’ﬂaiz¢7 o
IG7i <G Y |FER(B(y))| dist(y, 92) [Kal—lel
Zal"‘al:D'
<SG Y |FES(B(y))| dist(y, AN A)E el
Y alka|=0
= C3e($(y), B(a))|B(y) — B(a)[PEIral |y — g|Zlral=lol
where a € AN A2 and ly —a| = dist(y, AN an).

Thus
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Consequently, G”(y) — 0 as dist(y, AN 82) ~ 0, and now Theorem 2
completes the proof.

Remark 3. Observe that if r : B — [0,¢), a € A\ A and F*(z) =

o{r(z)?~1*!) as z — H(a), for any k € N" such that || < p, then G (y) =
O(T(@(y))p~|a|) as Y - 4, for any ¢ € N* guch that le} < p.

Remark 4. If 12 satisfies WAP(1), we can take A = 2 in Proposition 3.

4. Ay-regular cells. It appears that subanalytic sets are stratifiable into
graphs of Ay-regular mappings. In fact, we shall prove more.

Let us recall that a subanalytic stratification of a subanalytic subset F
of R" is a locally finite (in R™) decomposition 7 of E into subanalytic,
connected, analytic submanifolds of R”, called strafa, such that, for each
I'e T, its boundary (I' \ I') N E is the union of some strata of dimensions
smaller than dim I

We shall say that 5 is an open A,-regulor (subanalytic) cell in R™ if

1) & is an open bounded interval in R when n == 1, and

2) § = {{a',2n) : 2’ € T,¢1(a') < 2, < ¢o(2")}, where T is an open
Ag-regular cell in R*=1, and ¢; : T — R (i = 1,2) are analytic, subanalytic,
Ap-regular functions such that ¢y(z') < ¢a(z') on T, when n > 1.

_ Remark 5. Then .S has WAP(1), ¢1, ¢ extend continuously to T and
S is compact.

We extend the last definition. If m € Z and 0 < m < n, we shall say
that S is an m-dimensional A -regular cell in R if § = {(u,¢(u)) s uw € T},
where T is an open Ap-regular cell in R™ =R™ x 0" ™ and ¢: T — R*™™
is an analytic subanalytic Ay-regular mapping.

PROPOSITION 4. Any compact subanalytic subset E of R® has o finite
stratification E = §y U ... U S, such thot each S; is a Ap-regular cell in R®
in some linear coordinate system. Moreover, if Aq,..., Ag are any subsets
of E subanalytic in R™, we can have each S; compatible with each A; in the
following sense: if A; NSy # 0, then S; C Ai.

Prool Put m = dim . It suffices to prove that there exists a finite
family T,..., T, such that each T} is an m-dimensional Ap-regular cell in
R™ in some linear coordinate system, T;’s are open, pairwise disjoint subsets
of B, compatible with each A;, and dim(E\ |J; ;) < m; because then we
shall use the induction hypothesis to E' = E\|J; T} with the subsets A;NE’
and (—T-J \ Tj) nE.

By the main result of [10], we first find A;-regular cells T1,...,T; in
appropriate linear coordinate systems in ™. By Proposition 2 and using
induction on n, we easily see that any As-regular cell can be represented as
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a finite disjoint union of Ap-regular cells and some nowhere dense subset.
This completes the proof.

Assume now that § is an open Ap-regular cell in R™. We define by induc-
ticn on m a sequence g1,. .., f2n Of the functions associated with the cell 5.

1) When n = 1 and S = (a1,az), we put o1(z) = # — ay and pa(z) =
&y — L.

9) When n > 1and S = {(z/,zn) : &/ € T, ¢1{z') < zn < d2(2')},
let a4,...,02n-2 be the functions associated with T'. Then we put, for any
z €5,

0i(@) = gj(a',mp) = oj(2") forj=1,...,2n-2,
o2n-1(z) = Tp — $1(2’) and gun(z) = $a(2") — Tn.
The functions g; are subanalytic, continuous on S and analytic on S.
LEMMA 3. There exists a constant M > 0 such that

M min p;(z) < dist(z,89) < ming;(z) forz e S.
2 4
Proof. This follows easily from the fact that the faces of § are Lipschitz
maps.
It is also easy to check the following:

LEMMA 4. The functions associated with an open Ap-regulor cell S are
Ap-regular on S.

We shall need the following consequence of Lemmas 3 and 4.

LeMMA 5. D*(1/p;)(z) = O(dist(z, 83)~1%1"1) as dist(z,85) — 0, z €
S, for all o € N* with |a] <pandj=1,...,2n.

Proof For any o # 0, we have

D(1/05) = i( >

v=1  Ait..tro=a
Ar#0,... Mo 520

where the coefficient af , depends only on e, Ay,. .., Ay. The lemma fol-
lows from Lemmas 4 and 3.

85, (DMeg) o (D)) - g7,

5. Two lemmmas on CP-functions

LEMMA 6. Let I' be an open subset of R*, a € T and v : I' ~ R. Let
g,h: I — R be CP-functions such that D®g(z)} = o(r(z)?~1*l) and D*h{z) =
O(r(z)~1%) as & — a, for |s| < p. Then D*(gh)(z) = o(r(z)?~1*!) asz — a,
for |&| < p.

Proof Immediate by Leibniz's formula.
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LemMMA 7. Let y: 2 — R be ¢ CP-function on an open subset 2 of R™
(m<n)andr: 2 —>.(0, o), ¢ € 2. Assume that D%y (u) = Ofr{u)~lel-1)
as u = ¢, for all o with o <p. Let ¢ : R — R be any CP-function. Let T

" be an open subset of R™ x R™™™ = R™ contained in {{u,w) € N x Rr—™ .

lwi| € Cr(u)}, where C is a constant. Define g: I' - R by
g(uaw) = w(X(U)wl) et w(X(u)wn—m)'

Then DR gu, w) = O(r(u)~I2=181) g5 {(w,w) — (c,0), for all (o, B) with
ol + 18] < -

Proof. It suffices to prove this for each of the functions gilu,w) =
¥ (x(u)w;) separately, so we can assurne n —m = 1. We have

D(Dﬂnﬁ)g(u’w)
Z al
Fit o tyato=a ’)‘1! Cas rm!g!
and, for ¢ # 0,
Die0) w(ﬁ) (x()w)]

o]

=S Y

5=l Atdda=o

DV x(u) ... D¥x(u) - DB (x(u)w))],

Srna DX () - DA x ()l (x(upw),

where A, ,, depends only on o, Ay, ...,A,. This, together with the bound-
edness of x(u)w at (¢,0), gives the required inequality.

6. Proof of Theorem 1. By a subanalytic C%partition of unity, we
reduce the general case to that with F compact. Let A denote the closure
of U Az € E : F*(z) ¢ 0}. We will prove by induction on m = dim 4
that there exists a function f satisfying the conclusion of Thecrem 1 and,
in addition, C? on R™ \ A.

The case m = () being obvious, we assume m > 0. Take a stratification
A= 8 U...US, of A as in Proposition 4 such that S; are compatible
with the set (J {# € E : F*(z) # 0}, which is open in E, and F* are
analytic on cach 8. Let dim S, =m for j = 1,...,k, and dim §; < m for
J=k+41,...,r. By the induction hypothesis, we can assume that F is flat
on {J,.,, 8. Next, uging induction on k, we can assume that & = 1, and so
Ue{z € B : F®(2) 5 0} = § is an m-dimensional Ap-regular cell in R" and
Fis flat on S\ 9. In the case m = n (i.e. 9 is open in R?), it suffices to
define f(z) = Fo(a) for z € 8, and f(z) = 0 for ¢ € R* \ § (Hestenes'
Lemma [16, p. 80]), so let 1 < m < n. Then § = {(u, ¢(u)) : w € T}, where
¢ T — R,

We will distinguish two cases.
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Case I: E=A=5, and ¢ = 0. In this case E = T x 0. Put I'(T) =
{(u,w) € T x R™™ : ly| < dist(u, dT)}.

We shall construct a function f satisfying the conclusion of Theorem 1
such that f = 0 on R\ I'(T). Since F is the sum of the CP-Whitney fields

Fo(u,0,X) = Es(u, 0, U, W)= 3. E%,F(aﬁ) (WUW,
||| 8]

where e Ne—™ |8 < p, U = (Un,...,Un), W= (Wy,...,Wn_r), we can
assume F is equal to one of them; i.e., F(u,0; X) = Fa(u, 0; X), for a fixed
8. By Corollary to Proposition 1 and Proposition 4, there exists a finite
family {@.} of pairwise disjoint open subsets of T" such that each @, is an
open Ap-regular cell (in a suitable linear coordinate system), Z =T\, G
has dimension < m, and
|D7F(ﬂa5) (u)]

< Csup{|FER )] 1 v € Q,, |u - | < dist(u, 0Q,)}/dist(u, 8Q,)
whenever 1 € Q,, a € N*, |a| <p— |B], and y € N, |4| < p.

Since Z x 0 and R™ \ I'(T') are regularly separated with exponent 1, the
field G defined as the glueing of the restriction of F' to Z with the zero
field in R™ \ I'(T) is a CP-Whitney field (cf. [13, Chap. I, Rem. 5.6]). By
applying the induction hypothesis to G, we can assume that F' is flat on Z.
Since I'(@,) C I'(T), it suffices to construct a required function f, for each
v separately (as then we shall take f = Y f.). Hence, without any loss of
generality, we can assume that T = Q..

Put 2y, w) = FOP(w)w? for w € T and w € R*™™. Clearly, h is an
analytic function in T x R®—™,

LeEMMA 8. Let k = (o,7) € N™ x NP~ |g| < p, and let o € OT. Then
Dh{u,w) = o(dist(u, TP I) as T'{T) 3 (u,w) — (a,0).

Proof Obviously, we can assume 7 < 8.
Suppose first that lo| < p— |3|. Then
D"h(u,w) = [8!/(8 — TIIF D (u)w?T,
and, by Whitney’s regularity condition, we have
FloB) (y) = ofdist (u, @T)P 11— 181)
as 1 — a. Since |w| < dist(u, 8T), the lemma follows in this case.

Suppose now that [¢| > p — |3|. Then ¢ = o + v, where o = p— |5],
and

| D*h(u, w)| = |[81/(8 — ) 1DV F B (w)u? |
< [0B8Y/(8 — 7)e(w) dist{w, 8T) 1 dist(w, dT) 81171,
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where &(u) = sup{|F(*A)(v)] : |y — | < dist(w, T)} — 0 as u — a. Since
18l = It = v =18l = 7|+ le| = o] = p - 7| = lor| = p - |K| > 0, the proof
of the lemima is complete. B

Let ¢ : {0,00) — [0,1] be a semialgebraic Ci-function such that () =

1 near 0, and ¥(t) = 0 for ¢ > 1. Let 0L,-.., 02m denote the functions
associated with . We put

r—1n. 20
Flww) = JT TTwtwn/n=m/(Me; (u)))h(u, w).
i=1 j=1

This is a C9-function on T x R"™"™. It follows from Lemmas 8, 5, 7 and
Lemma 6 (where we put r(u) = dist(u, 8T)) that

D flu,w) ~ 0  as I'(T) 3 (u, w) — (a,0) € 8T x 0,

for all & € N* with |x| < p. On the other hand, f(u,w) = 0 if (u,w) €
(T x R*™™)\ I'(T}, due to Lemma 3, so f extends to a CP~function on R",
equal to 0 on R™ \ I'(T").

Case IL: general. We define a subanalytic function r : T — (0,00) by
the formula

r(u) = {inf{\'w —¢(u)| (v, w) € E\S} if {w: (u,w) € B\ S} £,

1 otherwise.
By Proposition 4, there exists a finite family {Q,} of pairwise disjoint open
subsets of T' such that each @, is a Ap-regular cell (in a suitable linear
coordivate system), £ = T\ J, ¢, has dimension < m, r is analytic on each
Qv and, for each v, either there is ¢ € {1,...,m} such that |8r/Bu;| > 1
on @y, or [8r/8u;| < 1on @, for all i € {1,...,m}. In the second case,
by an additional decomposition and Proposition 2, we can assume that the
functions | D%r(u}| dist(u, 8Q, )1~ are hounded on @, for @ € N™ with
1< o] < p.

By the induction hypothesis, we can assume that F' is flat on § N (Z x
R™="). Next, by using induction on the number of Q,,, we can simply assume
that T = ), for some v. '

By Whitney's regularity condition for F', we have

F () = o(r(w)P~ 1) as dist(u, 8T) — 0,
for all k & N With__lh?| < p. By Proposition 3, the transformation G of the
restriction of F to S by means of the Ay-regular automorphism
$:T x R*™™ 3 (u,w) = (u,p(u) +w) €T x R*™
is & CP-Whitney field on T x 0 flat on 87 x 0.
By Remark 3,

(%) G*(u,0) = o(r(uw)P~*)  as dist(u,dT) — 0,
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for all k € N* with |k| < p. It suffices to construct a subanalytic CP-
function g : R* — R, €T on R\ (T x 0), such that D*g(u,0) = G"*(u,0)
as u € T for || < p, and g{u,w) may not vanish only i’.f we T a:nd
| < min(r(w), dist(y, 8T')); because then god will be the desired extension
of F (again by Proposition 3).

(1) Assume first that all the functions | Dor(u)| dist(u, AT l*i=1 where
1 < |a| € p, are bounded on T. For any P C T, let

LL(P) = {(ww) € P x R : [u] < r(u)}.

Let Q = {u € T : r(u) < dist(s, 8T)}. Then the functions | Do (w) |7 (u) =1,
where 1 < |a| < p, are bounded on @ and, by the formula in the proof of
Lemma 5, | D*(1/r){u)|r(u)/**! are bounded on Q. Let go : R* — R de-
note the extension of the field & constructed in Case I. Then, by the Taylor
formula, (+) implies

Degolu,w) = o(r(u)p‘w) as (T ® (u,w) — (c,0)
for all £ € N* with |« < p. Now we define

€ (8T) = 0,

glu,w) = nﬁbw(wi\/n —m/r(u))go(u,w) for (u,w) €T xR*™™.
i=1

It follows from Lemmas 7 and 6 that, for any ¢ € (@) N (0T) and x € N
with |x| < p,
Drglu,w) — 0 as 1L(@) 2 (w,w) — (¢,0).
Moreover, if jw| > r{u), then g(u,w) =0, so
Dog(u,w) — 0 as @ xR*™™ 3 (u,w) — (¢,0).
Let @' = {u € T : r(u) = dist(u,dT)}. By the proof of Lemma 5, the
functions
|D*(1/7)(w)| dist{u, 8T)~+
are bounded on Q. Since
D" go(u, w) = o(dist{u, 3P~ )
as T x R*™™ 3 {u,w) — (c,0) € (8T) x 0, for all x € N* with [s] < p, it
follows from Lemmas 7 and 6 that, for any ¢ € (8Q") N (0T) and k € N*
with |=| < p,
D¥glu,w) = 0  as (Q xR*™)nI(T) 2 (u,w) = (c,0).
On the other hand, if |w| > dist(u,8T) and v € @', then g(u,w) = 0, s0
Deglu,w) — 0 as Q x R*™™ 3 (u,w) — (¢, 0).
Consequently, D¥g(u,w) — 0 as dist(w,8T) ~ 0, for all x € N* with
|| < p; thus g extends by 0 to the required function.

for a € N™, |af < p,

icm

Whitney’s extension theorem 279

(2) Assume now that there exists ¢ € {1,... ,m} such that |87 [us| > 1
on T'. We shall check that r(u) > dist(u,dT) for each u € T. To see this,
take any point @ = (a1,...,ay) € T. Then

{teR: ((L:,...,(f),l..,am) € Th=(by,c1) N... N (b, cx),
where by < o1 S by <... < by <o Forsome L€ {1,...,k}, a; € (b, @), It
is now clear that, for any u; € (b, ),

T((Ll) Y IR ;am) 2 max(luz - bt|, |ui e Cl])

> dist((a1, ..., us, . .., ), OT),
hence r(a) > dist{a, 8T).

It suffices to put g(u,w) = go(u, w) to obtain the required function. This
completes the proof of the theorem.
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On the Yosida approximation
and the Widder—Arendt representation theorem

by

ADAM BOBROWSKI (Lublin)

Abstract. The Yosida approximation is treated as an inversion formula for the
Laplace transform.

0. Introduction. The Yosida approximation is a standard tool in prov-
ing generation theorems for semigroups ([7], [9], [12]). In [10], a related
power series was introduced and proven to yield an inversion formula for
the Laplace transform ([10], Theorems 2.2-2.3, or [7], pp. 221~223, Theo-
rems 6.3.3-6.3.6). Namely it was shown that the power series of the image
function converges to the original function. In this article we shall show that
this formula leads to a much simpler proof of a classical theorem of Widder
characterizing the Laplace transform of a bounded complex-valued func-
tion. Furthermore, we shall provide a power-series-approximation formula
for integrated Lipschitz continuous semigroups.

1. The Yosida approximation in Banach spaces. Let us start with
a definition.

DerINITION 1. Fix w € R. Let L be a Banach space and let (w,00) 3
A =+ f(A) be an infinitely differentiable function with values in I, satisfying

Mn!
) r(n) < 7
(1 1) ”f ()‘)H - ()\ — w)n+1’
where M > 0 is a constant. Put
fere) '
S Sl
1.2 ) = e HE 2 for p > w.
( ) g.ur(t) e l“l' e n1(n 'i' 1)[ or Li w

The functions g,,(¢} will be called the Yoside approzimation of f.
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