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On strong generation of B(H)
by two commutative C*-algebras

by

K. BERNTZEN (Minster) and A, SOBETYSIAK (Poznaf)

Abstract. The algebra B(H) of all bounded operators on a Hilbert space H is gener-
ated in the strong operator topology by a single one-dimensional projection and a family
of commuting unitary operators with cardinality not exceeding dim H. This answers Prob-
lem 8 posed by W. Zelazko in [6).

Let M be a complex Hilbert space and let S be a subset of the algebra
B(H) of all bounded linear operators on #. We say that the algebra B(H)
iy strongly generated by S if the smallest subalgebra of B(H) closed in the
strong operator topology and containing S coincides with B(H}. The first
result on the strong generation of B(H) was given by C. Davis in [2]. He
proved, in the case when the Hilbert space M is separable, that the algebra
B(H) is strongly generated by two unitary operators. Later, E. Nordgren,
M. Radjabalipour, H. Radjavi, and P. Rosenthal have shown ([3]) that two
Hermitian operators strongly generate B(?), which implies that B(H) is
singly generated as a von Neumann algebra. See also (5], pp. 160-163, for
other results concerning generation of B(H) when 7 is separable. These re-
sults show that for a separable Hilbert space 7 the algebra B (H) is strongly
generatéd by two commutative C*-algebras. In [6] W. Zelazko raised the fol-
lowing

PROBLEM. Is the algebra B(H) of all operators on a comnplex Hilbert
space H always generated in the strong operator topology by two commutative
C*-algebras?

We show that the answer to this question is positive. Namely we prove
the following :

THEOREM. Let ‘H be a complez Hilbert space. The algebra B{H) is
strongly generated by o single one-dimensional (orthogonal) projection and a
commating family of unitary operators with cardinality not exceeding dim K.
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We need the following simple

LEMMA. Fuery non-empty set I can be given a structure of an Abelian
group.
Proof. If the set I is either finite or countable, then the result is clear.

Assume that I is uncountable. Take the family M of all subsets J of I
having an Abelian group structure and order it by the following relation:

J1 £ 2

The relation < is a partial order in M. Notice that M is non-empty because
every singleton {ig} C I can be given a group structure. If (J,) is a chain in
M, then J =, Jo is an Abelian group containing every J. as a subgroup.
By the Kuratowski-Zorn lemma M contains a maximal element Jp. If the
cardinality of Jy is smaller than that of I, then the sets I \ Jo and I have
the same cardinality. Hence we can find a copy Jy of Jy in I'\ Jp, i.e. there
exists a one-to-one mapping ¢ : Jog — I\ Jo with J1 = ©(Jy). Identifying
Jo U Ji with Zo x Jg via the map

(Ej)?—){j ife=0,

if and only if Ji is a subgroup of Js.

w(f) fe=1,

we get an Abelian group structure on Jy U J; with Jy as a proper subgroup,
contradicting the maximality of Jo. Therefore, Jy must have the same car-
dinality as I and via a bijection from Jy onto I we can define an Abelian
group structure on I.

Proof of the Theorem. Let {e; : i € I} be an orthonormal ba-
sis for the Hilbert space . By the Lemma we can introduce an Abelian
group structure on I. Denote the group operation by 4 and let ¢p be the
zero element. Let Py be the (orthogonal) projection on the one-dimensional
subspace spanned by e;,. For every j € I we define a unitary operator Sy
by Si(e:) = eir; (¢ € I). Commutativity of the group I implies that the
operators S; mutually commute. Let f be an arbitrary vector in H of norm
one and let Py be the one-dimensional projection defined by

Pr(z) = (=, f)f.
We will show that Py belongs to the von Neumann algebra A generated by
Py and {S; : § € J}. Since we can approximate f by elements of the form
9= 3 ro1 Ak€i, Wecan approximate Py uniformly by operators P, given by
 Py(z) = (z, g)g with g as above. But we have

noon non
Pg(w) = szk)\l(m, ei,ﬂ)ei, ES ZZ‘X&)‘ESE'LPUS—% (’B),

k=1 =1 k=1 [=1
which implies that P, € .A and hence Py € A as well. Consequently, every
finite-rank projection is in the algebra .A. Since every projection P is a limit
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in the strong operator topology of the net of all finite-rank projections with
ranges included in the range of P (cf. [4], p. 106, Lemma 3.3.2) we find that
A contains all projections. Since B(H) is the norm closed linear span of all
projections we conclude that A = B(H) (see [1], p. 280, Prop. 4.8).

COROLLARY 1. B(M) is generated in the strong operator topology by two
commutative C"-algebras, one of them being one-dimensional.

Remark. Using a similar method to the one in the proof above we
can give another proof of the fact that in the separable case B(H) is singly
generated ag a von Neumann algebra (see [3]).

Choose an orthonormal basis (e,),- and let S be the unilateral shift,
ie. S{en) = ens1 for n=0,1,... Then §*SF~ §5* is the projection Py onto
span{eg}. Every operator of the form Py(z) = (z, g)g with g = 37, Auer
can be written as

K n
P, = Z ZX;;)&{SIPQS*;C.
k=0 [=0
Hence P, is in the -algebra generated by S. As above, this implies that
every one-dimensional projection and therefore every projection is in the
von Neumann algebra A generated by S. Hence A = B(H).

Now we show that in the non-separable case the Theorem is the best
possible result with respect to the number of generators.

PROPOSITION 1. Let M be a non-separable Hilbert space. If {T; :j € J}
is a family of operators of cardinality smaller than dim M, then it has a non-
trivial common invariant subspace. In particular, the von Neumann algebra
generated by {T; : j € J} is a proper subalgebra of B(H).

Proof. We may suppose that the identity belongs to the family
{T;: j € J}. Fix an arbitrary non-zero vector z € H and define

M =spang{Tyu) ... Tjny(@) : §(1),. ., i(n) € J; ne N},

where spang denotes the linear span over the field Q of rational numbers.
Then the closure M of M is a closed subspace of H containing z with
T;(M) c M for every § € J, hence (0} 5 M is a common invariant subspace
of {Tj : j € J}. Let {e; : i € I} be an orthonormal basis for M. Then, for
cach i € I, we can find an element z; € M such that |e; — @[] < 1/2. This
implies that the mapping i — z; from I into M is one-to-one, and hence,
card I < card M. Since the cardinality of M is at most max{Xg,cardJ} <
dim M, we see that M is a proper closed subspace of M.

Finally, we show that in the Theorem one cannot replace the strong
operator topology by the uniform topology.
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PROPOSITION 2. Let {Th : A€ A} bea family of operators on an infinite-
dimensional Hilbert space H such that the algebra generated by it 18 uniformly
dense in B(H). Then the cardinality of A is at least gdim ¢,

Proof. Since the algebra generated by {Tx : A € A} is uniformly dense
in B(H), the same is true for

Ag = spanQ{T;\(l) . 'T)\(n) : )\(1), R )\(TL) eA;ng N},

which has cardinality at most max{Ro, card A}.

Now choose an orthonormal basis {e; : ¢ € I} of 7. For every subset J
of I let Py denote the projection onto span{e; : j € J}. Forevery J C I we
can find Ty € Ag with ||[Py — Tri| < 1/2. Siunce ||Py — Py =1 for J # J',
we deduce that the mapping J — T from the family of all subsets of I into
Ag is one-to-one, hence card Ay 2 pdim M This implies card A > 24m™H,

ClOROLLARY 2. The C*-algebra generated by a countable family of oper-
ators on @ separable Hilbert space M is always a proper subalgebra of B(H).
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Diffeomorphisms between spheres and hyperplanes
in infinite-dimensional Banach spaces

by

DANIEL AZAGRA (Madrid)

Abstract. We prove that for every infinite-dimensional Banach space X with a
Fréchet differentiable norm, the sphere Sy is diffeomorphic to each closed hyperplane
in X, We also prove that every infinite-dimensional Banach space ¥ having a (not neces-
sarily equivalent) C® norm (with p € NU {oc}) is CF diffeomorphic to ¥ Y {0}.

In 1966 C. Bessaga [1] proved that every infinite-dimensional Hilbert
space H is € diffeomorphic to its unit sphere. The key to proving this
astonishing result was the construction of a diffeomorphism between H
and H \ {0} which is the identity outside a ball, and this construction
was possible thanks to the existence of a ¢ non-complete norm in H. In
[5], T. Dobrowolski developed Bessaga’s non-complete norm technique and
proved that every infinite-dimensional Banach space X which is linearly
injectable into some ¢g(T) is C* diffeomorphic to X \ {0}. More gener-
ally, he proved that every infinite-dimensional Banach space X having a C?
non-complete norm is C? diffeomorphic to X \ {0}, If in addition X has
an equivalent CF smooth norm || - || then one can deduce that the sphere
S={z € X:|z|| = 1} is C? diffeomorphic to any of the hyperplanes in X.
So, regarding the generalization of Bessaga and Dobrowolski’s results to ev-
ery infinite-dimensional Banach space having a differentiable norm (resp. C?
smooth norm, with p € N U {oo}), the following problem naturally arises:
does every infinite-dimensional Banach space with a CF smooth equiva-
lent norm have a CP smooth non-complete norm? Surprisingly encugh, this
seems to be a difficult question which still remains unsolved. Without prov-
ing the existence of smooth non-complete norms we show that every infinite-
dimensional Banach space X with a Fréchet differentiable (resp. C¥ smooth)
norm ||-|| is diffeomorphic (resp. CF diffeomorphic) to X'\{0}, and we deduce
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