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Quasi-multipliers of the algebra of
approximable operators and its duals

by

MICHAEL GROSSER (Wien)

Abstract. Let A be the Banach algebra Ko(X) of approximable operators on an
arbitrary Banach space X. For the spaces of all bilinear continuous quast-multipliers of A
resp. its dual A" resp. its bidual A**, concrete representations as spaces of operators are
given.

1. Introduction. Let X be an arbitrary Banach space (we do not as-
sume any kind of approximation property for X ) and denote by A the al-
gebra Kq(X) of approximable operators on X (ie. of all operators which
are uniform limits of continuous linear operators from X to X having fi-
nite rank), equipped with the usual operator norm. A can be considered as
A-A-bimodule in the natural way; therefore, the first resp. second Banach
duals A* resp. A** of A become A-A-bimodules by the frst resp. second
adjoints of the actions of 4 on A.

In this article, we shall give representations of the quasi-multiplier spaces
of A, A* and A**, respectively. The result for A itself is known already for at
least 17 years ([G1, 3.24 and 3.26]): QM(A) is isometrically isomorphic to
L(X*) where g € L(X*) corresponds to the quasi-multiplier ¢4 determined
by ix o dy(a,b) == a* o g* ¢ b** o ux. (The notation is explained in detail in
the following section.) For the special case where X* satisfies the bounded
approximation property, this result was restated and proved recently in [AR,
Corollary 4.3].

A", being isometrically isomorphic to I(X*), can be considered either
a8 an 4-A-bimodule in the natural way or, with multiplication defined by
composition of operators, as a Banach algebra in its own right. Adopting the
first point of view (as is done in Section 3), QM(A*) is given as QM4 (A4*) =
B4(A, 4; A*) while in the second case (treated in Section 4), QM- (A*) =
B4 (A, A% A*) (the subscripts to QM are meant to specify which of the
two variants is intended).

1991 Mathematics Subject Classification: Primary 46H35; Secondary 47035, 46H25,
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To our knowledge, the first case has not yet been considered in the lit-
erature. Concerning the second case, Theorem 4.5 of [AR] presents a norm
decreasing natural linear embedding of L{X**) into QMa.(A"). Below, we
will describe QM4 (A*) as a subspace of L(X™) and show that the map en-
visaged in [AR] is in fact an isometric isomorphism between L(X™*) and
QM4+ (A%).

Concerning QM (A**), Theorem 4.8 of [AR] presents a norm decreasing
linear mapping of L(X*) onto QM(A**), provided that X has the bounded
approximation property. In Section 5, we will show—without any assump-
tion on X—that this map is even an isometric somorphism.

The basic idea in this paper consists in the observation that a space of
quasi-multipliers on some Banach bi-module V' can be considered as “iter-
ated” multiplier space, i.e. as the space of right multipliers on the space of
left multipliers on V or vice versa: QM (V) = M, (M;(V)) = M(M.(V)).
This method was used extensively in [G1]. It allows us to compute spaces
of quasi-multipliers on the basis of results on (one-sided) multiplier spaces.
Moreover, this way of proceeding does not require the existence of any kind
of approximate identity in the underlying Banach algebras. Contrary to
this, the authors of [AR] base a good deal of their arguments in Section 4
on (one-sided) identities in the bidual A** of A = Kp(X); essentially, the
existence of the latter is equivalent to the existence of certain kinds of ap-
proximate identities in 4 = Kp(X), which, in turn, is equivalent to X resp.
X* possessing the corresponding kind of hounded approximation property
{see [CLM, 11.3.10] and [G2, Theorem 4]). Therefore, the occurrence of the
bounded approximation property in Corollary 4.3 and Theorem 4.8 of [AR]
is due to the choice of methods employed there; it is not inherent to the
subject matter itself.

2. Notation and terminology. For any Banach space X, let X* denote
its Banach dual and 1x the canonical erubedding of X inte X**. Instead of
z'(z) (' € X*, 2 € X) we also write {z,z'). Foro' e X*, z e X, 2@z is
defined as the bounded linear operator (of rank one) on X acting according
toy — {y,2")z (y € X). Concerning the definition of the various kinds of
approximation properties, we refer to [CLM, p. 75.].

For any three Banach spaces XY, Z, L(X,Y) is defined as the Banach
space of bounded linear operators from X to Y and B(X,Y;Z) as the
Banach space of bounded bilinear operators from X x ¥ to Z, both equipped
with the supremum norm. L(X, X) is abbreviated to L(X). Further, F(X)
will denote the normed subspace of L(X) consisting of the operators of finite
rank and Ko(X) the closure of F(X) in L{X), that is, the Banach space of
approximable operators on X. Finally, I(X) denotes the space of integral
operators from X to X (in the sense of [CLM, 11.2.9 and V.3.1]), which
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is a Banach space with respect to the inte
A< I1F ]

For f € L(X,Y), the adjoint operator f* e L(y* X*) is defined b
(g, 1) = (fle)y') (z ¢ X, ¢ € V). If X is a’Ba.nach space ang
f € L{X™") then we denote by f* the operator in L(X*) defined lfy

fl’ = (ex)* o f* o tx+ =10 f*o,.
We have g* = g for g € L{X*).
For Banach spaces

gral norm f = ”f“I; we have

X,Y,Z, we have natural Isometric isomorphisins
BX,\)Y,2)x L{X,L(Y, 2)) = L(Y, L(X,Z2})

where the relation between corresponding elements B8, 5,8 of the respective
spaces is given by

Ale,y) = (B=)W) = BW)(x) (eX, yev).

Let A, B be Ba..na’mclll algebras. A Banach space V is called a left [right)]
Banach A-module if it is a left [right] A-module in the algebraic sense and
||cwH < llal-llv]l [resp. lvall < |[v|-|al]]. V is called & Banach A-B-bimodule if
it is a left Banach A-module and a right Banach B-module and (av)b = a(vh)
(ac A be B,veV)

.The Banach dual of a Banach module becomes a Banach module itself
(with “left” and “right” interchanged) by the adjoints of the action of the
Banach algebra on the given module. For example,

(e A veV, v eV
'V, W are left Banach A-modules then H 4(V, W) denotes the (closed)
subspace of L(V, W) consisting of all left A-module hoemomorphisms, that is,
of all bounded linear maps 7" from V into W satisfying T'(av) = aT'(v) (a €
A, v € V). For right B-modules V, W, H B(V,W) is defined in an analogous
way as the (Banach) space of right B-module homomorphisms from V into
W.If both V and W are A-B-bimodules then the space of A-B-bimodule
homomorphisms is defined by HF(V, W) = Ha(V, W) N HB(V, W) If also
Z is & Banach A-8-bimodule then we define BE(V,W,Z) as the (closed)
subspace of B(X,Y; %) cousisting of all 8 satisfying the relations
Blav,w) = afi(v,w), [, wbh) = Blv,wh {(a€ A beEB veEV,weW),
Moreover, H 4(A, V) and H?(B, V) are A-B-bimodules in a natural way for
any A-B-bimodule V ([G1, p. 46]). From the corresponding isomorphisms
In the case of (bi)linear operators, we get isometric isomorphisms
BA(A B;V) & Ha(A,HP(B,V)) & H” (B, H(4,V)).
Finally, we give the definitions of multiplier spaces of Banach modules:

I£V is a left Banach A-module [right Banach B-module] then we define the
space of right [left] multipliers on V as M, (V) := H4(A, V) [resp. My (V) =

{w,v'a) = (av,0")
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HB(B;V)]. Of course, if V is a Banach A-B-bimodule, both M,.(V) and
M;(V) make sense. Moreover, for any Banach A-B-bimodule V', we define
the space of quasi-multipliers on V as QM (V) := BB(A,B; V). That is,
m:Ax B — V is a quasi-multiplier if m is bounded, bilinear and satisfies
mlayay,b) = aim(as,b) and m{a,bibs) = m(a,by)be for all a,aq, a2 € A and
b,bi,ba € B.

3. Quasi-multipliers of the A-A-bimodule A*. According to Sec-
tion 2, QM4(A*) is given by Bi(4, A A") = HA(A, Ha(4,A%) or
BA(A, A; A*) = Hy(A, HA({A, A")). No matter which of the two variants
we choose we are led to determine spaces of the form H4(A4, W) as well as
H4(A,W) where A C L(X) and W C L(X*): in fact, A* = I{X™) C L(X™)
and—as we will see soon—also H4(A, A*) and H4(A, A*) are isomorphic
to subspaces of L(X*). Unfortunately, Theorems 3.4 and 3.18 of [G1] {giv-
ing concrete representations for Ha(A, V') resp. H B(B,V)) are not appli-
cable since they presuppose 4, B,V C L(Z) all for the same Banach space
Z. However, replacing A = Kp{X) by the “reverse” algebra A, := {a" |
a € Ko(X)} C L(X*), each left [right] A-module becomes a right [left]
A,-module by setting v-a* = a- v [resp. a* - v := v - a]. Now [G1, 3.1
warks perfectly well for H4r(A,, W) &2 Ha(4, W), yet [G1, 3.4] still cannot
be applied to Ha (A, W) & HA(4, W): A, does not satisfy condition [G1,
3.1(#)] required for B in [G1, 3.4]. Thus, we have to develop a variant of
[G1, 3.4] to deal with the latter case.

THEOREM 3.1. Let X be a Banach space, and B a subalgebra of L(X)
which is a Banach algebra with respect to some norm || ||g. Let V' be a linear
subspace of L(X*) which is a Banach space with respect to some norm || ||v
such that BpoV CV (with B, = {b* | b € B}) and ||b* cv[jy < ||b|s|v]v
is satisfied for allbe B,v e V.

Assume that there exist positive constants Cy, Ca, Cs satisfying

o]l < Chllvllv (veV),

18]l < Callbll5 (b€ B),

lz®a'ls < Cslallis’l] (zeX, s'e X" z@s' € B)
Finally, let B satisfy the following condition:
(%%) VzeX 3z e X*: z@2 € B and (z,2') =1
Then V' becomes a right B-module resp. a left B.-module by
v-bh=b"-v:=bov

and we have a linear isomorphism

HB(B,V)= Hp (B,,V) = {d e L(X*) | b*od eV}
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where d € L{X™) corresponds to the multiplier Ty 1 b r— b* od. Mo
: . Moreover,
il < CLCs)|Tai-

If, in addition, || [|v is equivalent to the operator norm | || on V then
d s Ty 1s even a topological isomorphism; more precisely: if |v]|v < Cyllv||
for allv € V. then also | Tu]| < CoCy)d]. -

Proof. Let d € L(X™) such that 5*od € V for all b € B. Then Ty b
d-b:=b*odis a right module homomorphism from B into V having closed
graph, hence Ty € ﬁIB(B, V). Moreover, Ty # 0 if d # 0 by (*x).

It remains to show that each T € Hp (B,,V) [ HB(B,V)] is of the
form Ty as described above. Let T'€ Hp (B,,V). Let 0 2 € X be given.
By (#), choose ©' € X™ such that s ® 2’ € B (ie. (¢®2') =2/ ®@uz ¢ B,)
and {z,2") = L. Let ¢ # 0 be any element of X* such that Yy ®ur € B,.
Then we have

Ty ® ) =T((y' ®uz) o (2' ®u2)) = (4 ® 12) o T(¢' @ 1)
=y @ [I(2' ® w)]*(ea).
Since z' does not occur on the left side, [T(z' ® wx)]*(u) is independent of
z' provided ¢ ® ¢’ € B and {z,¢') = L. Define ¢ : X — X** by c(z) =

[T(z' @ w)]*(ex) for z # 0 and ¢(0) := 0. It is easy to show that c is linear
(compare [G1, p. 115]). By definition, we have T(y' ® 1z) = ' ® ¢(z) for any
z®y € B. Moreover, ¢ is bounded:
Iyl le(2)l = 1y’ ® e(@)l| < Crlly’ ® efz)llv < CL [T (Y ® )|
SGTN - llz@y'llz < CiGIT| - =] - 1]
so we see that j[¢|| < C Cs|T].

Finally, for 0 £ b € B, 0 # z € X, choose 0 # 2’ € X* such that
r®z' € B. Then

@ ® [T (ea) = (2’ @ wz) o T(H*) = T((2' ® ) 0 b*)
= Tz’ & " (12)) = T(a' @ eb(z)) = =’ ® c(b{z)).

Therefore, [T'(0*)]" ¢ 1x == ¢o b, By taking adjoints and composing with
from the right, we get

T([)"') =yt ouxe o T(D*) = 0x” oT(b*)** Orxs = b o™ 0Ly

Thus, d = ¢* 0 1y« satisfies T = T and ||d| = |l¢| < C1C5|| T4
Assuming i|v]|lv £ Cyllv|| for all w € V' we conclude

ITa®)llv < Calib* o dll < Callbi] - ldll < C2Caliblislell,
which shows that || Ty|| < CaCylld]|. = |

Now we are prepared to determine @Ma(4*).
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THEOREM 3.2. Let X be a Banach space, A = Ko(X). Then QM4(A4¥)
15 linearly isomorphic to the space
Qe={ke L{X") |b*okoa® € I(X") foralla,be Ky(X)}

where k € @ gives rise to the quasi-multiplier 9(k) : (a,b) =+ b* o k o g*

(a,b € Ko(X)). Moreover, ||k|| < |9(k)|| for k € Q and ||9(k)| < k|7 for
ke I(X*).

If, in addition, X has the bounded [metric] approzimation property then
QMa(A*) is topologically [isometrically] isomorphic to I(X*) via 91,

Proof. Applying [G1, 3.18], we get

Hu(A, A") = Ha(A, I(X") & HA (A, I(X™))
2{de L(X*) |doa* € I(X*) forall a € Ky(X)} =: V.
Moreover, ||d|| < ||74|| where Ty : a — d o a*.

In the second step, we want to apply Theorem 3.1 to H A(A, V). Since
lld| < |[Tall for d € V, it follows that A and V' (the latter equipped with the
norm of H4(A, A*)) satisfy the requirements of Theorem 3.1. We obtain

QMa(A*) = HAA,V) = Hy (4,,V)
2{ke L(X*)|b* ok eV for all b e Kp(X)}
={k€ L{X*) |V okoa* € I(X™) for all a,b € Ko(X)} =: Q.

Again, [[k[| is dominated by the norm of (a, b) s b*ckoa® for k € Q. Only
the last assertion remains to be shown, |9(k)|| < ||k|; being an immediate
consequence of the properties of the integral norm. If X has the bounded

[metric] approximation property then A has a bounded left approximate

identity [of bound 1]. By [CLM, II1.3.11], it follows that A @4 A = A and
hence, by [CLM, I11.3.9.2),

Ha(A H4A,A") = Ha(A4,(AB4 A)*) = Hp(A A) = (AB A = 4*.

Of course, we could as well have used Theorem 3.1 for the first step of
the proof and [G1, 3.18] for the second:

HAYA,A*) = BA(AI(X*)) = Ha (A, I(X™))

S{de L(X") | b od € I(X") for all b € Ko(X)} = W;
QMA(A*) = Hs(A, W) = HA(A,, W)

ke L(X*) [ koa* €W forall g € Hy(X)}

={k € L(X*)| b ckoa* € I(X*) for all a,b & E(X)}=0Q.

Sinc.e I(X*) is an ideal in L(X*), Q & QM 4(A*) is at least as large as
I(X™) itself is. The question remains open if ¢ can contain I(X*) prop-

erly; of course, X would necessarily fail having the bounded approximation
property in such a case.
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4. Quasi~-multipliers of the Banach algebra A*. In this section,
we will determine a concrete representation of the space QMa. (A*) =
BAL(A* A% A*) = Hao (A*, HY (4%, A%).

TueoREM 4.1. Let X be o Banach space, A = Ky(X). Then QM4-(A*)
is isometrically 1somorphic to L(X**} where h € L(X™*) induces on A* the
quasi-multiplier

8(h): (f,9) = (ho f*)Y og (f,g€4").

Proof. In the first step, we are going to represent AT(4*, A*) as a
space of operators by showing that H A4 AY) = H A (A*., A*) '2
H4(A*, A*). For the latter space, a concrete representation is readily avail-
able: by [G2, Theorem 1.A), it is isometrically isomorphic to L(X*) where
g € L(X*) corresponds to the multiplier Sy : f = go f.

Yo let us start by taking § € HA"(4*, A*). The algebra F(X) of con-
tinuous linear operators on X having finite rank is dense in Ko{X) by the
very definition of Ko(X). Since F(X), := {o* | a € F(X)} is a subalgebra
of A*, it follows that

S(a-f)=5(foa")=5(f)ea" =a 5(f)

for every a € F(X), f € I(X*). By continuity with respect to the oPerat?r
porm on A and the integral norm on I(X*), the equation above is vahfi
even for a € Ko{X), hence § € Hy(A*, A") = H A-(A*, A*). Conversely, if
S € Ha(A*, A*), then S is of the form 5, : f go f by [G2, Theo:em 1.A]
(for g € L(X*)). Obviously, Sy(fio f2) = S,(f1)o fa for f1, fo € A7, and so
S e HA(Ar, A"). _

In the second step, we apply [Gl, 3.4] to derive‘ a represer}tatlon of
H 4+ (A*, L{X*)) as a space of operators on X™*. Routine calculations sho::v
that the canonical left module action of f € A" on g € L(X )
(=2 HA" (A, A)) is given simply by f-9 = f o g and that all the conditions

" required in [(1, 3.4] are satisfied. We obtain

Hau{A* LX) ) )
o (h& L{X*) | VfeI(X"): im(f** o h* o sx+) Cex+(X™)}
Here, im(F) denotes the image of ' for any map F. Now every f € A™ =

I{X*) is weakly compact ([CLM, V.3.6]). Consequently, f** is of the form
tx+ © fo for some fo € L(X**, X) and thus

Ha- (4, L(X")) 2 L{X™).

By this isomorphism, h € L(X*) corresponds to the multiplier Tj €
H,.(A*, L(X")) defined by :
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Th(f) = fooh™ouxs =1x" 0uxs 0 foo h* o uxs
=ix oo oLy =ex*o(ho f*) orxs
=(ho f** (f € I(X*), fo as above).
Concerning the norm of T3, it also follows from [G1, 3.4] that [|T5]| = ||3].
Due to the form of the natural isomorphism B4 (A*, A*; AY) =
Hy-(A* B4 (A%, A7), h € L(X**) corresponds to the following multiplier
8(h) of the Banach algebra A*:
6(h): (£,9) = Sn()(9) = Tu(f) o g = (ho f*) og
(flge A" =I(X")). m

Theorem 4.5 of [AR] states that & is a norm decreasing injective linear
map from L(X™*") into QMa-(4*%).

5. Quasi-multipliers of A**. Based on the techniques developed so
far, it is easy to determine QM (A**).

~ THEOREM 5.1. Let X be a Banach space, A = Ko(X). Then QM (A*)
is tsometrically isomorphic to L(X*) where g € L{X*) induces the quasi-
maultiplier w(g) defined by

(f,w(g)(a,b))= (b,g0a*0f) (a':bGA: fE-A*)'

Proof. Using once again the isometric isomorphism g r Sy between
L{X*} and H4(A*, A*) ([G2, Theorem 1.A]) we deduce that

) QM(A™) = B4 (4, 4; A™)

(2) > Ha (A, HA(4, 4™))
(3) 22 Ha(A, Hy(A*, A%
(4) = Ha(A, L(X*)

(5) = HA (A, L(X*))
(6) =~ L(X*).

The.last step from (5) to (6} was performed on the basis of 3.18 of [G1]. All
the isomorphisms occurring above are isometric.

To de’iermine the explicit form of the composed isomorphism, we denote
by m « M +> 7 the natural correspondence
B (A, A;A™) = Ha(4, HA4(A, A™)) = Ha(A4, Ha(A*, A%)).
It is given by
(fimla,B) = {f,A(@)®) = b @) () (abe 4, fe A").
Now let us start with g € L(X*) and work bottom-up from (6) to (1). By

[G1, 3.18], g corresponds to (a* v goa*) € H4(A,, L{X*}) in line {5) resp.
(@ goa*) € Ha(4,L{X*)) in line (4). Passing from (4) to (3) involves
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the isomorphism h Sy, = (f — h o f). Therefore, in line (3) we arrive at
the element 7, acting according to

Mg @ goa® = Sgea- = (f = (goa*)o f)
or

Mg(a)(f) = Sgoas(f) =goa*o f.
Finally, we get the following explicit formula for the quasi-multiplier mg
corresponding to g € L{X*):

(fimgla,b)) = (b,goa*o f) (a,bE A feA*) u

There is no explicit formula for m, involving only a, b, ¢ since, in general,
A™ is not a subspace of some L(Y) with ¥ a dual of X of any order—as
was the case for A and A*.

In Section 4 of [AR], the authors define a map

A MJ(A**) . HA(A’A**) — QM(A**)

by A(S)(a,b) := aS(b) (A** is viewed as an A-A-bimodaule here). It is imme-
diate that modulo the isometric isomorphism HA({A, 4**) 2 H4(A*, A*) =
L(X*) established in Theorem 1.A of [G2], A is the same map as w. Theorem
4.8 of [AR] states that X is norm decreasing and surjective, provided X™ has
the bounded approximation property. Theorem 5.1 above shows that A is
even an isometry, and this fact is true for any Banach space X. The remark
following Theorem 4.8 in [AR] says that A is a topological isomorphism
if, for example, [(X*) = N(X*) (the latter denoting the space of nuclear
operators on X*) and that X is an isometric isomorphism if, in addition,
X* has the metric approximation property. Theorem 5.1 above shows that
these special conditions on X are not necessary for A to be a topological
resp. isometric isomorphism. We should like to point out at this place that
there is an obvious misprint in the remark of [AR] quoted above: In the last
sentence, L(X**) should be replaced by L(X™) twice.

As we already mentioned in the introduction, the respective proofs of
Theorem 4.2, Corollary 4.3 and Theorem 4.8 of [AR] are based on the re-
lations between the multiplier spaces of 2 bimodule and its bidual. This
is exactly the place where the bounded approximation property comes in:
It is true that those relations form a valuable tool for studying multiplier
spaces (compare Chapter 4 of [G1], especially 4.14 and 4.17) but most of
the respective theorems require some kind of approximate identity in the
algebras involved, and this amounts to the approximation property for X or
X* if Kp(X) is the relevant Banach algebra. In the present paper, we have
avoided using the above-mentioned relations between biduals and multiplier
spaces. Thereby Theorems 4.1 and 5.1 and the first part of Theorem 3.2 are
valid in full generality concerning.X.
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