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On convergence for the square root of the Poisson kernel
in symmetric spaces of rank 1

by

TAN-OLAV RONNING (Skévde)

Abstract. Let P(z, 8) be the Poisson kernel in the unit disk U, and let Py f(z) =
SBU P(z,go)l/Q""\f(so) di be the A-Poisson integral of f, where f e LP(8U). We let Py f
be the normalization P f /Py1 IE X > 0, we know that the best (regular) regions where
Psf converges to f for a.a. points on AU are of nontangential type.

. If A = 0 the situation is different. In a previous paper, we proved a result concerning
the convergence of Pyf toward f in an LP weakly tangential region, if f € LP(9U) and
p > 1. In the present paper we will extend the result ta symmetric spaces X of rank
1. Let f be an L? function on the maximal distinguished boundary X /M of X. Then

Pof(x) will converge to f(kM) as & tends to kM in an LP weakly tangential region, for
a.a. kM ¢ K/M,

1. Introduction. Let X = G/K be a Riemannian symmetric space of
noncompact type and of rank 1. (The notation is explained in Section 2)
On X, we consider the A\-Poisson operator

Paflg-o)= | fFlkM)P re(iM, gy dki,
/M
where P(k2M, ) is the Poisson kernel of G/K, f € LP(K/M),and A+g € a.
We know that Py f satisfies the equation

AR = (A* ~ o) P,
where 4 is the Laplace—Beltrami operator on X.

IfA >0, it is known that Py f (g) daes not necessarily converge to FlkM)
as g tends to kM. To obtain convergence, we need to consider the normal-
Ization Py f = Py f/P\1. We know that PaJf converges admissibly to f a.e.
on the boundary if f € I?, p> 1. In a previous paper, [JOR], we proved
that if X is the hyperbolic unit disk I and ) = 0, we have convergence in
a larger region, which we call an L? weakly tangential region (1 < p < oo).

1891 Mathematics Subject Clussification: 42B25, 43A85.
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These regions increase with p, and if p = 1, they are the same as the weakly
tangential region considered in [Sj683, 3j684, Sjc84a, Sjo88].

In [Sj688] Sjdgren extends his previous L' result on U to general sym-
metric spaces X of rank 1. In X, the weakly tangential convergence regions
are defined as

{niexp(tHo)n -z € X : z € D, n€ B(Ct), 1t > ¢},

where D is a compact subset of X, ¢ = 1/(2{p, Hy}), and B(Ct%) are balls
in N, to be defined in Section 2. It is the factor n which makes these regions
larger than the ordinary admissible convergence regions.

We would like to have an intuitive geometric view of the weakly tan-
gential regions. If we only consider admissible convergence regions, that is,
ignore the factor m in the above expression, we can consider the region as
a tube along the curve nq exptHy. This is because for each fixed value #g,
we dilate ny exptoHy with a fixed set D. {Observe that the fact that we
approach a boundary point when ¢ tends to infinity gives us the possibility
to identify this boundary point with the asymptotic direction of n4 expiHj,
which gives one unique boundary point for each tube.) If we now multi-
ply ny exptHy with an arbitrary point n € B(Ct?), we make a dilation of
n, exptHy in certain directions determined by N. The fact that the radius
of B increases to infinity with ¢ ensures that this enlargement of the ad-
missible regions does not produce another (wider) tube. Instead, we get a
region which increases in width as ¢ tends to infinity.

For f € IP, 1 < p < o0, we will now extend this result, to obtain
convergence of Pof to f in the LP weakly tangential convergence regions

{mexp(tHo)n -z € X : z € D, n € B(C¥9), t > c}.

The reader should observe that the difference between these regions and the
weakly tangential regions is that the radii of the balls are now C'tP? instead
of Ct% As in the bidisk, these regions are strictly increasing with p, so the
result is an extension of the L? result of Sjdgren.

The structure of this paper is as follows: In Section 2, we explain the no-
tation and give the necessary structure theory of symmetric spaces, including
a definition of the A-Poisson integrals. In Section 3, we state and prove the
convergence result. We prove this result by establishing the usual maximal
function estimate. The proof of this estimate is rather technical, and rests
heavily on (a generalization of) a lemma given by Sjdgren in [Sj&83]. The
main point, is that we split the kernel into small pieces, which gives us control
of the corresponding operators.
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2. Preliminaries about symmetric spaces. Let X be a Riemannian
symmetric space of nencompact type, with symmetry sp with respect to a
fixed point p € X. Let o(g) = s, 0 go 5%, and let 8 = do be the Cartan
involution. Let K denote the isotropy group of p, which is a subgroup of the
isometry group of X. It is well known that we can write X as X = G/K,
where & is the identity component of the isometry group of X, and K =
K NG. We write gz (and occasionally g - z) for the action of an element of
G on X, and we let 0 = eX. Then o is the point p in this representation
of X.

Let g be the Lie algebra of G and £ that of K. Then g = £ @ p is the
Cartan decomposition of g, where p is a linear subspace of g. Let a be &
maximal abelian subalgebra in p and A the corresponding connected Lie
group. By means of the Killing form (-, ), we can identify o with its dual.
Then the roots (that is, eigenvalues A\(H) of the operator ad(H)) are in a.

Let ay C a be the positive Weyl chamber, that is, a component of the
subset of a where none of the roots is zero. In the case of a rank 1 space, this
is a set of type {tHy : ¢ > 0} for some fixed but arbitrary Hy € a. A root is
called positive if it is positive on a... We let ¢ € ay dencte the half-sum of
the positive roots, counted with multiplicity.

Let g be the root subspace (ie., eigenspace of ad(H)) corresponding
to the root A Let n = g, where the sum is taken over the positive
roots, and let N be the corresponding connected Lie group. We let N be
the image of N under the Cartan involution. We can now make an Iwasawa.
decomposition KAN (or, equivalently, NAK, KAN, etc.) of G. Thus an
element g € G can be written uniquely as g = k(g)exp(H(g))n{g), with
k(g) € K, H{g) € a, and n(g) € N.

Let M be the centralizer of A in K. The (maximal distinguished) bound-
ary of X is K/M. The Brubat map n — k(n)M is a diffeomorphism of ¥
onto almost all of K /M, with respect to the normalized invariant measure
dkM in K/M.

Let H vary in a. If {ov, H) tends to infinity, for all positive roots a, we
say that H tends to infinity. This gives a natural meaning to the expression
“large H”. In the case of a rank 1 space, this of course just means that ¢ is
large. We say that a function v : a — R is increasing if H ~ H' € a. implies
Y(H) > ¢(H"). We say that g = kexp(H) o (or g = ny exp(H) -0 in another
notation) tends to kM € K/M if H — co. We let n¥ = exp(H)nexp(—H),
where n € N and H € u.
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For X € a, the A-Poisson integral of f € LP(K/M), 1 <p < oo, is

Pif(g) =Prflg-0)= | f(kM)e= el ™0} gppr
K/M

g €G.

As a function in X, we know that P, f is an eigenfunction of the Laplace~
Beltrami operator. In fact, it is a joint eigenfunction of all G-invariant dif-
ferential operators on X. Hence Py f(g)} satisfies Harnack’s inequality:

Pyf(g- o) ~ Paf(g-2"),

where » and 2’ stay in a compact subset of X, and the inequalities are
uniform in g.

In order to get convergence to f in any meaning when we approach the
boundary K /M, we need a normalization of Py f. This is done by dividing
Py f by Pil1, which gives us the normalized Poisson integral

Pxflg) = Paflg)/PAl{g).

We can transform the Poisson integral Py f to an integral defined on N.
Ifg-o=mnya1-0, with ny € N, a; € A, we have

Pyf(nyay) = S Fll(n)M)e~ A ted (na03) 7 n)) g (A= H(n)) gy,

N

where dn is the Haar measure in N. (See [Sj584, pp. 40-50] for references.)
We will replace f(k(n)M) by f(n), to simplify the notation, and work only
with functions on N,

To work with Py f(n1a1), we need estimates of Py1(njay). For A = 0,
which is the case we are working with here, these are given in other works
of Sjogren ([Sjo83, Sj684, Sjo84a, Sj588]) in terms of the function

PY(H) = '@ Py1(exp H).
If H = tHq, as is the case for spaces of rank 1, then ¢:(H) is bounded if
t<0,and Y(H) ~tift > 0.

We also need the fact that Py1 is biinvariant, i.e., both left and right
K-invariant,

Let a; = exp(H), H € oy, and let ny = kan € KAN. We first observe
that if n; stays in a compact set in &, so do k, a, and n. Thus, n™ stays
bounded for large values of H. We can write n; exp(H) = kexp(H)an™¥.
Because of Harnack’s inequality and the biinvariance of P,1, we then have

Pyl{ny BXP(H)) = Pyl(k exp(H)an_H) ~ Pyl{exp(H)) = 'tb(H)e_(g’H).

Let Hp be a fixed element in a.. We can find a function 1N - Ry
which satisfies the following conditions: | - | is a smooth function outside e
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and vanishes only at e. It also satisfies [n~!| = |n| and
|ntH0| = e_tlnls teR
The function | - | is called a smooth homogeneous gauge on N. The gauge

satisfies the following (quasinorm) inequality:
Inn'| < C(in] + n')).
Let B(r) stand for the ball {n: |n| <r}. Then
|B(r)] is proportional to r2(e:Ho)

where |B(r}| denotes the Haar measure of B(r).

If X is of rank 1, then N is a step two nilpotent Liegroup and its Lie
algebra n can be written in the form go ® goa. fn =exp(X +Y), X € g,,
Y € paq, then an appropriate gauge is given by

In| = (IX]* + [Y )12,

provided a(tHy) =t (see [Kor85]).

Let

P(n) = e~ He.H(m))
be the Poisson kernel in N. Given the gauge above, we have the following
result (see [He78, Theorem IX.3.8, p. 414] or [DR92, p. 239]) for a rank 1
space:
Pln) ~ (L -+ fol) e

This will be the estimate of the Poisson kernel we use most in this paper.

Finally, we have the notational convention that C, C', C" and ¢ denote

various positive constants, which need not be equal even in the same formula.
Hopefully, the context will clarify which constants are equal.

3. Convergence in rank 1 spaces. We begin by stating a generaliza~
tion of Lemma 1 in [JOR] to a general symmetric space:

LEMMA 3.1. Let L C N be a compact set, and let p > 1 be given.
Assume that the sublinear operators (Tx)52., are defined on LP(L), that they
take values which are nonnegative measurable functions on L, and satisfy
the following conditions for some Cy < oo

(a) Each Ty is of weak type (p,p) with constant at most C;.

(b) Bach T, k= 1,2..., is given by Ty f(n) = sup;c;, | f|* Ki(n), where
I is an index set and the kernels K; satisfy supp K; C B(v).

(¢) § K} (n)dn < Cy.
Here, for i € I, Ki(n) = sWppep(y, ) Kilnn'), for some natural number
N', and the positive numbers v satisfy the following condition: Y is de-
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creasing and fy,t/a < Yo—c_for some Cla) > 0 and all fived o > 0. Here o
will depend on the group N,

Then the operator Tf = sup, Trnf is of weak type (p,p) with constant
only depending on L, N' and C.

The proof is almost identical to that in [JOR], so there is no need to give
it here.
We now state the main theorem. of this paper.

THEOREM 3.2. Let rank X = 1. Let Hy be a fized element in a. and let
q=1/(2(p, Ho)). Let f € LP(K/M)}, p > 1. Then, for almost all n; € N,

Pof(niexp(tHo)n' - z) — f(k(ny) M)
ast — oo, T stays in a compact subset of X, and n' stays in the ball B(CtP9)

for some fized constant C.

With the same methods as in [Sj584] we see that we can assume f to have
compact support L. Harnack’s inequality implies that it is enough to inves-
tigate the convergence of Pof(ny exp(tHo)n' - 0) to the function f(k(ny)M)
for a.a. ny € N. This will follow from standard methods if we can prove the
following theorem: :

THEOREM 3.3. For any (', the operator -

My f(m) = sup Polfl{ry exp(tHo)n')

tnl >0, 0! e B(C'tPe)
is of weak type (p,p), p > 1.

Proof. For simplicity, we assume that ¢’ = 1 and f > 0, which is no
restriction.
For p = 1, the proof is given in [S$j588]. Let p > 1. Because
(o, H) ~ |H| = (H, H)'/?
for large H, Proposition 3.3 in [Sj688] and the deﬁnmon of My, f imply that
it is enough to consider the operator

Mpflom) = | o5 et O LB (0 my ()470)70) i
sl L S

where F = F(n~1) and P(n) = e“Q(Q’PI("))is the Poisson kernel in N. In
order to get the desired estimates, we split N in two parts for each #:
={neN:|n"| 2 CtP} and Ny ={ne N:n~t| < o},

with ¢ > 2. We will now show that the operators M 1 and M z , given by
the restrictions of the integral in the definition of M f to these sets, are of
weak type (p,p).
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Consider first M} f. We see that if n € Ny, then [n=tHop!| ~ |n—tHo|. Tt
we make the partition

{rn: 2590 < n~tHo| < obtlppy g g g

3

we easily see that we can estimate M) f by sup f * (I + Q), where the sup
is taken over the same set as in the deﬁnlhon of M, f,

M(pl(bﬁ)
I = 1~ La2{@t 8y} Z (1+ 2ktpq)_2<9’H°>X|n-*Ho|52k+1tm,
k=1
Q= 1"'_l‘ezw'h%)(l + !”—tHnl)~2 0>Xe2*trq5_|n"-”0|a
and

M(p,q,t) = OQlog(e'#*7)) = O(¥),

The Haar measure of the sets {n : [n~"*#°| < 25144} ig proportional to
9(k+1)2e.Ho) =22t HolyP  and thus we have

M(p,q.t) )
141
I<c ?_:1 S (k-F1J3(g.Ho) g—2 et ol gp AlnlS2+H e~ tere
M{(p,q,t) )
e i
= ]; [{’n : |‘n.i < 2k+le—ttpq}|XlnISQk-Q-le—ttpq_
This gives
o(t)
.1
sup Fal(ng) 0= ZMf (ny) < OMf(nl)
k 1

We also have
O < -tmleg(ea'ﬂﬂo)(l + ‘n—tﬂol)—z(eiﬂo)’

which is the standard estimate for the kernel of Py with the usual admissible
convergence regions. The corregponding maximal function of this estimate
is of weak type (p,p), | € p < oo, a fact which has been well known for
ALy years.

These inequalities shows that Mg is dominated by a sum of two weak
type (p,p) operators and thus is of weak type (»,p).

To show that M7Z is of weak type (p,p) is more difficult. Most of the
difficulties cowme flom the fact that in Ny we cannot get rid of #' in the same
easy way as in Ny. Instead, we will make a partition of Ny and apply the
lemma to the corresponding operators. We have
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M2 f(ny)

- sup t1gletHol £y ﬁjl,v/zx!n—mqgc:m (na(n/)H0)

tnlit>C, |0 | <tPd

= sup 7 1eetH) fu By coamtama(na (n)H0)

>0, |nt | <tre

=t e2(estHo) f* (1+ |n—tHo| 2{e. H. O)Xin\<0e—ttm(nl(n’)tm’)

~ sup
t,n's
>0, n'|gtPe
Q:HU

t1eletHo) £

= . sup * (1+€t|”|)‘2( )X|n\50e“‘tP?(n1nl)'

t,nf 1 1>0, jnf|<etira

In the last equality, we made the transformation (n/)tHe —s n/. We discretize
the last estimate by considering the partition

Ak = {TL : Zk—ltqe"t S |TL1 < Zktqﬁ_t}, ko= 0’ ]_, - ,,N(p, q, t),
where N (p, g,t) = O(logt). This gives
Mgf(’n,l) < 9l sup ) t_lez(Q,tHD)
tnl >0, Inf[Setepd
N(paq,t)
xS Fr(La bl e oy gt (man)
k=0
<C sup !
tnt >0, |n' | <e—ttpe
N{p,ait) 1
- Z I+ 2(k»1)2(e=Hn)te-2(e,tHo>Xi”(”’)—1150“2’“e"‘tq (na)-
fee=0
Let B; = {t : 2/ <t < 2/}, § > N, for some Ny large enough. If
t € By, then N(p,¢,t) < C(j +1) and
1
M}f(n1) < C sup sup —
F2No tnt 1 t€ By, 0| S2ie(p=Ne=rte 27
C(j+1) 1
X ; I o(E—1)2( Q,Hﬂ)te—z(g,fHo)Mn(”’) LgoHake= ‘tq(nl)
= CSUP T_.,-f(nl).
F]

Now we will use the lemma. It is obvious that T f is a measurable, nonneg-
ative function on L for f € LP. We have
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1
9(k=1)2(g,Ho) g~ 2{0,tHo) Xln(n')~1|<Cr2ke=tta

< 2jp
= o(k—1)2{0,Ho) g—2{a,tHg)

X S7pg Xln(n')t|<Cr2irae—tea,

which implies

1 C(J+1}
k=0
with
Tjk
= S 7 1
= up ¥ QOT)2(e, Bo) g2 (e ¢Ho} Xn(n!)=1|<C 2ke=t1a (M)

tn':
tEB;, [n'| g1 g tya

ofp
2(k_1)2<Q!HD)

ez(gstﬂﬂ)
——gﬁ——xln(n:)—llsclszqg—ttq (nl)

IA

sup I =
i,n“ :
teBy, |n'|<2felr-1lg—tea

2ip g2letHo)
S Stz Ey SUP S —o X |n|<Coiree~tia (R1)
9(k—1)2{e,Hq) teB; 9ip¢ [n|<C2irae~ta\TiL
nip

< Cotemnata ey M f(m).
This calculation shows that Tj, is of weak type (1,1), with constant

(3‘2“’/2(‘lc 1)2(e.Ho} Tt i5 easy to see that Ty is bounded on L°°, uniformly
in 7 and k, so that Marcinkiewicz’ interpolation theorem gives

2jp 1/r
S <g_”,Ha>) '

I1T; ] < C'(p,r)27®/™1) < C'(p, )

Tl < 05
This implies
ifr>op

Thus condition (a) in the lemma. is satisfied.
In order to deal with condition (b), we define

N{(p.qt) 1 e?(g,tHo)
Kin(n) = Z 55 mmn(n'rﬂgcﬂzke—tﬁ-
k=0

It is easy to see that
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Tif(m)
= sup f * Kt,nl (m)
t,nf €85, Inf|<emttrd
Cj 2({g,tHg)
1 e &, o]
<C fulp Z a}rf * m)ém(nf)—lis_mzke—wa (n1)
RO —

‘ k=
te By, |n'|<299(P 1 g =144

951 2{etHo)
< — Ik fa(p—) - ).
= Ctzu-gj ',‘?:‘:0 27 .f Q(k—l)Q(Q,Hg)tX|“|5G(2k+2" (p=1))e ‘ttJ( 1)

Let .
Iy ={({t,n'): [n| < 20eP—Net42 ¢ € B}

C{(t,n): |0 < 2eP-Vg~ya 4 ¢ By

C{(t,n) : In'| € C2PPe~P41 ¢ ¢ B}
Letting N’ be the constant (of our choice and independent of j) in the
definition of Ky, (n), and letting 7} = C2™e~% we see that, for j >
Jo(N'), ; and I; satisfy the conditions on 73 and Iy in the lerama, where
Jo(N') depends only on N". If we modify 7; in a suitable way for j < Jo(N'),

we get a sequence {;} which, together with [;, satisfies the conditions of
the lemma for all positive integers 5. For t € B; we have

Eiw(n)=  sup  Kypn(nm)

me |m]S"fj+Nf
Npat) | (2t Ho)

= sup 2_3 ' WX]nm(n’)“”SC“Zke_”q'

mi Ml k=0
We have, for ¢ € B;,

VK (n)dn
= eZ(Q,tHo) sup N(}JZ,Q','*)_];'_ . _—_:.I:...__,,_X Pyl < 12k gt dn
m:|ml<v v e 97 olk—132ig Hy) Alnm(n') =< a~tt
e2(e.tHo) N (p,q,t) 1 .

ST L 5 e Xnso et ) dn

2(97-&}{0) N(Pr‘]rt)

e 1 1

= t . by _‘ 5(k—1)3{g, Ho} X|n|50“(2’°e““t‘~'-l—*yj+Nr) dn < C(ps Qst)'
=0

In the first inequality, we got rid of n’ because of the fact that dn is a
translation invariant Haar measure. It follows directly from the definition of
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7; and the size of N (p, g, %) that C(p, g, ) is bounded with respect to t. Thus
all conditions in the lemma are satisfied, and an application of it shows that
M is of weak type (p,p) if p > 1. The theorem is proved. m
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