

- [7] D. E. Grow and Č. V. Stanojević, Convergence and the Fourier character of trigonometric transforms with slowly varying convergence moduli, Math. Ann. 302 (1995), 433-472.
- [8] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (in Russian).
- [9] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesque, Bull. Internat. Acad. Polon. Sci. Lettres Sér. (A) Sci. Math. 1923, 83-86.
- [10] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [11] F. Schipp, Sidon-type inequalities, in: Approximation Theory, Lecture Notes in Pure and Appl. Math. 138, Marcel Dekker, New York, 1992, 421–436.
- [12] F. Schipp, W. R. Wade and P. Simon (with assistance from J. Pál), Walsh Series, Adam Hilger, Bristol, 1990.
- [13] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160.
- [14] Č. V. Stanojević, Tauberian conditions for the L₁-convergence of Fourier series, Trans. Amer. Math. Soc. 271 (1982), 234-244.
- [15] —, Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283-286.
- [16] Č. V. Stanojević and V. B. Stanojević, Generalizations of the Sidon-Telyakovskii theorem, Proc. Amer. Math. Soc. 101 (1987), 679-684.
- [17] N. Tanović-Miller, On integrability and L¹ convergence of cosine series, Boll. Un. Mat. Ital. B (7) 4 (1990), 499-516.
- [18] S. A. Telyakovskii, On a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317-328 (in Russian).
- [19] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. (2) 12 (1913), 41-70.
- [20] A. Zygmund, Trigonometric Series, University Press, Cambridge, 1959.

Deptartment of Numerical Analysis Eötvös L. University Múzeum krt. 6-8 1088 Budapest, Hungary E-mail: fridli@ludens.elte.hu

> Received October 23, 1996 Revised version January 30, 1997

(3761)

STUDIA MATHEMATICA 125 (2) (1997)

On strong generation of $B(\mathcal{H})$ by two commutative C^* -algebras

by

R. BERNTZEN (Münster) and A. SOLTYSIAK (Poznań)

Abstract. The algebra $B(\mathcal{H})$ of all bounded operators on a Hilbert space \mathcal{H} is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding dim \mathcal{H} . This answers Problem 8 posed by W. Żelazko in [6].

Let \mathcal{H} be a complex Hilbert space and let \mathcal{S} be a subset of the algebra $B(\mathcal{H})$ of all bounded linear operators on \mathcal{H} . We say that the algebra $B(\mathcal{H})$ is strongly generated by \mathcal{S} if the smallest subalgebra of $B(\mathcal{H})$ closed in the strong operator topology and containing \mathcal{S} coincides with $B(\mathcal{H})$. The first result on the strong generation of $B(\mathcal{H})$ was given by C. Davis in [2]. He proved, in the case when the Hilbert space \mathcal{H} is separable, that the algebra $B(\mathcal{H})$ is strongly generated by two unitary operators. Later, E. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal have shown ([3]) that two Hermitian operators strongly generate $B(\mathcal{H})$, which implies that $B(\mathcal{H})$ is singly generated as a von Neumann algebra. See also [5], pp. 160–163, for other results concerning generation of $B(\mathcal{H})$ when \mathcal{H} is separable. These results show that for a separable Hilbert space \mathcal{H} the algebra $B(\mathcal{H})$ is strongly generated by two commutative C^* -algebras. In [6] W. Zelazko raised the following

PROBLEM. Is the algebra $B(\mathcal{H})$ of all operators on a complex Hilbert space \mathcal{H} always generated in the strong operator topology by two commutative C^* -algebras?

We show that the answer to this question is positive. Namely we prove the following

Theorem. Let $\mathcal H$ be a complex Hilbert space. The algebra $B(\mathcal H)$ is strongly generated by a single one-dimensional (orthogonal) projection and a commuting family of unitary operators with cardinality not exceeding dim $\mathcal H$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47D25; Secondary 47C15, 47A15. Research supported by the Heinrich Hertz-Stiftung.

We need the following simple

Lemma. Every non-empty set I can be given a structure of an Abelian group.

Proof. If the set I is either finite or countable, then the result is clear. Assume that I is uncountable. Take the family \mathcal{M} of all subsets J of I having an Abelian group structure and order it by the following relation:

$$J_1 \leq J_2$$
 if and only if J_1 is a subgroup of J_2 .

The relation \leq is a partial order in \mathcal{M} . Notice that \mathcal{M} is non-empty because every singleton $\{i_0\} \subset I$ can be given a group structure. If (J_α) is a chain in \mathcal{M} , then $J = \bigcup_{\alpha} J_{\alpha}$ is an Abelian group containing every J_{α} as a subgroup. By the Kuratowski–Zorn lemma \mathcal{M} contains a maximal element J_0 . If the cardinality of J_0 is smaller than that of I, then the sets $I \setminus J_0$ and I have the same cardinality. Hence we can find a copy J_1 of J_0 in $I \setminus J_0$, i.e. there exists a one-to-one mapping $\varphi: J_0 \to I \setminus J_0$ with $J_1 = \varphi(J_0)$. Identifying $J_0 \cup J_1$ with $\mathbb{Z}_2 \times J_0$ via the map

$$(\varepsilon,j)\mapsto \left\{ egin{array}{ll} j & ext{if } arepsilon=0, \ arphi(j) & ext{if } arepsilon=1, \end{array}
ight.$$

we get an Abelian group structure on $J_0 \cup J_1$ with J_0 as a proper subgroup, contradicting the maximality of J_0 . Therefore, J_0 must have the same cardinality as I and via a bijection from J_0 onto I we can define an Abelian group structure on I.

Proof of the Theorem. Let $\{e_i: i \in I\}$ be an orthonormal basis for the Hilbert space \mathcal{H} . By the Lemma we can introduce an Abelian group structure on I. Denote the group operation by + and let i_0 be the zero element. Let P_0 be the (orthogonal) projection on the one-dimensional subspace spanned by e_{i_0} . For every $j \in I$ we define a unitary operator S_j by $S_j(e_i) = e_{i+j}$ $(i \in I)$. Commutativity of the group I implies that the operators S_j mutually commute. Let f be an arbitrary vector in \mathcal{H} of norm one and let P_f be the one-dimensional projection defined by

$$P_f(x) = \langle x, f \rangle f.$$

We will show that P_f belongs to the von Neumann algebra \mathcal{A} generated by P_0 and $\{S_j : j \in J\}$. Since we can approximate f by elements of the form $g = \sum_{k=1}^n \lambda_k e_{i_k}$ we can approximate P_f uniformly by operators P_g given by $P_g(x) = \langle x, g \rangle_g$ with g as above. But we have

$$P_g(x) = \sum_{k=1}^n \sum_{l=1}^n \overline{\lambda}_k \lambda_l \langle x, e_{i_k} \rangle e_{i_l} = \sum_{k=1}^n \sum_{l=1}^n \overline{\lambda}_k \lambda_l S_{i_l} P_0 S_{-i_k}(x),$$

which implies that $P_g \in \mathcal{A}$ and hence $P_f \in \mathcal{A}$ as well. Consequently, every finite-rank projection is in the algebra \mathcal{A} . Since every projection P is a limit

in the strong operator topology of the net of all finite-rank projections with ranges included in the range of P (cf. [4], p. 106, Lemma 3.3.2) we find that \mathcal{A} contains all projections. Since $B(\mathcal{H})$ is the norm closed linear span of all projections we conclude that $\mathcal{A} = B(\mathcal{H})$ (see [1], p. 280, Prop. 4.8).

COROLLARY 1. $B(\mathcal{H})$ is generated in the strong operator topology by two commutative C^* -algebras, one of them being one-dimensional.

Remark. Using a similar method to the one in the proof above we can give another proof of the fact that in the separable case $B(\mathcal{H})$ is singly generated as a von Neumann algebra (see [3]).

Choose an orthonormal basis $(e_n)_{n=0}^{\infty}$ and let S be the unilateral shift, i.e. $S(e_n) = e_{n+1}$ for $n = 0, 1, \ldots$ Then $S^*S - SS^*$ is the projection P_0 onto span $\{e_0\}$. Every operator of the form $P_g(x) = \langle x, g \rangle g$ with $g = \sum_{k=0}^n \lambda_k e_k$ can be written as

$$P_g = \sum_{k=0}^n \sum_{l=0}^n \overline{\lambda}_k \lambda_l S^l P_0 S^{*k}.$$

Hence P_g is in the *-algebra generated by S. As above, this implies that every one-dimensional projection and therefore every projection is in the von Neumann algebra \mathcal{A} generated by S. Hence $\mathcal{A} = B(\mathcal{H})$.

Now we show that in the non-separable case the Theorem is the best possible result with respect to the number of generators.

PROPOSITION 1. Let \mathcal{H} be a non-separable Hilbert space. If $\{T_j: j \in J\}$ is a family of operators of cardinality smaller than dim \mathcal{H} , then it has a nontrivial common invariant subspace. In particular, the von Neumann algebra generated by $\{T_j: j \in J\}$ is a proper subalgebra of $B(\mathcal{H})$.

Proof. We may suppose that the identity belongs to the family $\{T_j: j \in J\}$. Fix an arbitrary non-zero vector $x \in \mathcal{H}$ and define

$$M = \operatorname{span}_{\mathbb{Q}} \{ T_{j(1)} \dots T_{j(n)}(x) : j(1), \dots, j(n) \in J; \ n \in \mathbb{N} \},$$

where $\operatorname{span}_{\mathbb{Q}}$ denotes the linear span over the field \mathbb{Q} of rational numbers. Then the closure \overline{M} of M is a closed subspace of \mathcal{H} containing x with $T_j(\overline{M}) \subset \overline{M}$ for every $j \in J$, hence $(0) \neq \overline{M}$ is a common invariant subspace of $\{T_j: j \in J\}$. Let $\{e_i: i \in I\}$ be an orthonormal basis for \overline{M} . Then, for each $i \in I$, we can find an element $x_i \in M$ such that $||e_i - x_i|| < 1/2$. This implies that the mapping $i \mapsto x_i$ from I into M is one-to-one, and hence, $\operatorname{card} I \leq \operatorname{card} M$. Since the cardinality of M is at most $\max\{\aleph_0, \operatorname{card} J\} < \dim \mathcal{H}$, we see that \overline{M} is a proper closed subspace of \mathcal{H} .

Finally, we show that in the Theorem one cannot replace the strong operator topology by the uniform topology.

icm

PROPOSITION 2. Let $\{T_{\lambda} : \lambda \in \Lambda\}$ be a family of operators on an infinite-dimensional Hilbert space \mathcal{H} such that the algebra generated by it is uniformly dense in $B(\mathcal{H})$. Then the cardinality of Λ is at least $2^{\dim \mathcal{H}}$.

Proof. Since the algebra generated by $\{T_{\lambda} : \lambda \in \Lambda\}$ is uniformly dense in $B(\mathcal{H})$, the same is true for

$$\mathcal{A}_0 = \operatorname{span}_{\mathbb{Q}} \{ T_{\lambda(1)} \dots T_{\lambda(n)} : \lambda(1), \dots, \lambda(n) \in \Lambda; \ n \in \mathbb{N} \},$$

which has cardinality at most $\max\{\aleph_0, \operatorname{card} \Lambda\}$.

Now choose an orthonormal basis $\{e_i: i \in I\}$ of \mathcal{H} . For every subset J of I let P_J denote the projection onto $\overline{\operatorname{span}}\{e_j: j \in J\}$. For every $J \subset I$ we can find $T_J \in \mathcal{A}_0$ with $\|P_J - T_J\| < 1/2$. Since $\|P_J - P_{J'}\| = 1$ for $J \neq J'$, we deduce that the mapping $J \mapsto T_J$ from the family of all subsets of I into \mathcal{A}_0 is one-to-one, hence $\operatorname{card} \mathcal{A}_0 \geq 2^{\dim \mathcal{H}}$. This implies $\operatorname{card} \Lambda \geq 2^{\dim \mathcal{H}}$.

COROLLARY 2. The C^* -algebra generated by a countable family of operators on a separable Hilbert space $\mathcal H$ is always a proper subalgebra of $B(\mathcal H)$.

Acknowledgements. The second author wants to thank Professor George Maltese and Doctor Rainer Berntzen for their warm hospitality during his visit to the Westfälische Wilhelms-Universität where this paper was written.

References

- [1] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
- [2] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc. 6 (1955), 970-972.
- [3] E. A. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Quadratic operators and invariant subspaces, Studia Math. 88 (1988), 263-268.
- [4] G. K. Pedersen, Analysis Now, Springer, New York, 1995.
- [5] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, Berlin, 1973.
- [6] W. Zelazko, Generation of B(X) by two commutative subalgebras—results and open problems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 363-367.

Mathematisches Institut Westfälische Wilhelms-Universität Einsteinstraße 62 48149 Münster, Germany E-mail: berntze@escher.uni-muenster.de Faculty of Mathematics and Computer Science
Adam Mickiewicz University
ul. Matejki 48/49
60-769 Poznań, Poland
E-mail: asoltys@math.amu.edu.pl

Received December 2, 1996 (3791)

STUDIA MATHEMATICA 125 (2) (1997)

Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces

bу

DANIEL AZAGRA (Madrid)

Abstract. We prove that for every infinite-dimensional Banach space X with a Fréchet differentiable norm, the sphere S_X is diffeomorphic to each closed hyperplane in X. We also prove that every infinite-dimensional Banach space Y having a (not necessarily equivalent) C^p norm (with $p \in \mathbb{N} \cup \{\infty\}$) is C^p diffeomorphic to $Y \setminus \{0\}$.

In 1966 C. Bessaga [1] proved that every infinite-dimensional Hilbert space H is C^{∞} diffeomorphic to its unit sphere. The key to proving this astonishing result was the construction of a diffeomorphism between Hand $H \setminus \{0\}$ which is the identity outside a ball, and this construction was possible thanks to the existence of a C^{∞} non-complete norm in H. In [5], T. Dobrowolski developed Bessaga's non-complete norm technique and proved that every infinite-dimensional Banach space X which is linearly injectable into some $c_0(\Gamma)$ is C^{∞} diffeomorphic to $X \setminus \{0\}$. More generally, he proved that every infinite-dimensional Banach space X having a C^p non-complete norm is C^p diffeomorphic to $X \setminus \{0\}$. If in addition X has an equivalent C^p smooth norm $\|\cdot\|$ then one can deduce that the sphere $S = \{x \in X : ||x|| = 1\}$ is C^p diffeomorphic to any of the hyperplanes in X. So, regarding the generalization of Bessaga and Dobrowolski's results to every infinite-dimensional Banach space having a differentiable norm (resp. C^p smooth norm, with $p \in \mathbb{N} \cup \{\infty\}$), the following problem naturally arises: does every infinite-dimensional Banach space with a C^p smooth equivalent norm have a C^p smooth non-complete norm? Surprisingly enough, this seems to be a difficult question which still remains unsolved. Without proving the existence of smooth non-complete norms we show that every infinitedimensional Banach space X with a Fréchet differentiable (resp. C^p smooth) norm $\|\cdot\|$ is diffeomorphic (resp. C^p diffeomorphic) to $X\setminus\{0\}$, and we deduce

¹⁹⁹¹ Mathematics Subject Classification: 58B99, 46B20.

Key words and phrases: C^p smooth norm, spheres and hyperplanes in Banach spaces. Supported in part by DGICYT PB 93/0452.