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Non-~reflexive pentagon subspace lattices
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M., 8. LAMBROU (Iraklion) and
W. E. LONGSTAFF (Nedlands, Western Australia)

Dedicated to Paul K. Halmos
in celebration of his 80th birthday

Abstract. On o complex separable (necessarily infinite-dimensional) Hilbert space H
any three subspaces K, I and M satisfying KNM = (0), KvVL = H and L C M giverige to
what has been called by Halmos [4, 5] a pentagon subspace lattice P = {(0), K, L, M, H}.
Then n = dimM © L is called the gap-dimension of P. Examples are given to show
that, if n < oo, the order-interval (L, M]pasagp = {N € LatAlgP : LE N C M} in
Lat Alg P can be either (i) a nest with n -+ L elements, or (i) an. atomic Boolean algebra
with n atoms, or (iil) the set of all subspacey of H between L and M. For n > 1, since
Lat AlgP = P U [L, M]pas alg», all such examples of pentagouns are non-reflexive, the
examples in case (i) extremely so.

1. Introduction. On a complex separable Hilbert space H any three
(closed) subspaces K, L and M satisfying K N M = (0), KV L = H and
L ¢ M give rise to what has been called by Halmos [4, 5] a pentagon
subspace lattice P = {(0), K, L, M, H}. Here inclusion is the partial order
and a labelled Hasse diagram of 7 is given in Figure 1.

Vi
M
K
L
V)
Fig. 1

1991 Mathematics Subject Classification: Primary 4TA1S.



icm

188 M. 8. Lambrou and W. E. Longstaff

(This poset is non-modular, so the underlying space H is necessarily infinite-
dimensional.) Call n = dim M © L the gap-dimension of P. In [5] Halmos
showed that every pentagon P with gap-dimension one is reflexive in the
gense that P = Lat AlgP. Also, he asked whether every pentagon is re-
flexive. The answer was shown to be negative in [6] where a non-reflexive
pentagon with gap-dimension 2 is exhibited (though its Lat Alg has not yet
been fully determined). More examples of non-reflexive pentagons are given
below, including some which are “extremely” non-reflexive. In each example
Lat Alg P is fully determined.

For any pentagon P, as in Figure 1, if F denotes the set of rank one opera-
tors of Alg’P then Lat F = PU[L, M), where [L, M] = {N : N is a subspace
of H and I C N C M}. Consequently, Lat AlgP = P U [L, M]Lar g p,
where

[L,M]Latmgp ={N:NeLlatAlgPand LC N C M},

Of course, [L, M]Lagalzp 18 a complete lattice (partially ordered by inclu-
sion). Examples are given showing that, for a pentagon subspace lattice P
with gap-dimension n € Z', it is possible to have

(1) [L, M]Let Alg P @ nest with n + 1 elements, or
{ii) {L, M]Las A1 an atomic Boolean algebra with n atoms, or
(1) (L, M]zas tgp = (L, M.
For n > 1, all such pentagons are non-reflexive, the examples in case (iif)
extremely so. For n = 2, Figures 2(a) and 2(b) are labelled Hasse diagrams

of Lat Alg P corresponding to cases (i) and (ii), respectively, and Figure 2(c)
is a schematic representation of Lat Alg P corresponding to case (iii).

H H
M
M
K N K Ny
L
.‘rJ
(0) (0}
(a) (b)
Fig. 2

The following result due to Foiag [3] (see also [7, 8]) lies at the heart of
our constructions.
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TueorEM 1 (Foias [3]). Let A be o positive operator on a Hilbert space H .
If the function ¢ : [0, | A]l] — R is non-negative, non-decreasing, continuous
and concave, then the range of p(A) is invariant under every operator on
H which leaves the range of A invariant.

2. Preliminaries. Throughout what follows, H will denote a complex
separable infinite-dimensional Hilbert space which we will usually identify
with I?. The terns “operator” and “subspace” will mean bounded linear
mapping of H into itgelf, and closed linear manifold of H, respectively. We
use “v7” to denote closed linear span and also use (e, f,g,..., k) to denote
the subspace spanned by the vectors e, f,g,-..,h. The set of operators on
H is denoted by B(H). If T' € B(H), then R(T") denotes the range of T and
G(T) = {{x,Tx) : 2 € H} the graph of T'. If £ is a collection of subspaces of
H, then Alg £ denotes the set of operators on H which leave every member
of £ invariant. If F is a collection of operators on H, then Lat F denotes
the set of subspaces of H which are invariant under every member of F.
Clearly, £ C Lat Alg L. If £ = Lat Alg £, then £ is called reflezive. Every
reflexive collection £ of subspaces contains (0) and H and is closed under the
formation of arbitrary intersections and arbitrary closed linear spans. Any
collection of subspaces satisfying the latter conditions (and not necessarily
reflexive) is called a subspace lattice on H.

Let L be an abstract complete lattice with greatest element 1 and least
element 0. The usual conventions \/ @ = 0, A 0 = 1 are adopted. An element
o € Lisan atlomif 0 € b < qanddc L implies that b = 0 or a. If
every element of L is the join of the atoms that it contains, L is called
atomic. If L is totally-ordered it is called a nest. If, for every ¢ € L, there
exists ¢’ € L such that ¢V ¢ = 1, cAc = 0, then L is complemented. If
sA{yvz)=(zAy)V(zAz)and its dual hold identically in L, then L is
called distributive. If L is complemented, distributive and atemic it is called
an atomic Boolean algebra.

For every u,v & L we let [u,v]; denocte the set [u,v]y, = {we L :u <
w < v} Then [u,v]y i8 a complete sublattice of L, that is, it is closed under
the formation of arbitrary (non-empty} meets and joins,

Two abstract complete lagtices Ly and Ly are called isomorphic if there
exists a bijection v : Ly -+ Ly satisfying ¢ < b (In L) if and only if
$(a) < ¥(b) (in Ly). Such a map < is then called a lattice-isomorphism.

If A e B(H) is positive injective and noun-invertible and M is a non-zero
finite-dimensional subspace of H satisfying M NR(A) = (0) then it is easily
verified that

PA; M) = {(0), G(-4),G(4),G(A) + (0) @ M, H & H}
is a pentagon subspace lattice on H @ H with gap-dimension equal to dunM
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(note that G(T)* = {(—~T*z,z) : x € H}, for every T' & B(H)). Also,

X+2ZA Z \ XY,ZeBH)
1 . — s P 3
AlgP(4; M) {( AZA Y—i—AZ)'Yem’(A;M) and YA:AX}’
where, by definition,

(A M) = {T € B(H) : TR(A) C R(A) and TM C M)}.

The latter notation is suggested by the use of &/ (A) in [7] to denote the set
of those operators on H which leave R(A) mvariant. OF course, @ (4; M i
#(A), and if T € 2/(A), then it follows from the range inclusion theorem
of R. G. Douglas (see [1]) that T'4 = AW, for some operator W € B(H).
Since A is injective this operator W is uniquely determined. The set of
operators &/(A; M) is a unital algebra and we denote by & (A; M)y the
unital algebra of operators on M obtained by restricting each element of
& (A; M) to M. The following proposition simplifies our constructions,

PROPOSITION 1. Let A € B(H) be positive, injective and non-invertible
and let M be o non-zero finite-dimensional subspace of H satisfying M N
R{A) = (0). Let P(A; M) be the pentagon subspace lattice on H & H given
by P(A; M) = {(0),G(—4), G(4), (A} + (0) © M, H & H}. Then

Lat Alg P(4; M) = P(A4; M) U{G(A) + (0) ® N : N € Lat & (4; M) ).
Moreover, the mapping ¢ : N +— G(A) + (0) ® N 4s a lottice-isomorphism

of Lat &/ (A; M|y onto the interval [G(A), G(A) + (0@ M
ooyt [G(4), G(A) + (0) & M]ras arg prasn of

Proof. As remarked earlier,

Lat Alg P(4; 1) = P(4; M) U [G(4), G(4) + (0) ® Ml rg p(asary
Using this, Lat Alg P{4; M) will have the required form if

(a) G(A) +(0) ® N € Lat Alg P(4; M), for every N € Lat &/ (4; M)|a,

and
(b) if L € Lat AlgP(A4; M) and G(A) € L C G(A) ‘ ‘
; CLc 1) + (0) & M, then
L=GA)+ (0)a N, for some N & Lat o (A; M)| . ©)
Let N € Lat#/(4; M)[yr. Then N € M and N € Lat & (A4; M. For
every u € H and v € N and every operator (sz‘,if v f.‘t Z) of Alg P(A; M)
it can be readily verified that |

(X+ZA Z 4 w
AZA Y+ AZ Au+u>“(/1w+w)’

for some w € H. Since YN C N. it # ¥
v o C N, it follows that ((4) + (0) @ N €
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Next, let L be a subspace of H @ H satisfying G(4) € L € G(4) +
(@M. Put N = {z € H: (0,z) € L}. Then N is a subspace of H,
N C M and L = G(A) +(0) @ N. If additionally L € Lat AlgP(4; M)
then N € Lat & (A; M)|ar. For, let 2z € N and ¥ € &(A; M). Since L €

Lat Alg P(4; M),
X 0 0N _ [0
(5 ) (2)=()em

where YA = AX,and so Yz € N.
Tt is now easy to verify that the mapping 1, as described in the statement
of the proposition, has the required property. m

The preceding proposition shows that the extent of the non-triviality of
the set of invariant subspaces of the finite-dimensional algebra o (A; M) as
is a measure of the non-reflexivity of P(A; M).

The remainder of this note will be devoted to showing, with n = dim M,
that Lat #7(4; M)|as can be either (i) a nest with n -+ 1 elements, or (ii) an
atomic Boolean algebra with n atoms, or (iii) the lattice of all subspaces of
M. In the third case, the last part of the proof of the preceding proposition
then shows that [G(A), G(A) -+ (0} ® My a1 P4y consists of all those
subspaces of H @ H lying between G(A) and G(A) + (0} & M. For obvious
reasons we take n > 2.

3. The examples. In what follows we take H = I* for simplicity and
identify each operator on H with its matrix relative to the usual orthonormal
basis.

(I) Nest case. Let n € Zt, n > 2, and let 0 < @ < 1. Let A € B(H) be
the diagonal matrix A = diag(l,a,e?,...). Then 4| = 1 and A is positive,
injective and non-invertible (even compact). Clearly,

R(A) € R(AP-D/%) C .. C R(AY™) S R(AY™).

In fact, the inclusions are strict. This follows from 1, Theorem 2.1] or more
divectly as follows. Define vectors ej, 1<j <n, by ej=(alP=I+HE—1Linyee
Then e, ¢ R(AY™) and e; = Az"""j)/”e,,,, 1 <34 <n-~1, from which
it follows that e; € R(AP=/m)\ R(AN-FHD/") 1 < j < n— 1 Put
M = {ej,...,en). A proof by induction shows that, if 1 < j < n and

imnm il QiC0 € R(AI/™) where the o; are scalars, then oy = 0, n —
j+1 <14 < n (Begin the proof of the inductive step by observing that
R(A(HU/N) C R(Aa'/n) and en—; € R(Aj/”).) Tt now follows that M N
R(A) = (0), that {e1,...,6nj} i8 Lnearly independent and that M N

" R(AI/™) = {eq,. .., en—y), | £j < n—L Thus we have a pentagon P(4; M)

on H @ H with gap-dimension n. We show that Lat & (A; M)|as is the nest
{N;:0 < j <n} where Ny = (0) and N; = (e1,...,¢;), L < j < n.
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If T € of(A; M) then, by Theorem 1, T' leaves N; = M N R(A"~9)/n)
invariant, forevery 1 < j < n—1. Thus {N; : 0 < j < n} C Lat o/ (A; M) |5
To prove the reverse inclusion it is enough to show that there is an element
J of @7(A; M) such that the matrix of J|as relative to the basis {e;,...,e,}
of M is the elementary Jordan matrix

60100 ..0
0 010 ..0
0001 ...0
00090 ... 1
0000 ... 0

since it is well-known (and easily proved) that J|5; will then have only the
obvious invariant subspaces, namely {N; : 0 < j < n}. Let §* be the back-
ward shift operator on H. Then $*A = ¢ AS*, 50 S*R(A) C R(A). It follows
that, for any scalars ;, 0 < ¢ < n —~ 1, the operator J = Al/" ?;01 v (9%
also leaves R(A) invariant. Note that, for 1 € j < n, §*e; = a("=7+1/ng,
so Je; = Sps w(alnmitlimyi gl e, Since AVme; = e;y, 2 < § < n,
let us choose scalars v;, 0 < 1 € n — 1, such that E?:Ol yat = 0 and
S p(at=I+0/mYE = 19 < § < m. This choice is possible since the n x n
Vandermonde determinant

1 1 1 ce 1
al/n ain a3/n a
(al/n)E (az/n)z (a3/n)2 L ad _ ﬁ (Cr,j/” _ ai/n)
it
. : : : i>1
(al/n)n—l (a2/n)n-—1 (a.':"/n)'n—l ... oarl

is non-zero. With this choice Je; = 0 and Je; = ¢4, 2 < j < n. Thus
J € &(A; M) and the matrix of J|3 relative to {e1,...,e,} is elementary
Jordan.

(II) Boolean algebra case. For the remaining examples we need the fol-
lowing lemma.

LEMMA 1. Let s € Z* and, for every 1 < m < s, let (bgm))g?;l be
a strictly decrensing sequence of positive real numbers converging to zero.
Then there exists a strictly decreasing sequence (t; Yiey of positive real num-
bers converging to zero, with t) = 1, such that each of the pieccwise linear
fugcltz'ons om: [0,1] = R, 1 <m < s, given by pm(0) = 0 and, for every
JZ 4
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b(‘m) _ b(mi
wm(z) = bng) + | L—= (—13), fi ey,
by = i1

s non-negative, strictly increasing, continuous and concave.

Proof For every j = 2, (b:(‘.m) - bf,-’_ﬂ)/(b;”f%

1 <m < s. For each § > 2 choose §; > 0 such that
(1) 6 < mingcmgs (5™ = 671/ (55™) — b{™), and
(2) Zz‘;z(n?:z 8;) converges.

Define (A.'i');'?——l by Ay = 1/(1+ EZ?_-Q(HLQ 8;)), 85 = (TThea 6} A1,
j 2 2. Define (t;)52, by 1 = 1, ¢; = 1 — ch;ll Ay, 5 > 2. Note that
e Ay =1 s0t; =30 0 Ay, for every j = 1. Clearly, (;)72, is a strictly
decreasing sequence of positive real numbers converging to zero. For each
1 < m < s define the piecewise linear function ¢y, : [0,1] — R as in the
statement of the lemma. Then each ., is non-negative, strictly increasing
and continuous on [0,1]. Note that {as far as gradients of line segments are
concerned), for 1 <m < s,

- bém) ) > 0, for every

b(-m) - b(m) b(?_"_"'; " b.glm)

3 ,7+J- > J , j Z 2
tj — tita tj1 —
For,if 1 <m < s and j > 2 we have
(m) _ p(m)
s ittt b b
L =

Ajoy tyer =ty plmd L plm)

i 7
That each ,, is concave now follows from [2, Theorem 2.3, p. 351] {applied
t0 ~@p ). w

Below, several sequences will be defined in equally-sized “blocks” of terms
and sometimes these blocks will consist of equally-sized “sub-blocks”. In
general, if p € Z* then the terms of a sequence (£;)72; in its pth block are
taken to be the terms (£;)72,,(p-1y Where r € Z* i3 the (common) size
of each block. Additionally, if s € Z* divides r, then each block consists
of t = r/s sub-blocks and the terms in the gth sub-block of the pth block,

where 1 < ¢ < i, are (@);i";ﬂ;’&?n tr(p1) Also, if 1,n € Z¥ we define

] z{i ifi < mn,
A i—n ifi>n

Letn € Zt, n > 2, and let 0 < a < 1. Let (r)f, be the sequence
ru = (n-+ Dk(k — 1), k > 1. Consider the n x n array
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ry +k r. +2k TR + 4k rk+(2n-—2)k
Tk ri + 3K v + 4k TE + (27’L-2)k
7 rp + 2k r + 5k re+ (2n — 2)k
v Tu-t2k T+ 4k ry -+ (2n—2)k
. re+2k rut4k re + (2n ~ k.

For each 1 < m < n, let (s (m)) o, be the sequence of natural numbers
which has the mth row of th1s array as the terms in its kth block (so each
block has size n). Then (s (m )) %2, Is strictly increasing. For each 1 <m <n

put (b™)32
of positive real numbers. Also, (b( )oy 18 square-summable, so b( —{
as j — co. On H = [* define operators By, 1 £ m < n, by By, =
diag(d™,b5™, ...). Next, define sequences fm = (f(m 12,1 <m < n,
each of them in blocks of size n(n — 1) with each block consisting of n ~ 1
sub-blocks of size n, by specifying that the terms of f, in the gth sub-block
of the pth block (where p > 1 and 1 < ¢ £ n — 1) be given by
(lg+m]n)
Blgrmn g, 0o 0
where [g+m], is as defined on p. 193, where v, , = n{g—1) +n(n-1)(p—1)
and where the subscript on the non-zero term is purely positional. Thus the
pth block of n{n — 1) terms of fy, is the mth row of the array

= (a* ; ) ° 1 Then (b(m)) °, is a strictly decreasing bequence

0 8 o .0 o]o o ¥ o ...o0

o o ¥ ...0 0ol 0 o o 8 ... o0

0 0 0 o MM o0 0 0

Yoo o o o] o o 0o o 0
0o 0 o0 b 0 0 0 0 0o M
0 0 0 0 0 S 0 0 0
02 0o o0 ..ol 1o o pin=2 g 0
o 0o o o ..ol ]o o ... o Y o0

where the subscripts are purely positional and the sub-blocks have been
separated for the sake of clarity. The sum, f say, of the fr, 1 Sm <N,
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occurs in blocks of size m, its terms in the kth block (£ > 1) being

B

n)
1n(k— 1)’b2+n(k 1) b}

k!

or, more precisely,

a'r;.,-\-k’ am-l-fik’ ar;,,~|—5.’c’ e ark+(2n~—-1)k.
It follows that f € 12, 80 fm € 12, for every 1 < m < n. For 1 < m < n,
the non-zero terms of ( fj('m) / bg'm));?";l are, in order, simply a,0%,a%,..., s0
(£ /622, € 1% and fo € R(Bom).

Put M = {(f1,..., fa). Then M NR(Bm) = {fm), L £ m £ n. For,
suppose that (£;)32; € 12 and Bm((£;)52) = (bgm)§j)§9z1 = 3 i1 Bifi with
BieC 1<i<n Forevery 1l <4< n,43m, there is a unigue 1 < ¢; <
n — 1 such that [g; + ¢l = m. If 4 # m and p > 1 put jp; = m + vp,g-
Then the j,ith term of 3 ._; Bufu is simply 5;f :,(”) = G;b (m), s0 Bib; (m)

i
g:?fjw, which gives §; = &;, ;. Since the latter is true for every p > 1 and

(5.717 :)p 1 E 12 we ha.ve ﬁ'a e 0

Now let (1;)5%, be the sequence arising from {(b§ 211 <m < n}
as in Lemma 1 and let @, : [0,1] — R, 1 £ m £ n, be the associated
concave functions. Let A & B{H) be the operator A = diag(tl,tg, ...). Then
Al = t1 = 1 and A is positive, injective and non-invertible (even com-
pact). Also, B = ©om(d), 1 < m < n. It is clear that {f1,...,fa} is
linearly independent. By Theorem 1, for every 1 < m < n, R(Bm) is an
invariant operator range of &/(A), so, since every non-zero invariant oper-
ator range of @ (A4) contains R(A) (ef. [7]), we have R(A) C R(Bw). It
follows that M N R{A) = (0), so we have a pentagon P(4; M) on H@ H
with gap-dimension n. We show that Lat &7 (A; M)|as is the atomic Boolean
algebra with atoms {(f;} : 1 £ 7 < n}. In fact we show that &/ (A4; M)|sm
consigts precisely of those operaters on M whose matrix relative to the basis
{f1,..., fa} is diagonal. ‘

For every 1 < m < nlet A, € B(H) be the operator whose matrix (rela-
tive to the usual orthonormal basis of i?) is diagonal, the diagonal sequence
having a one exactly where f,, has a non-zero term, with zerces elsewhere.
Then A, A = Adp, 50 Ay € &(A), 1 < m < n. Also, Amfi == bt fin,
1 <I,m < n. Hence, for each 1 < m < n, A, € & (A4; M) and the matrix of
A ar relative to the basis {f1,.. ., frn} is diagonal with mth diagonal entry 1
and 0 otherwise. It follows that &7 (4; M)|u contains every operator whose
matrix is diagonal relative to {f,...,fn}. For the reverse inclusion, let
T & o/ (A; M) and let 1 < m < n. Then, by Theorem 1, TR(Bn) € R(Bn),
80 T leaves M N R(Bm) = (fm) invariant. Hence T frn = Ap fm, for some
Am € C, so0 the matrix of T|as relative to {f1,..., f»} is diagonal.
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(L) Bxtreme case. Let n € ZT, n > 2, and let 0 < a < 1. Let (re)f2,
(b(m)) ° and {Bpn:1<m< n} be as defined in our discussion of the

preceding case. Define sequences gm = (gf(-m));";l, 1 < m < n, each of them
in biocks of size n? with each block consisting of n sub-blocks of size n, by
specifying that the terms of gm in the gth sub-block of the pth block where
np>1 and 1 < g £n — 1 be given by

(lgtm]n)
0, b[q_%m]ﬁ_wm,ﬂ, ..,0
where [q+m], is as before, where wy g = n{g—1) 4+n?(p~1) and where the
subscript on the non-zero term is purely positional. Also, we specify that the
terms of gm, 1 <m < n, in the nth sub-block of the pth block be given by

p1) b(2)

1-fwyn? Votwp nr "

,b(m—l) .0, b m+1) b(ﬂ-)

m—L+up, n? meltwp p? " Wy, n

where Wy, = n{n—1) +n?(p—1). Thus the pth block of n* terms of g, is
the mth row of the array

o ¥ o ... 0olo o ¥ o .0
o o o ... ol 0o o o »¥
o o o ... o0 o o .0
¥ o o0 ... ol o B o 0o ...0
0 ... 0 ™| o p® p® . pinh
A 0 o | o B® pv1) gl
o ... B g 0 | B s @ . o B
0 ... 0 Yoo e B L e g

where the subscripts are purely positional and the sub-blocks have, once
again, been separated for clarity. A similar proof to that given in the discus-
sion of the preceding case (begun by adding the g,,’s) shows that qm € 12,
1 <m < n. Also, for every 1 € m < n, the non-zero terms of (ggm /bjm ol
are, in order, simply

2 -1 -
L Lot N L L e L I Lt
. \W—-’
n—1terms a?ﬂ, . aﬂn’ a2n+1, 62n+27 .
-, terms

80, since the latter sequence is square-summable, gm € R(Bm).
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Put M = {g1,...,gn). Again with proof as before, M N R(Bpn) = (gm),
1 <m < n (take jp; = M + Wy, g, this time).

Assume that n > 3 (the case n = 2 will be considered separately). For
n+1<m<2n— 1 define the sequence (b(.m));.‘j__l, in blocks of size n? with

J
each block consisting of n sub-blocks of size n, by specifying that the terms

of (bg-m))j‘??__l in the pth block (where p > 1) be given by the (m — n)th row
of the array
QI XN TN IFNCORRAO B, 1
p@ o p g p
AR A O IR AN A
p p1 L | p® M B
b B pM ] B p® L p®
b pm p(H @ B pl®
R O ACON I O AN 1)
B p® L P pM e

where the subscripts are purely positional and the sub-blocks have been
clearly separated. Then (b(m))j_l, n+1 £ m < 2n-1,is a strictly decreasing
sequence of positive real numbers converging to zero Define operators By,
n+l<m<m—1,on H by By, dlag(blm bg ),. ). Then gm, &
R(Bntn), for every 1 < m < n — 1, since the jth term of g, equals b§m+”)
for infinitely many values of j (consider the nth sub-block (size n) in each
block (size n?)). Als0, gm ~ gms1 € R{(Bmn), for every 1 £ m < n— 1. For,
if 1 <m < n—1, the pth block (p > 1) of gm — gm+1 18

10 ... 06™H) _pim¥D g g0 ... 0D ~p™ g 0
o ... opY b(”)\ Do .. 0s™ B 60 ... 0]
.|0 ... 0 b ~b5‘m)0 oio 0 =B Emtlg

where the subscripts are purely positional and the superscripts gwe the posi-
tions in each sub-block. Dividing by the corresponding terms of (b; (m+n)yee )52 ol
we find that the absolute values of non-zero terms arising in the pth block
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are, respectively,

Bptl kp+l kp+2 kpt2 ky+n  kyn
P+,aP 7&? _)a,P ,aP 70‘1)

akP, a.kl", a
where kp = (p— 1)n+ 1. Since (a¥)2, €12, gm — m+1 € R(Bmgn).

This time let (t;)72; be the sequence arising from {(bgm));??__l 1 <m<
2n—1} asin Lemma 1 and let ¢, : [0,1] = R, 1 <m < 2n—1, be the associ-
ated concave functions. Let A € B(H) be the operator A = diag(y,ta,...).
Then ||A] = #; = 1 and 4 is positive, injective and non-invertible (even
compact). Also, By == @m(A4), 1 £ m < 2n — 1. Clearly, {g1,--+, 9n} is lin-
early independent and by Theorem 1, R(By,) is an invariant operator range
of #(A), so R(A) G R(Bp), 1 £m < 2n—1. Since M NR(Bm) = {gm),
1 < m < n, it follows that M NR(A) = (0). Once again we have a pentagon
P(A; M) on H @ H with gap-dimension n. We show that & (4; M)|a = CI
(then, of course, Lat @/ (A; M)|a is the set of all subspaces of M).

Let T € &7(A; M). As in the discussion of the preceding case, for every
1<m<n, T leaves M NR(By,) = {gm) nvariant, s0 TGy = Amgm for
some A, € C. Let 1 < m < n— 1. By Theorem 1, T also leaves R({Bpqn)
invariant, so since gm — gm+1 € R(Bmtn), we have T(gm — gm+1) = AmGm —
Am+19m+1 € R{Bm4n). Hence

(Am+1 - )\m)gm = )\mv}-l (gm - gm—!—l) - (/\m.gm - )\m—l—lgm—Pl) € R(Bm+n)-
But gm & R(Bmin), 80 Ay = Apqyr. Hence Ay = Ay = ..
Tim € CI.

Finally, consider the case where » = 2. The required example can be
found by considering the case where n = 3. Our discussion of the latter case
provides A € B(H) positive, injective and non-invertible with ||A| = 1 and
operator ranges R{B,), 1 < m < 5, each invariant under every member of
o7 (A) together with linearly independent vectors gy, g2, g3 of H satisfying

{91, 92, g3) N R{A) = (0),

o

.= Ap, and

(91,92, 93) " R(Bm) = {gm}, m =123,
g1—g2 € R(Bg), g1 ¢ R(Ba),
g2~ g3 € R(Bs), g2 & R(Bs).

Hence, with M = {g1,g2), we have dimM = 2, M NR(A) = (0), M N
R(Bm) = (gm) for m = 1,2, and g1 — g2 € R(By), ¢1 & R(By). With this
M, the pentagon P(A; M) is the required example for the case where n = 2.

4. Conclusion. Since Lat F is reflexive for any collection F of oper-
ators on H (clearly, Lat AlgLat F C LatF), our examples when n = 2
show that there exist subspace lattices isomorphic to those given in Fig-
ures 2(a) and 2(b) which are reflexive and have dimM © I, = 2. Non-
reflexive subspace lattices of these two lattice types can also be found. In-
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deed, let P = {(0), K, L, M, H} be a pentagon with dim M © L = 2, with
LatAlg? = PU{N : N is a subspace of H and L € N C M}, (The
latter is schematically represented in Figure 2(c).) Let N1 and N be dis-
tinct subspaces satisfying L ¢ Ny C M, i = 1,2 It L, = P U {N1} and
L5 = P U {Ny, Na} then neither £y nor Lq i reflexive since Lat Alg P is
infinite and Lat Alg P € Lat Alg £, i = 1,2. An analogous remark can also
be made for every n > 2.
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