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Conical measures and properties
of a vector measure determined by its range

by

L. RODRIGUEZ-PIAZZA and M. C. ROMERO-MORENO (Sevilla)

Abstract. We characterize some properties of a vector measure in terms of its associ-
ated Kluvdnek conical meagure. These characterizations are used to prove that the range
of a vector measure determines these properties. So we give new proofs of the fact that
the range determines the total variation, the o-finiteness of the variation and the Bochner
derivability, and we show that it also determines the (p, g)-summing and p-nuclear norm
of the integration cperator. Finally, we show that Pettis derivability is not determined by
the range and study when every measure having the same range of a given measure has a
Pettis derivative.

1. Introduction. In [R1], answering a question in [AD), it was proved
that the range of a vector measure determines its total variation; that is, if
two measures with values in a Banach space have the same range, or even
just ranges with the same closed convex hulls, then they have the same to-
tal variation. Later, in [R2], it was proved that the range also determines
the Bochner derivability and the o-finiteness of the variation. This suggests
that these and other properties of a vector measure may depend on some
structure only depending on the range. In this way we will use the coni-
cal measure associated with a vector measure introduced by I Kluvinek
in [K]. '

The syrumetrization of the associated conical measure depends only on
the range of the vector measure. If a property of a vector measure has a
characterization in terms of the conical measure which is invariant under
symmetrization, this property is determined by the range. In Section 2 we
provide such a characterization for the total variation, the o-finiteness of
the variation, and the (p, ¢)-summing and p-nuclear norms of the integration
operator.
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In Section 3 we study the Pettis derivability of the measure. We first give
an example showing that Pettis derivability is not determined by the range.
We also establish that, when we are dealing with a measure of bounded
variation, the associated conical measure is “localized” by a certain positive
measure, unique under certain restrictions, whose symimetrization is deter-
mined by the range. We characterize in terms of this localization when every
measure having this range has a Pettis derivative and when there exists at
least one measure having this range with a Pettis derivative.

Throughout the paper our Banach space and vector measure terminology
will follow [DU]. X will be a (real) Banach space, X will be its dual space
and Bx will stand for the closed unit ball of X. For us a vector measure
will be a countably additive function F : £ — X defined on a measurable
space (12, X} with values in the Banach space X. |F| will be the variation
of F' which is a positive measure, and by ||F| we will denote the total
variation of F, that is, || F'| = |F|(§2). Despite the fact that the variation
may not be bounded there always exists a finite positive measure A satisfying
limy4)—o F(A) = 0. Such a A is called a control measure for F.

We will consider the Bartle integral with respect to ¥ [DU, p. 6]. It can
be viewed as an operator Ip : L°°(A) — X defined on a simple function

N
f = Zn:l a'nxAn as

N
Ip(f) = \fdF = anF(An).
n=l
We know that Iz is a weak*-weak continuous operator when L>°(A) is con-
sidered as the dual of L*()). Given f € L™(A) the vector measure fF with
density f with. respect to F is defined by

(fF)(A) =\ fdF = \fxadF forevery A€ X
A
For the variation of fF we have |fF|(A) = {, |f|d|F] for every A € I' (see
[L, Th. 4.2]).

The range of F will be denoted by tg F, that is, 1g F = {F(4): A € £}
This is a relatively weakly compact set in X baving $F(£2) as center of
symmetry, and whose closed convex hull is given by @(rg F) = {Ir(f) :
0 < f <1} (see [DU, p. 263]). Usnally we will be considering another vector
measure G : (2, Z') — X perhaps defined on a different o-algebra such that
To(rg G) is a translate of T(rg F). As the ranges of F and G are relatively
weakly compact and symmetric, this condition is equivalent to the identity
to(rg F) —to(rg F) = to(rg G) — to(rg G).

2. Properties of a vector measure in terms of its agsociated con-
ical measure. In [K], Kluvének introduced the conical measure associated
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with a vector measure to study the closed convex hull of the range of a
vector measure. We will characterize some properties of a vector measure in
terms of this conical measure, Let us recall some basic facts and definitions
about conical meagures in this context.

Given a Banach space X, h(X) will stand for the smallest vector lattice of
functions on X with respect to the pointwise order and the linear operations
that containg X*. Every element of h(X) can be written in the form

” m
(1) Z*:\/ﬂ"z“ \/ m;'ha
je=1 gzl

where 7 € X* for ¢ = 1,...,m, and V (resp. A) denotes the least upper
(resp. greatest lower) bound in a lattice; which in this case is a pointwise
maximum (resp. minimum) of functions.

A conical measure on X is a positive linear functional on A(X). The set
of all conical measures over X will be denoted MT(X). It is a complete
lattice with respect to the order v < u iff v(2*) < u(2*) for every 2* € A(X),
z* > 0. We refer to [C, Sections 38-40] for these and more facts about
conical measures. In particular, we have the Riesz decomposition [C, 10.5]:
given w1, up and v in M (X) such that v < uy + ug, there exist v; and vy
in M*(X) with v = vy + w3, v; < uy and vo < us.

Given a conical measure in X, the symmetrization of u is defined by
u® = }(u~+4) where %(2") = u(z* o0) with o(z) = —z for every z € X. The
resultant of a conical measure u, if it exists, is defined as the vector r{u)
in X satisfying u(z*) = z*(r(u)) for all z* € X*. If r(v) exists for every
0 < v £ w, the zonoform associated with « is the set in X, K, = {r(v}:v €
MY X), 0<v<u}l.

Let us now recall the construction of the Kluvének conical measure. If F' :
X — X is a vector measure and X a control measure for F', it defines a linear
map from X* to L*(\) sending each z* to the Radon-Nikodym derivative
Jer = d(z* o F)/dA. This map can be extended to a lattice homomorphism
$p from W(X) to L¥(A) such that for every z* € h(X) of the form (1),

V s

i=n-1

)
p(s) = fur = \/ for -
i=1

The conical measure up associated with F is defined by

up(z'} = 3 Pp(z*)dr for every 2* € h{X).
2
Observe that the above definition does not depend on the control measure A;
in fact, the original definition of Kluvanek in [K] used the lattice structure
of the set of real-valued measures defined on X instead of that of L*(X).
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Kluvanek proved that the closed convex hull of the range of F coincides
with the zonoform associated with up, that is, g F) = K, ,. In order
to obtain this result he used the following proposition whose statement hag
been adapted for future reference. We refer to [K] for its proof.

PROPOSITION 2.1. Let F be a vector measure defined on (£2, %) and up
its associated conicel measure. If v is a conical meosure with 0 € v € up,
then there exists o measurable function f: {2 — [0, 1} such that v = usp.

The range of a vector measure doeg not determine the associated con-
ical measure; that is, there are examples of vector measures F and G,
even in finite dimension, with rg F' = rg G but up # ug. However, the
range determines the symimetrization of the comical measurs. This is due
to the identity K., + Ku, = Kypaup (using Riesz decomposition), which
implies

Eﬁ(l‘gF) - -(E(I'g F) = K’uF + K’ELF = K’up-l—’farn = 2K

’Ll-ﬁwi

and the fact proved by Choquet that K, = K, implies v = v whenever v
and v are symmetric conical measures (see [C, Vol. 1IT, p. 52]). So we can
state:

THEOREM 2.2. Let F' and G be two X -valued wector measures. Then
to(rg F') is o translate of To(rg Q) if and only if u% = uf.

This theorem will be the key to proving properties determined by the
range of a vector measure. We will characterize some properties of vector
measures in terms of the associated conical measure. These characteriza-
tions turn out to be invariant under symmetrization, so these properties are
determined by the range thanks to Theorem 2.2. We start the study with
the total variation.

THEOREM 2.3. 4 vector messure F has findle variotion if and only if

there exists a constant M > 0 such that for every finite set {x}}., € Bx~,
a3
@) w-r( V 1m;-“|) < M.
jz=]

In this case, the total variation of F is the infimum of all constants M
satisfying (2).

Proof. Suppose that (2) holds. Given a partition of £2 into diajoint mea-
surable sets Ay, ..., A, choose s], ..., 2}, such that |jz}|| = L and (=}, F(4;)}
= |F(A;)|- HF Ais a control measure for F and fyr = d(z} o F)/d)\ then
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n Tu
ZHF =3 {2}, F(A)) =3 | for di
i j=1 Jj=1 i
< | dA = i .
<1 g 112 =on( V51 20
Consequently, | F| < M.
Now suppose that [|F|| < oo. Then given z},...,z% in Bx-, one

can choose disjoint measurable sets {A;}7_, such that | fayilw) =
SUPj1,...n | Juy | (w) for every w € A;, Then

w(V1550) =32 1 1t

jml j-—l AJ g=sl

<Y IFIA) < |17
i=1

Let us agree that a conical measure u has bounded variation if it satisfies
condition (2) from the last theorem., We have the following result character-
izing vector measures of ¢-finite variation.

THEOREM 2.4. Let F be a vector measure with velues in a Banach space
X and up the conical measure associated with F. The following properties
are equivalent:

(a) F' has o-finite variation.

(b) There exists a sequence {uy,}, of conical measures of bounded vart-
ation such that up(z*) =Y o0 un{2*) for every 2* € h(X).

(¢) There exists a conical measure v < up of bounded variation such thai
for every w <up, w >0, we have v Aw > 0.

Proof. (a)=(b). If F has o-finite variation, then 2 = | j,- ; A, (pairwise
disjoint) with |F|(Ax) < co. If u, = uy, r, it is clear that the sequence
{uwn }», works.

(b)={c). Let up = 3 o
esis, there (‘xist constants M, < oo such that v, (Vs |2¥]) € My, for every
finite set {x}}%., C Bx+. 0 < w < up, there exist n such that wAv, > 0
because w = w /\ up = w A (sup,, vn) = sup, (w A vn). If we take a sequence
(@n)n of positive numbers such that 5, o, < 1 and >on My < 00, then
U=y v, satisfies v < up and v is of bounded variation. If w A v = 0,
then w A (ayuy,) = 0 for every n, so w A vp, = 0, which is a contradiction.

(c)=>(a). Suppose that 0 < v < up with v of bounded variation such that
for all w < up with w > 0 we have wAwv > 0.If A is a control measure for F,
we are going to prove that if A € X with A(A) > 0, then there exists B C A
with 0 < A(B) and |F|{B) < co. As an easy consequence of the Exhaustion
Lemma [DU, p. 70], this implies that there exists a sequence (A, ) of pairwise
disjoint members of & such that 2 = ., An and |[F|(4,) < oo

{ Un = lmn v, Where vn = Y5 u;. By hypoth-
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Take w = uy,p; we can suppose |[F[(A) > 0 and so w > 0. Then 0 <
wAv < w = Uy,p and, again by Proposition 2.1 this time applied to the
vector measure yaF, there exists h measurable with 0 < 2 < 1 such that
WAV = Upy 1o A5 O < Upy 5 S v, WE conclude by Theorem 2.3 that hy, F
has finite variation, and it is easy to obtain B C A with 0 < [F|(B) < . »

COROLLARY 2.5. Let F' and G be two vector measures such that T@(rg F)
is o translate of (g G). Then:

@ (7 =&l

(ii) F has o-finite variation if and only if G has o-finite variation.

Proof. (i) is an easy consequence of Theorem 2.2 and the fact that for
every {z;}%; C Bx- we have up(Vi_q |27 ) = wi(Viey |27]).

To show (ii) we are going to prove that condition (c) from the last
theorem is invariant under symmetrization. First suppose that there ex-
ists v < up of bounded variation such that wAv > O for all w < up, w > 0.
Take v° = Z(v-+4) < u}, which obviously has bounded variation., If w < u
and w > 0 then by the Riesz decomposition, w = wy + wy with wy < up/2
and we < Uip/2. Either wy > 0 or wy > 0. Suppose that w; > 0. Then

1 1
0 < ~2~(w1 Av) < §(w1/\(v—|-®))= 1—;—l—/\'u“gw]/\vE‘ < w A,

If wy > 0, we also obtain w A v® > 0 because in this case wy A9 > 0.
Conversely, suppose that there exists v < u% of bounded variation such
that 0 < w < u% implies w Av > 0. If v1 = v Aup, then for every w > 0
with w < up, we have w Avy = wA (up Av) = wAv > ¥ Av > 0. Therefore
w A vy > 0 and up satisfies (¢) of the last theorem. =

Another way of looking at the case of finite variation is that | F' < oo
if and only if the integration operator Ir is l-summing and in this case
m{Ir) = | F| [DU, p. 162]. This result suggests proving an analogous result
for the (p, g)-summing norm and the characterization in terms of the conical
measure. We refer to {[DJT] for properties of (p, ¢)-summing operators.

1 <qp < oo, it is known (see [DJT, p. 330]) that an operator T
L™(A) — X is (p, ¢)-summing if and only if there exists a coustant M < oo
such that the inequality

= 1/p - L/q
3) ()™ < sl (s

i=1 i=1 o
holds for every positive integer n and for all f4,..., f, € L®(XA). The least
such M is w(p 7 (T}, the (p, ¢)-summing norm of T. In the following theorem
we characterize the (p, ¢)-summing norm of the integration operator Ip in
terms of the conical measure wp. Let p' and ¢’ be the conjugate exponents
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of p and g respectively; that is, 1/p+1/p' =1 and 1/g +1/¢’ = 1, and let
¢ denote as usual R with the ¢, norm.

THEOREM 2.6, The operator Ir is (p,q)-summing if and only if there
erists o constant M < oo such that

m " .
(4) UF( V | alz}
1

J=1 ds=

)<

for every scalar matriz ((o) Vie )Ty such that Torlallt < 1 for every
J, and every family x3, ..., x} in X* with (||z}|), € Bin, . In this case,
Tip,g)(Lr) = inf M such that (4) holds.

Proof. Iris (p, ¢)-summing if and only if there exists a constant K > 0
such that, for every finite sequence z3,...,z} in X*,

()|, (S ™
= i=1

And 7 ) (Ir) = inf K such that the last inequality holds. To see this,
suppose first that Ip is (p, ¢)-summing. Since (L{£7))* = L>®(€7), we have

[(315)"],

- i ] l/q, id n

= (S hper?) ™ |, = sue { Do trmer, gl 12 | D1l
fa=] taml i=1
<sup { (S 1ai17) " (X tral?) 212 | St}
i=1 i=1 =1
< M) ( S 7).
gzl

The proof of the reverse imnplication is similar, To finish it is enough to note

that " T - no
”(ZL&;W ) HL = sup{up( \/ ’Zaffnf ) : Zla“ﬂq < 1}. "
i=1 F=1 gl i=1

Remark. Since L*()) is a C(K) space, the p-summing norm of Ir
coincides with its p-integral norm. i,(Ip) [DJT, Corollary 5.8]. Therefore
the previous theorem, with p = g, is a characterization of the p-integral
norm of Ip.

The Bochner differentiability of a measure is another property that can
be expressed in terms of operator ideal norms of the integration operator;



262 L. Rodriguez-Piazza and M. C, Romero-Moreno

in fact, F' is Bochner differentiable with respect to its variation if and only
if I is nuclear. In the following theorem we characterize, in terms of the
conical measure up, when [p is p-nuclear, and its p-nuclear norm vp{JIx).
See [DJT) for the definition of v, and recall that the nuclear operators are
just the 1-nuclear operators.

Let us introduce some notation. If € is a bounded absclutely convex
closed subset of X, let X¢ be the linear subspace generated by C, that
is, Xo = {Az : ¢ € C, A > 0}. Provided with the Minkowski functional
|- |c of G, Xg becomes a Banach space such that we have the continuous
inclusion X — X. For every z* € X* set [|[2"||c = supyee |2*(2)]; it is
an easy consequence of the Hahn~Banach Theorem that for every z € X
we have ||z]lc = sup{|z*(z)| : z* € X*, |jz*|c £ 1}, where we understand
fz|o = oo whenever z € Xg. If T is an operator such that rgT C Xg,
we can consider T as having values in X and in this case we denote it
by T€.

THEOREM 2.7. The operator I'r is p-nuclear if and only if there emisis
an absolutely convex compact set K C By and o constant M < 0o such that

(5) w({z/ ‘f:la;?mr

=1l i=

)<

for every scalar mairiz ((a{)?ml);"fﬂ such that 31 |al? < 1 for every
i, and every family xf,...,z% in X* with (||2}||x)ie; € B,g:,. Moreover,
vp(Ir) = inf M such that (5) holds for some K C Bx.

Proof. With the above notation, it was proved in [R2, Theorem 5.2]
that if Iw is nuclear, then there exists an absolutely convex compact subset
K of X such that rg F is contained in Xg and F' has {inite variation when
considered as an X g-valued measure. Following the same steps one can see
that if T : Y — X is a p-nuclear operator, then there exists an absolutely
convex compact set K < By with T(Y) ¢ Xg, and T being p-integral.
Moreover, for every & > 0, K can be chosen so that 4,(T%) < »,(T) + ¢
The converse is true: if we have T(Y) ¢ Xy and T iy p-integral for a
certain compact K C By, then T ig the composition of T, a p-integral
operator, and a compact operator, the inclusion X5 — X. So T is p-tnclear
and vp(T) < ip{TH)| X g — X | < ip(TH) [DIT, Theorem 5.27].

When (5) is satisfied we have, for ||z*||x < 1 and g &€ L%(}),

[(Irg,a)| = |{sTpe" a3 < lgllocur(i2*)) < Mllglle.

8o Ir is Xg-valued. Now, following the proof of Theorem 2.6, it is easy to
see that (5) is equivalent to I being p-integral with i, (IX) = inf M, M ad-
missible in (5). The considerations above imply that u,(Ir) = inf{i,(IE)},

icm

Condenl measures 263

where the infimum extends over all compact K ¢ By for which [ 1{? is
p-integral. The theorem follows. m

Remark. In fact, once we know that Ir ig p-nuclear, we do not have
to worry about characterizing the exact value of v, (Ip), since we have char-
acterized i,(Ip) in Theorem 2.6 and v,(Ip) = 4,(Ir) when Ir is p-nuclear.
This is a consequence of the facts that the finite rank operators are dense in
the space of p-nuclear operators and that the dual of L°°(}) has the metric
approximation property. For p = 1, it is proved in [P, p. 132] that, in this
situation, the nuclear and integral norms concide for finite rank operators.
The argument there can be adapted for general p, but we have not found a
precise reference.

As conditions (4) and (5) are invariant under symmetrization, we obtain

COROLLARY 2.8. If ' and G are two vector measures such that co(rg F)
is a translote of To(rg &), then:

(1) Ir is (p, q)-summing if ond only if Iq is, and 7y, (Ir) = Ty (1)
(2) Ir is p-nuclear if and only if I is, and v,(Jr) = 1,(Ig). In partic-
ular, F hos o Bochner derivative if and only if G does.

3. Pettis derivability. In this section we will study the existence of a
Pettis derivative of a vector measure in terms of the conical measure; more
concretely, this will be done in terms of a localization of the conical measure
which will be given in Theorem 3.2.

Let us recall that a vector measure F' : (2, ) — X is Pettis differentiable
with respect to a control measure g if there exists a function ¢ : 2 - X
such that 2*p € L*(u) for every z* € X*, and we have

(2%, F{A)) = S z*pdu for every z* € X* and every A € X.
A
With the help of the Radon-Nikodym theorem for positive measures one
can see that if a vector measure is Pettis differentiable with respect to some
control measure then it is Pettis dilferentiable with respect to any control
measure. A Petiis differentiable meagure turns out to have o-finite variation
(see (M]).

In this section we will consider only vector measures of bounded vari-
ation. The case of o-finite variation can be reduced to this one by using
Corollary 2.2 of [R2]. If F has o-finite variation and To{rgG) is a trans-
late of To(rg F), then this result allows us to decompose F' = 3 ¢nF and
G =3 4,0, where ¢, F and 1,G have bounded variation and To(rg 9nG)
is a translate of €5(rg @nF), for every n. In particular, the fact of having a
strongly measurable Pettis derivative is determined by the range since I" has
such a derivative if and only if each o, F' is Bochner derivable, and we know
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from Corollary 2.8 that the range determines the existence of a Bochner
derivative,

Unfortunately, Pettis derivability is not defermined by the range, as
shown in the following example which is a remark on a construction of
Fremlin and Talagrand [FT]. Recall that a finite measure space (£2, 2, p)
is called perfect if for every measurable function [ 02— R and for every
A C R such that f~1(4) € X, there exists a Borel set B in R such that
B C A and p(f~H(A)) = p(f~1(B)). Then the same is true if we replace R
by any separable metric space. An example of a perfect measure is a Radon
measure. See [T, 1-3] for these facts.

ExaMPLE 3.1. There exist two vector measures of bounded variation with
values in Loy having the same ranges such that one of them is Pettis derivable
and the other is not.

Proof. In [FT] an example is given of a Pettis integrable function whose
indefinite integral has a range which is not relatively norm-compact. Let us
describe roughly this example (see [T, 4-2-5 and 13-2-1]). Consider the com-
pact set {2 = {0,1}", the o-algebra B of Borel sets of {2 and the probability
4 on B which is the product of the probability %(5.3 + &1) taken on each
factor {0, 1}.

There exist a o-algebra % on £ containing B, a probability 7 on X
extending y and a bounded function ¢ : £2 —+ o which is Pettis integrable
with respect to 7 such that if F' is the indefinite integral of ¢, then rg F is
not relatively norm compact. F' has bounded variation since ¢ is bounded
and 7 is a probability.

Moreover, every set in X is fi-equivalent to a set in B; that is, for every
set M € X there exists B € B such that m(BaM) = 0; 7 being a control
measure for F, this implies that F(M) = F(B). So, if we lel G be the
restriction of F' to B, we have rg F = rg G.

Now, F' is Pettis derivable but G is not. Indeed, the variation of G is a
finite measure on the Borel o-algebra of a compact metric space and so it
is a Radon measure; hence (£2, 2,|G]) is a perfect measure space and, by
a result due to Stegall [T, 4-1-6], if G were Pettis derivable with respect to
|G|, then its range would be relatively compact. m

Remartk. Inthe references given for the previous example, the function
i is defined on 2 x £2. This is not relevant, for there is a homeomorphism
from £2x 2 to 2 sending 4 ® i to u and the above description is the example
in [T, 4-2-5] via this homeomorphism.

The last example also shows that we cannot characterize Pettis derivabil-
ity in terms of the conical measure. Both vector measures in this example
have the same associated conical measure. But in terms of this conical mea-
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sure we can characterize the existence of at least one Pettis derivable vector
measure having the same range and when every measure having the sarne
range has a Pettis derivative. All these characterizations will be done in
terms of a localization of the conical measure. We will use the term “lo-
calization of a comical measure” in a more general sense than in [C, 30.4].
By a localization of u we will understand a positive measure y such that
u(z*) = { 2" dp for every z* € h(X). It is not always possible to find a lo-
calization p defined on X for a conical measure of bounded variation. But
this is possible if we look for i defined on X**. Observe that every element
of A(X) can be extended (univocally) as a continuous function on X** for
the weak* topology.

Recall that the smallest o-algebra on a topological space T' making mea-
surable every real-valued continuous function is called the Baire o-algebra
of T'. If we consider the weak topology in X or the weak* topology in X**,
the Baire o-algebras, denoted respectively by Ba(X,w) and Ba{X**,w*),
turn out to be the c-algebras generated respectively in X and in X™** by the
functions in X* [T, 2-2-4].

If F' has bounded variation the integration operator defined on L®°(|F|)
can be extended to L'(}F|) as a norm one operator, so there exists a weak™*
density for F' (see [T, 7-1-2]); that is, there exists a map ¢ : 2 — By such
that
d(z* o I)

d|F|

As we can assume that (£2, X, |F|) is a complete measure space (if not one
can consider its completion), this function ¢ is measurable from (2, )
to (X**, Ba(X**, w*)). In the following theorem we use this function to
establish the existence of a localization of the conical measure and we give
some conditions for its uniqueness.

If 1 i8 & measure on Ba(X**, w*), then p® will denote its symmetrization
defined as p(A) = $(u(4) + p(—A)) for every A € Ba(X**, w*). Let us
remark that in general the unit ball of X** is not Baire measurable for w*,
This is the reason why we have to consider the outer measure ug(Bx«) in
the following theorem.

(6) z¥op = | F|-a.e., for every z* € X*,

THEOREM 3.2, Let F be an X-valued measure of bounded wvariatiomn.
There exisi o unique positive measure pp and an X -velued vector measure
Ry defined on Ba(X**,w*) such that:

(b) For every z* € h(X),

up (") = S 2" (™) dup (z) .
X**
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(¢} For every z* € X* and every A € Ba(X™,w"),

{z*, Rp(A)) = S z* (™) dpp (™).
A
(d) {Rp| = pr and co(rg F) = To(rg Rp).

Moreover, if G is another X-valued measure of bounded variotion, then
eB(rg F) s o translate of To(rg G) if and only if [ = p

Proof. The existence of gy could be proved using a result of IZ Thomas
[Th, Theorem 16] about localization of conical meagires; but for our pur-
poses it will be more interesting to use a weak™ density v with values in
By.. We can define the measure up as the image measure of |[F| by ¢
pr(A) = |F|(p~1(A)) for every A € Ba(X**,w*). Clearly, as i is By~
valued we have (a). To prove (b), considering |F'| as a control measure for
F, take z* € h(X) as in (1). Then we have, thanks to (6),

i m
ur(z) =] (Vafop~ | alop)dF|=z"opdFl={s"dur.
=1 i=mn-1
Taking the image measure by the same weak* density ¢ we can transfer
not only the variation of F but even the vector measure itself. So define the
vector measure Ry as Rp(A) = F(p™'(4)) for every A € Ba(X™, w*}. It
is clear that
{z*,Rp(A)) = S ¥ dup for every A € Ba(X**,w*) and z* € X*.
A
Therefore we can view Ry as the indefinite weak™® integral of the identity

map in X** with respect to up. To prove (d), for every z* € X* we have,
for Az = {* >0},

sip{a*(F(A) : A€ Ty = | a'pdlF|= | o* dup
{w =0} At
= sup{z*(Rp(4)) : A € Ba(X"",w")}.
We also have |Rp| = up. Indeed, for every 4 € Ba(X** w™), we have
IRe(A)]| = | Fle (AN < |Fl(e™ (A)) = pre(A),
implying |Rp|(4) € ur(A) for every A, We know that ¢6(rg F') = ©(rg Br)
and so, by Corollary 2.5, |Rp|(X**) = ||F|| = pup(X**), Then |Rp| and pr
coincide in-a total set; since up is always greater they must be equal
Next we prove the uniqueness of p. Suppose u1 and pp are two measures
satisfying (a) and (b). Let B be the Baire o-algebra of Bx.~ for the weak*
topology; this is the trace in By« of the o-algebra Ba{X**, w*); that is,
for every A € B, there exists A’ € Ba(X**,w*) such that 4 = A’ N Bxw.
As By« has full outer measure for ui and pg, if we put v;(A) = (4",
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i=1,2, we have two well-defined measures in B that still satisfy for every
z* € h(X),

{7) up(z™) = g 2" dy = S 2" duy.
Byan B
If we show vy = g, we will have g3 = pg. To see that 1y = o, it
is enough to prove that 3 fdv, = S J dwn for every continuous function on
By, and we have to check this only on a dense set in C(Bx+.). By (7)
and the dominated convergence theorem, it s clear that { fdwy = { f du, for
every continuous function f that is the (#1 -+ vp)-almost everywhere limit of
a uniformly bounded sequence in h(X). The set F of all those functions is a
vector sublattice of C(Bx.«) which contains h(.X), in particular, it separates
the points of By« . If we prove that ¥ contains the constants, then by
the Stone-Weierstrass theorem for lattices, it will be dense in £(Bx»-).
Recall that v3(Bys«) = va(Bxes) = ||F| and use Theorem 2.3 to obtain,
for every positive €, a finite set z7,..., 25 in the unit ball of X* such that
uF(\/;Ll lz;1) = || F]| - e. This gives us a function #* in A(X) such 0 < 2*
< 1in Bxws and {2*dy; > {1dy; — £. We can then produce an increasing
sequence (z) in A(X) such that 0 < 25 < 1in By~ for every n, and
lim {23 d(v +v2) = [ 1d(w1 + 1),

Fh ek 20
This implies that the constant function 1 belongs to E, finishing the proof
of the uniqueness of pg.
To prove the last assertion, it is clear that uh(2*) = {z* du%, for every
2* € h(X). Then u$ = pi, implies u% = v and it is enough to use The-
orem 2.2 to deduce that T6(rg F) is a translate of @5(rg G). For the reverse
implication, the same theorem will give us 1} = u}; to see that this implies
[ = u¥; use the same arguments as in the proof of the uniqueness of yp. m

Remark. The measure gp has already been used to study properties
of weals densitios and representation of operators. For example, Edgar [E]
proved that F' has a Bochner derivative if and only if there exists a sepa-
rable subspace I of X such that pi(H) = ||F||. As a consequence of this
characterization we obtain a new proof of the fact that Bochner derivability
is determined by the range, since, H being a symimetric set, the condition
pp(H) = || Fi| still bolds if we replace pup by ph.

If we consider another weak* density 1, even if it takes values off Bx~,
it will produce the same image measure j g since we will have z*op = z" 09
|F|-almost everywhere on (2 for every 2* € X™*, and this implies that 0 (A)
and y~1( A) are | F|-equivalent scts for every A € Ba(X**,w"). If there exists
a Pettis derivative of /', one can use it as such a function . We use this
fact in the following proposition. ‘
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PROPOSITION 3.3. Let F be an X -valued measure of bounded variation,
There exists a vector measure G with a Petiis derivative such that ©o(xg G)
is o translate of o(xg F) if and orly if piH(X) = | F|i.

Proof. Suppose G is Pettis derivable and To(rg @) is a translate of
o(rg F'). Then if ¢ is a Pettis derivative of G with respect to |G, as men-
tioned before, one can use 9 to define pg and then 1 (A) is a total set for
every A € Ba(X™,w*) containing X. So ug(X) = |Gl = ||[F||. Since X is
a symmetric set and u% = ul we also get uh(X) = [F.

For the converse imoplication, if X has full outer measure for up, then as
Ba(X,w) is the trace in X of Ba(X™*, w*), putting G(ANX) = Rp(A) and
v(ANX) = pp(A) for every A € Ba(X**,w*), we define a vector measure G
and a positive measure v on Ba(X,w). Since G has the same range as Ry,
we have @o(rg G) = To(xg F). It is easy to see that v = |G| since |Rr| = pr.
Finally, the identity map in X is a Pettis derivative of G with respect to v
because

S g dy = Sx,a_m* dv = S yax* dup = (z*, Rp(A)) = (z*, G(AN X))
AnX X X
for every A € Ba(X** w*) and every " € X™. m

PrOPOSITION 3.4. Let F' be an X -valued measure of bounded variation.
The following properties are equivalent:

(a) Buery vector measure G such that @(rg &) is o translate of (g F)
has a Pettis derivative.

(b) Rp has a Pettis derivative.

(c) There exists @ function ¢ : X* — X such that, for every 2™ € X*,
z* o1 = &* pp-almost everywhere in X,

Proof. Of course (a) implies (b) because T(rg F) = to(rg Rp). It is also
easy to see that (b) and (c) are equivalent: a Pettis derivative of Rp with
respect to its variation pp is exactly a function ¢ as in (c) since, for every
z* € X*, we have z* = d(z* o Rp)/dup.

To prove that (c¢) implies (a), we first prove that (¢) implies F' is Pettis
derivable. Let @ : £2 — X** be the weal™ density used to define pp and Rp.
Then © 0 ¢ is a Petiis derivative of F' with respect to || since z* o¢p = a”
ip-almost everywhere in X** lmplies
d{z* o F)

d|F|

The only thing we have to prove is that (c) for pp implies (c) for pg
when to(1gG) is a translate of eo(rg F). By Theorem 3.2 we know that
P = g as every set of measure zero for yf, has measure zero for pg it is
enough to prove that (c) for up implies (c) for p$. Let h : X** — [0,2] be

z*opop=a*op=m= |F'l-a.e., for every o* & X*.
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the Radon-Nikodym derivative of up with respect to p%. Let B = {h = 0},
C = B\ (BN -B), and define 1 (2**) = w(z**) if g™ ¢ X** \ C, and
P(z*) = —p(-z™) if 2*" € C. For z* € X* we have z* o4 = z*
pi-almost everywhere since pp and u% are equivalent measures in X \ C,
and they are exactly the same measure on —C. m

Tn Example 3.1 the measure space in which the derivable vector measure
is defined is not perfoct. One can think that the existence of non-perfect
meastre spaces, with large o-algebras, is the reagson for the Pettis derivabil-
ity not being determined by the range. It raises the following problem: if we
regtrict our attention to vector measures defined on perfect measure spaces
(vector meagures having a perfect control measure), does the range deter-
mine the Pettis derivability? Let us remark that pr is a perfect measure
gince it is the restriction to the Bairve o-algebra of a Radon measure defined
on the Borel sets of (X**, w*) supported by Bx«~: the Radon measure repre-
senting the linear functional f — | fdup on C(Bx..). The next proposition
is a partial answer to the above question; it implies, for instance, that if the
Banach space is £o, then the answer is yes.

ProrposITION 3.5. Let (2, X, 1) be o finite perfect measure space, i :
2 = X a Pettis integrable function and F its indefinite integral. Suppose F
has bounded variation and there exists a sequence {x}} in X* separating the
points of the linear span of p(2). Then every measure G such that 5(rg G)
is o translate of To(rg F) is Petlis derivable.

Proof We can reduce the proof to the case p = |F|, since |F| is still
a perfect measure and the Pettis derivative of F with respect to |F} is the
product of a scalar function and . In the case g = |F'| we can use ¢ to define
pr. Using Proposition 3.4 we only have to construct a function ¢ : X** — X
satisfying the statement (¢) of that proposition.

Define T' : X** — BY by Ta** = ({,2™))5%,. Then T' is continnous
if we consider on X** the weak* topology and on RN the product topology.
The map T o ¢ is measurable from the perfect measure space (2, %,|F|}
to the metric separable space RN. So given the set 4 = T'o w(12), as
2 = (T o )~L(A), there exists a Borel set B in RN such that B C A and
IFI((T 0 0)2(B)) = |FI(£2) = | £].

If By = T-U1), then By € Ba(X**, w*), up(Bo) = \F|(‘P"1(BO)) =
£, and Tz** € T'op(f2) for every ** € By. So X**\ By is a negligible set
and for every z** € By, there exists y € p(2) C X such that T'z™ = Ty.
This y is necessarily unique since the sequence {z},} separates the points of
©(£), and we define 9 (z**) = y. If z** € X** \ By we define ¢(z™*) = 0.
Let us check that ¢ satisfies () of Proposition 3.4. Pick f in X*. In order
t0 gee that @ 0y = @}, up-almost everywhere in X", define §: X - RN

by Sz* = ((z}_;,2**))%.,. Using the same arguments as before we deduce
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the existence of a set B € Ba(X**,w*) such that X™ \ By is negligible
and for every z** € By, there exists a point y € @w(£2) such that Sz** = Sy,
which implies Tz** = Ty and z3(z**) = zj(y). Hin addition z** & By, then
y = p{z*) and z§(z**) = z4(y), so we have proved xf o Y(z™) = xzj(z**)
for every z** € BoN By. As X =\ {By N By) is wmp-negligible we have fin-
ished. m
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Best constants and agymptotics
of Marcinkiewicz—Zygrmund inequalities

by

ANDREAS DEFANT (Oldenburg) and MARIUS JUNGE (Kiel)

Abstract. We dotermine the set of all triples 1 € p,¢,7 < oo for which the so-
called Marcinkiewice Zygmund ineguelity is satisfied: There exists a constant ¢ > 0 such
that for each bounded linear operator T : Ly{p) — Lp(»), each n € N and functions
- Jn € L‘](nu‘):

(S ( g E'l"fklr)wwflf/) o < el (S (;‘?; [ fi \T) qﬁd#) e

This type of inequality includes ns special cases well-known inequalities of Paley, Marcin-
Kewicn, Zygound, Grothendieck, and Kwapied, If such a Marcinklewicz-Zygmund in-
equality holds for a given triple {p, ¢,r), then we calculate the best constant ¢ > 0 (with
the only exception: Lhe important case L € p < r =2 < g < co); if such an inequality does
not hold, then we give agymptotically optimal estimates for the graduation of these con-
stants in n. Two problems of Gasch and Maligranda from [9] are solved; as a by-product
we obtain best constants of several important inequalities from the theory of summing
operators.

0. Introduction. Fix a triple (p,¢,7) of scalars with 1 < p,¢,7 < oo,
We call—for the purpose of this paper—an inequality of the following type
a Marcinkiewicz Zygmund inequality: There is a constant ¢ > 0 (depending
on p,¢ and » only) such that for each (linear and continuous) operator
T Ly(p) = Ly(v) (o and v arbitrary measures) and arbitrarily many
functions fi, ..., fn € Ly(pu)

Mz (§ (g |Tfk|?;)”/"dw) Ry (§ (g 1,f,¢v)”'”d#)1/q.

By a density and closed graph argument it is equivalent to say that each
operator 7' : L () — Ly(v) allows an é-valued extension, i.e. there is an
operator

T Lol br) — Lp(v, )

1991 Mathematics Subject Classification: Primary 46807, 47810; Secondary 42B25.

o



