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Two-weight norm inequalities for maximal functions
on homogeneous spaces and boundary estimates

by

SERGIO LULS ZANI (Sio Carlos)

Abstract. Let 2 be an open subset of a homogeneous space (X, d, ). Consider the
maximal function

M!.af(m)=5upﬁ')' S |fldv, =zeb,
BNOD

where the supremum is taken over all balls of the form B = B(a{z),r} with r > ¢(z) =

d(z,8D), a(x) € 8D is such that d{a(z), z) < zzt( z) and ¢ i8 a nonnegative set function
defined for all Borel sets of X satisfying the quasi-monotonicity and doubling properties.
We give a necessary and sufficient condition on the weights w and v for the weighted norm
Inequality

(01) ( {tetprmwan) P o | 1P dv)l/p

D en

to hold when 1 < p < ¢ < 00, odv = v*~?'dy is a doubling weight, and dv is a doubling
measure, and give a sufficient condition for (0.1) when 1 < p < ¢ < co without assuming
that ¢ is a doubling weight but with an extra assumption on . Another characterization
for (0.1) is also provided for 1 < p < ¢ < oo and D of the form ¥ x (0,00), where ¥ is a
homogeneous space with group structure. These results genera.hze some known theorems
in the case when M, is the fractional maximal function in IR"+ that is, when

1
fla, ) = My (z,t) = dv,
Mol ) = Mo ot) = 38 g s | 111
where (z,4) & RiH, 0 <y <1, ancl v 18 a doubling measure in R

1. Introduction. We consider a homogeneous space (X, d, 1) where
d: X x X = [0,00) satisfles:
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Key words and phrases: norm inequality, weight, maximal function, homogeneous
space.

Research. partly supported by CNPg.



68 5. L. Zani

1.d(z,y)=0ifand enly if z =y
2. d(z,y) = d(y, z) for any =,y in X.
3. There exists Ag > 1 such that
(1.1) d(z,y) < Ao(d(m, 2) + d(z,y)) forall z,y,zin X,

¢ is 2 measure on the Borel subsets of X with the doubling property: there
exists a positive constant A; such that

(1.2) p(B(z,2r)) € Ajp(B(z, 7)) forall z in X and r >0,

where B(z,r) = {y € X : d(z,y} < r} is the ball of radius 7 with center z. .

If B= B(z,r) and A > 0, we will write AB for B(z, Ar).

As mentioned in [C], Macias and Segovia (cf. [MS]) have proved that

given a quasi-metric d on X there exists a quasi-metric d’ on X satisfying:

1. Cd(z,y) < d(z,y) < Od'(z,y) for all 2,y in X, where C is a
positive constant independent of z and y.

2. The balls with respect to d’, i.e., B'(z,7) = {y € X : d'{y,z) < r},
z € X, r> 0, are open.

Since only the order of magnitude of d(z,y} will be relevant for us, we
may assume that the balls defined by d are open. We will also assume that all
anmuli A(z,r,R) = B(z, R) \ B(z,r) in X are nonempty for all 0 <7 < R.
We immediately see that there exists ¢ > 0 such that the diameter § of
Bz, r) satisfies

6(B{x,r)) = sup{d(y, 2} : y,2 € B{z,r)} > cr
for all z in X and r > 0. In fact, since A = A{z, 37,7) is nonempty, there
exists y in A. Thus, » > d(z,y) > %r. Therefore, 6(B{z,r)) = d(z,y) = %r.
Now, for any z,y in B(z,r} we have d{z,y) < Ao{d(z,z) + d(z,y)) <
2Agr. Thus,
ir < §(B(z, 7)) < 240,
and we say that the diameter of B(z,r) is equivalent to r.
Let D be an open subset of X and ¢ > L. For each z in X let i(z) =
(a: dD) and select a(z) in 8D such that d(z, a()) < ci(x). Note that if

¢’ > 1 and a'(z) is in 8D and satisfles d(x,a'(z)) < ¢'t(z) then there exists
K > 1 depending only on Ay, c and ¢’ such that

(L3)  Bla(s),r) C B(a'(z), ) C Bla(a), K*r)
for all z € X and r > t(z).

Denote by B the set of all balls B = B(z,r) with z in 8D and r > 0.
Suppose ¢ is a nonnegative set function which is defined for all Borel sets
of X and satisfies the following conditions:
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(1) (quasi-monotonicity) There exists cg > 0 such that w(B') <
whenever B' C B, B', B € 8. ©(B') < cop(B)
(2) (doubling) There exists co > 0 such that ¢(B(z, 2r)) < cyo( B
for all z in D and r > 0. (7,2r)) < cop(B(z, 7))

Observe that (1) and (2) imply that for all 4 > 0 there exists cly) >0
such that

(8) @(B(z,v7)) £ e(v)e(B(z,r)) for all z in 8D and r > 0.
For @, t(x) and a(z) as above, define

4 Mpaf(a)= sup —t | |fldv
4 el 58, S L1

where B(a(z),r) = B(a(z),r) N oD, Bla(z),r) = {y € X : d(y,a(z)) < 7}
and v is a doubling measure on 4D.

Note that if ¢,¢’ > 1 and a(z),a/(z) are as above then it follows from
(1.3) and the properties of ¢ that there exists ¢ > 0 depending only on

Ao, co; ¢ and ¢’ such that 1M, o f < Mo f < OM, . f for all . For this
reason we will fix ¢ = 3/2 and wr:f;e M, f instead of M, f.

Observe thdfn when X =Y xR, {(Y,v,0} is a homogeneous space, D.--

Y x(0,00) = Y. and o(E) = |Ena¥, |17, where || denotes the »-measure
and ¢ < < 1, then

(1'5) 'n/'[ﬁﬂf(wat) = M’Yf(m:t)
—supr—— | ()] dv(y)

He¥ |
=t l.B(G;,'r)liBWT B(.’XJ,’I') (m ) e +

where B(x,r) = {y € Y : o(z,y) < r} and r > 0, is the fractional maximal
func‘mon In [SW2Z], Sawyer, Wheeden and Zhao showed that if 1 <p < g <

(m t) and v(y) are weights in ¥; and ¥, respectively, and o(y)dv(y) =
( )l‘“T’ du(y) (with p’ = p/( p~1)) and dv(y ) satisfy the doubling condition
and u Is a Borel measure in Yﬁ , then the weighted norm, inequality

(1.6) (xMwww%mmmm@)’s4hﬂw%@m@np
'R|. Y
holds if and only if there exists a positive constant C such that
o (§a) T (Jwa)” ((ea)" <0
B B B

for all balls B ¢ ¥, where B = B x [0,r(B)) and r(B) is the radius of B.
The first result we have for M, is
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THEOREM 1.1, Suppose 1 < p < g < oo. Let w and v be weights de-
fined on D and 8D, respectively. Suppose that odv = v'=P dv is a doubling
measure. Then the weighted norm inequalify
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/
(18) (§ 1Mo 7wan) " <o | 1rroar)”
D 8D
holds for all f, with ¢ independent of f, if and only if
(1.9) zp(B)"l(Swdu)l/q(Sadv)l/P <C
B B

for oll balls B = B(z,r) with z in 8D, r > 0, C independent of B, and
B=BnD,B=BnaD.

In the next theorem we present a condition implying that the weighted
norm inequality

1 1
(L.10) (§tfowan)™ <ol | 17Poar)”,
D 8D

holds for all f, where 1 < p £ ¢ < oo, without imposing the doubling
condition on ¢ but with an additional condition on . The theorem is stated
in terms of dyadic cubes (see Definition 2.11) centered at points of the
boundary of a fixed open subset . of a homogeneous space. For a similar
result for off-centered maximal operators, see [W2].

THEOREM 1.2. Suppose 1 < p < ¢ < o aqd let w and v be weights
defined on D and 8D, respectively. Let o = v1=F'. Suppose that there ewist
C>0and 0<e<1 such that

Il £ %
((Q |u) < 297)
QL »(Q*)
Jor all dyadic cubes Q' and Q such that Q' C @, where Q* is the exterior
ball associated with Q. Suppose alse thot there exists r > 1 such that
1/rp'

(1.11) qa(@*)|c“2|}/f”|3A§@‘*1H‘*‘(@1-|~ Jor dv) <C
14 Q

for all dyadic cubes Q centered at points of 8D, where Q* 1is the exterior
ball associated with Q, Q@ = QNAD and 3AZQ* = (34A3Q*) N D. Then there
exists ¢ > 0 such that

(112) (J1tan) " <ol | I£pvan) "
D aD

for oll f.
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The next result is a characterization of weighted norm inequalities of
type (p,q) with 1 < p < ¢ < 0o, when D has the form X x (0, 00), where
(X,d,v) is a homogeneous space. We will suppose additional condit’ions on
X, dand v. Let (X, d,v) be a homogeneous space and define X =X xR and
X4 = X x(0,00). Assume that X admits a group structure {not necessarily
commutative) such that for all Z,4,2 € X and all balls B C X we have

(1.13) d( + 2,y + 2) = d(z,y),
where 0 is the identity element of X,
(1.15) v(-B+ ) = v(~B)
where —B = {2 : —z € B}, and
(1.18) v(B) = v(~B).

Consider the following maximal function:

1
(1.17) M, f(, ) = sup ——r— . d X
14 o (P(B(:U; 7_)) B(£ " Ifl Y, (IJ t) € X+7

where B(z,7) C X and ¢ has the (quasi-)monotonicity and doubling proper-
ties and is defined for all Borel sets of X. The following theorem characterizes
(1.10) with M, as in (1.17), and is based on the main theorem of [S1].

THEOREM 1.3. Let (X,d,v) be a homogeneous space, where X has o
group structure and d and v satisfy conditions (1.13)~(1.16). Let w and v be
weights in Xy and X, respectively, and suppose that 1 < p < q < oo. Then

(118) (§ 0t ruan) " <o irpoa)”
%, X -
for all f if and only if
(1.19) (] [MW(UXQ_I_z)]awdu)l/q <o § crdr/)x/p
(T?nf-z Q-+

for all dyadic cubes Q C X and 2 in X, where G = Q x 1(Q) and Q) is
the edgelength of Q.

The proofs of the above theorems can be found in Section 3.

2. Dyadic balls and dyadic cubes. In this section we will adapt
the constructions of dyadic balls and dyadic cubes in homogeneous spaces
as presented in [SW2)] to obtain corresponding families of balls and cubes
whose centers lie on the boundary of a fixed open subset of X. For a slightly
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different concept of dyadic cubes in homogeneous spaces, see [C]. We will
also prove some lemmas that will be used in the next section.

LeMMA 2.1. Let (X, d, u) be a separable homogeneous space, i.e., X has
a countable dense subset, Let D be an open subsel of X and 0D be ifs
boundary. Suppose {By = B(2a,To) }aca 5 o family of balls with zo € 8D
and B, C B(z,7) for some z € 8D and r > 0. Then there exists o countable
subcollection {B;}ier of these balls such that

1. BinB;=0ifi#3.

2. Given o € A there exists i &€ I such that Bo C (Ao + 443)B;.

3. 1#{Uqes Be) € ¢Xier w(B;) where ¢ depends only on the positive
constants Ay and Az, as in (1.1) and (1.2), respectively.

The proof is the same as that of Lemma 3.3 in [SW2] and will be omitted.

As in [SW2], p. 843, we now construct a sequence of balls in X centered
at points of 8.D.

DEFINITION 2.2. Set A = Ag(24, + 1), where Ag is as in (1.1). For each
integer k select a sequence {2F}; of points of @D such that the sequence
of balls §J’-‘ = B(zF,AF71) is maximal with respect to the property that
BEnBE =0ifi+#j. Sei B = ABE. We refer to {B¥}x,; as the collection
of dyadic balls.

Note that if, for the same A = Ay(24p + 1), we had chosen another
sequence of points {z;’“ }; of 8D satisfying the same maximality condition
above with the corresponding collection of dyadic balls {B;"‘}k,j then for
each k and j there would be 4 such that

AT B ¢ Bf c ABE.
This readily implies that there exists ¢ > 1 such that for all k¥ and j,
¢~ lp(BI*) < @(BF) < co(BfF) for some 4.

For dyadic balls we have:

(2.3) Given z in 8D and an integer k there exists j such that B(z, A¥~1)
C B

j

(24) > Xpk < M for some M > 0 depending only on Aq and A;.
(2.5) B"‘ﬂBk Qfori#j, keZ
The statement (2.3) follows from the maximality of {EJ"} Note that if

z € BF, 1 <j <N, then J; BY 'C Bz, 24p)*). Since the BY are pairwise
digjoint in 7, we obtain

N N
Nu(B(x,2403F)) < ey Zu(ﬁf) = c;\;.n( U E;‘) < exp(B(x, 2400%)).
=1

i=1
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Hence, N < ¢, and this proves (2.4). Finally, (2.5) follows trivially from the
definition of B’-c .

LEMMA 2.6. Suppose B = {Bm}ma1 8 a femily of dyadic balls as above.
If {Bj};es 1 o collection of mazimal (with respect to inclusion) balls in B,

then the balls {B }iey are poirwise disjoint.

Proof We know that B” N Bk = §if i # j. Suppose there exists
z & BY n B}, where | < k. Then B! ¢ Bf. In fact, if w € B! then

d{zf,w) < Aold(#f, @) + Aold(m, ) + d(=}, w)]]
< Ao[AF ™ Ag (W 4+ AB)] < Ag[WFT o 2400F Y] = AF
The result now follows from the maximality of the balls. m

The following lemma is a version of Lerama 3.21 of [SW2] that is suitable
for boundary estizates.

LaMMma 2.7, Suppose (X, d) is a separable quasi-metric space and D ¢ X
is an open subset. Then there em’sts A > 1 depending only on Ay such that
for every m. € Z, there are points zJ € 8D and Borel sets E" 1< 7 < my,
k > m, where ny € NU {00}, such that

(28)  B(zf,A*)naD c B} C B(ak, Ak,
(2.9) 8D ={JEFNaD for all k > m,

7
and given i, 7, k, 1 with m < k < I, we have either
(2.10) Ef CE} or EFnEL=0.

DEFINITION 2.11. For each m € Z let D, = {Ef : k2 m, 1< j < ng}.
We refer to the elements of Dy, a8 dyadic cubes.

DEFINITION 2.12. Let @ = Ef in Dy, and write ¢ = B(z}, A*) ndD
and Q* = B(zf, A¥+1), We will refer to § and Q* as the inner and outer
balls, 1esp(,ctwoly, assoctuted with Q. The diameter of @ will be called the
edgelength of @ and will be denoted by 1(Q).

Note that since any annulus is nonempty, \* < edgelength of @ < AL

Proof of Lemma 2.7. We will only define the sels E;“ and the rest
of the proof will be omitted for it is essentially the same as that of Lemma
3.21 in [SW2)].

Set A == 845, For each k € Z choose a sequence {2} }1<j<n, of points
on D maximal with respect to the property that the balls {B(zf, 3453F)},
1 <4 < nyg, are pairwise disjoint. Notice that since X is separable, the car-
dinality of {#F} is at most countable.

l<i<ng k>m,
EfNEE=0 ifi#}]
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Fix m € Z and define
B = B(zP, 6A™) — | | B2, ™)
il
and for 7 > 1,
E} = B(zF,643™) — | ) B(z]", A™) - | B
it i<j
Observe that EJ* N B = @ if ¢ # j, B(2]*,A™) C B* < B(z]*, A™*!) and
We now define {EF}, for k > m. Suppose {E}},<; ., has been defined

for l=m,m+1,...,k for some k > m so as to satisfy
(213) B(,X)ndD C Bl Cc B(#, M), m<igk 1<j<my,
(2.14) oD =|JE;noD, E;nEi=0 ifi#}

J

and for m <I; <lp < %k and any 4, j we have eithex
(2.15) EfNE} =0 or FEjCE}
Forany B > 0 and 1 € j < np41, let
E(sz‘"l, R) = U{Ef“ : BN B(2f R) # 0).

Define
Eftt = B 6AIAEFY) — | B(eft, A+
il
and for j > 1,
Bt = BT, 643 — | ) Boft, A4 — | BEHL
igkd i<y

The next lemraa, which is an application of the Marcinkiewicz interpo-
lation theorem, is analogous to Lemma 3.15 of [SW2!,

LeMMA 2.16. Let D ¢ X be an open subset and 0D its boundary. Suppose
a(B) is a nonnegative set function, defined for all balls B in B, that satisfies

(2.17) a(B(2,2r)) < ca(B(z,7)) forallzcdD andr >0
and '
(2.18) Z a(B) < ca(Bg)

Ben

whlenev.er (2 is-a collection of pairwise disjoint balls B = B(z,r) in B con-
tained in o ball Bo = B(zg,70) of B. In addition, assume that u(z) > 0 on
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8D, 8 > 1 and I' is a countable collection of dyadic balls centered in aD
such that

(2.19) \udv<ca(B) forallBer,
B

where B=BNAD and dv is a doubling measure on 8D, i.e.,
|B(z,2r) N 8D, S ¢|B(2,r)NAD|. forallz € 8D andr > 0.

Furthermore, assume that

(2.20) > a(B)f <ca(Bo)® forall Boerl
Bel
BC By ‘
Then
) B 1 iy 1/t 1/a
(2.21) (Bze;a( ) (—d—(-l—;-jgfudv) ) gc,,t(ang 'u.dv)

Jorall f200n8D andt=238,1<s < co.

Proof. Consider the map

S {ﬁ;mdu}ser.

For f € L°°(8D,udv), we have

1

S 1 lleo 275 Judv <ellflle by (2.19).
B

1
‘méfﬂdv

Now, suppose f : 8D — [0, ) is bounded with support contained in By N
oD, where By == B(zy,7), 1 € 8D, Let I'" be a finite subset of I'. For
A >0, let {Q;}jes be the maximal dyadic balls B in I' such that

(2.92) ;(%5 [ fudv> .
' B

Note that B N By # 0 for any ball B that satisfies (2.22) since the support
of f is contained in By N &D. Thus,

(2.28) by aBP <Y N oB)f

Bel JEJ BCQ;
(L a(BY) Ty Fudvsd
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(2.24) < c( Z a(Qj;))’8 gince > 1
Flv
~ A\ B
(2.25) < c( > a(Qj)) by (2.17)
JeJ!

where @; denotes the Dall concentric with @; and with radius
r{Q4)/(Ao(240 + 1)). Recall that the (; are pairwise digjoint (see Lemma
2.6).

Now, since J' ig finite, {J;¢ 7/ éj C B for sowe ball B’ centered at
AD. Therefore, by Lemma 2.1, there exists a pairwise disjoint subcollection
{Qi}ier of the dyadic balls {Q;} ez such that every ¢J; is contained in
some QF, ¢ € I, where Q7 is the ball concentric with ¢; and with radius
Ao(44p + 1)r(Q;). Thus,

Z G(éj) < E Z a‘(éj) < CZ a(@?) by (2.18) and Lemma 2.6

jeT €T e €T
Q;CQy
ey a(@) by (217)
iex
¢ c
< XZ S fudy £ 3 S Judy,
€T oD

since {@;}ier is a collection of pairwise disjoint balls. Thus, since IV was
an arbitrary finite subset of I and the constant ¢ above depends only on 4y
and A;, we conclude that the map

fr= {J%gfuczv}ﬂef

i3 both of weak-type (00, 0o) and weal-type {1, #), i.e., it takes L*(6D, udy)
to weak [°(I, a(B)?). Therefore, applying the Marcinkiewicz interpolation
theorem we obtain (2.21). =

We will need the following analogue of Lemma 2.10 in [SW2]:

LEMMA 2.26. Let u(z) 2 0 on 8D and for each m € %, let {Qi}i be
o countable collection of dyadic cubes in Dy,. Suppose that there ewists o
sequence {0i}ier of positive numbers and 8 > 1 satisfying

(2.27) | udv < ey,
_ Qs
(2.28) > af <cdf,
QTR
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where ¢ > 0 1§ independent of i and m. Then

1 ay g
(et (& §ruar) ) el § rua)”
p Qg
iel Qi ap
forall f 2 0 on 0D where 1 < p < o0, ¢= fp and ¢ is independent of m.
Proof. The map f — {(1/a;) SQ', fudv} takes I°(8D) into l?’ﬂ}(I) by
. 9
condition (2.27) and L1(0D) into weak IL@}(I) by condition (2.28), as we
now show. Suppose f i hounded with con:lpact support in 8D, Let £ > 0
and let {@;} es Le the maximal dyadic cubes from the collection {Q:Vicr

such that (1/a;) SQi |fludy > t (we may assume the collection {Qitier is
finite). Then

(2-29) Z G?S Z Z af

#](1/a) SQ:? Fudis| >t JEJS i@, CQ;
(2.30) <ey df by (2.28)
ieJ
8
(2.31) < c( Zaj) since 8 > 1
Jjed
1 8
(2.32) < C(EZ | yf|uazy)
o9y
1 8
(2.33) < c(—t~ | |f|ua’.z/)
8D

since the maximal dyadic cubes are disjoint. The Marcinkiewicz interpola-
tion theorem now completes the proof of Lemma. 2.26. w

The next lemma can be found in [W1] and its proof is omitted.

Lemma 2.34 (Reverse doubling). Suppose p 45 o doubling measure on a
homogencous space X. Then u satisfies the veverse doubling condition: there
exigt o, 3 > 1 such that |B(x, ar)|, 2 B8|B(z,7)|. for allz € X andr > 0.

We will need the concept of dyadic cubes in X, The construction of these
sets can be found in Lemma 3.21 of [SW2]. We will need the following lemma
of [SW2] (Lemma 3.21 there).

LEMMA 2.35. Suppose (X, d)} is a separable quasi-metric space. Let A =
8AY. Then for every m € Z, there are points z;“ in X and Borel sets E;?,
1< i < ng, k 2 m, where ny, € NU {00}, such that

(236) Bz}, \*) ¢ BF c B(zf, V™), 1<j<m, k2m,
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(2371 X=\JEf foralk2zm, EFNEF =0 ifi#],
i
and given i, §, k,1 with m < k <1, we have either
Efc Bl or EfNEi=0.
Recall that D, = {E¥ 1k > m, 1 <j <nx}. I Q = Ef € Dy, let I(Q)
be the edgelength of Q and define @ = @ x (0,1(Q)).
We will need the following lemma (cf. Lemma 3.20 of [SW1]).

LEMMA 2.38. Let u{z) > 0 on X. For each m € Z, suppose that {Q:}; is
a countable collection of dyadic cubes in Dy, and for each z € X, {a;(2) }ier
ond {b;(2) }ier are positive numbers satisfying

(2.39) S udp < cai(z}) foralliel and z € X,
Qitz

(2.40) Y bi(2) Scas(z) forallicl andze X,
3R CQ

with ¢ independent of m. Then

(wzrb ( S gud,u,) )UQSCQ(JS{g‘?udM)l/q

forallg>0onX and z € X, where 1 < ¢ < oo and ¢y is independent of
z,m and g.

Proof. The map g — {(1/ai(z)) ]y, gudu} takes Li°(X) into
1%, () by condition (2.39) and Ly(X) into weak I}, 1, (I) by condi-
tion (2.40), as we now show. If g is bounded with compact support in X
and t > 0, let {@;};es be the maximal dyadic cubes from the collection
{Qi}ier such that (1/ai(2)) {o , , lgludp >t (we may assume the collection

{Q:}ier is finite). Then
(2.41) > ()<Y T bie)

il(1/0:(2)) §q, 4. gu dusi>t FET Q. CQy
(2.42) <cY ag(z) by (2.40)
jes
4
(2.43) S;E b lgludu
J Qi+z
[
(2.44) << Y loludp
X

since the maximal dyadic cubes are disjoint. The Marcinkiewicz interpola-
tion theorem now completes the proof of Lemma 2.38. »
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3. Proofs of the main theorems. In this section we will prove the
theorems introduced in Section 1.

Proof of Theorem 1.1. First, we prove that (1.8) iraplies (1.9).
Given z in 8D and r > 0, let B = B(z, r) and set fy) = o(y)xp(y). Thus,

(3.1) (SMS(GXB)de) e ,<_c( S ai’xﬁvdu)l/?
D oD

= c( S adv) Ve c| B3/,
B

For z € X let a(x) and #(z) be as in the definition of M,. We claim that
B = B(z,r) C B(a(z),3A%[r + d(z,2))]). Indeed, if y € B then

d(y, a(z)) < AGldly, 2) + d(z,2) + d(z, a(=))]
< Aj[r+ d(z,2) + 3d(2, )] < 343[r + d(z, )],
which proves our claim. Obviously 3A%r + d(z,z)] > t(z). Hence,

1
(3.2) My(oxg)(2) 2 o(B(a(z), 342%[r + d(z, z))))

|Be
(Bla(z), 343[r + d(z,2)]))
for any z € X and v > 0.
We claim that

B(a(z), 3A¢[r + d(z,2)]) C B(z, 184%r)
for ¢ in B = B(z,v). In fact, for y € B(a(z), 34%[r + d(z, z)]), we have
d(y, 2) < AB[d(y, a(x)) + d{a(z), ) + d(z, 2)]
< A3[3A%r + d(z,2)] + t(z) + d(z, 2)]
< 9AY[r + d{z,2)] since t(z) = d(z,8D) < d(z, 2)
< lBADr,

as claimed. Thus, (B{a(z), 343[r + d(z, 2)])) < cp(B(z,7)). Therefore, it
follows from (3.2) that

S axpdv
B(a(w),3A43[r+d(2,x)])

JBIa

(3.3) M, (o for all ¢ in B.
Combining (3.1) and (3.3) we obtam
(34) w(B)~"|BI2|Bl., < |BIZ.

Thus, if | B|, is neither 0 nor co, we obtain (1.9) from (3.4). If | B|, = 0 then
(1.9) is obvious. Suppose |B|, = oco. For any & > 0 we have [u(y) +&]*~? <
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el=F < oo and, therefore, |Bls, <& 1-7'| Bl, where oc(y) = [v(y) +&'~7".
Hence, since (1.8) implies (1.8) with v replaced by v + g, we obtain (1. 9)
with v replaced by v + ¢, i.e.,
(B)(BIY"BI < C.

Letting ¢ tend to 0, we conclude that w =0 a.e. (1) since |B|, = oo. Thus,
(1.9) follows immediately.
Conversely, (1.9) implies (1.8). To see this, let

dy su fldv, =zeX,
my'f(a) = dyadmbpallB ‘P( «(B) ISBI
r,a{z)EB

where a dyadic ball is a ball as in Definition 2.2. We claim that there exists
¢ > 0 such that
(3.5) M, f(z) < em f(z)

forall f and ¢ € X.
Given B = B(a(x),r) with 7 > ¢(z), let k in Z be such that M-l
3, < X* (with ) as in Lemma 2.6). Thus, there exists a dyadic ball B}t

of radius M+1 such that B C B(a(z), £r) C B(a(z), PN Bf“ Clearly,
o(B) < co(p(B;-“+l). We show that cp(Bjk""l) < cp(B). Indeed, if y € B;-“H =
B(zFt", AF+1) then ‘

Ay, a(z)) < Aold(y, 75 7) + A1, 0(2))] < 240N
Thus, B;“"'l C SAO)\QB and, hence, tp(B;-"“) < cip(B). Therefore,
| ifldv

it

(3.6) JIfldv <

1
(=5
(B) (Bj )
Clearly,  and a(z) lie in Bf™". Hence, our claim follows from (3.6)-
Due to (3.5) it is enough to prove (1.8) with M, replaced by m%¥. We
may assume f > 0. Let Dy = {z € D : m®¥(fo)(z) > 2"}, k€ Z. 'I‘hus

fim@(fowdu="" | @ (fo)wdp Y 2% | wdp

n k D;,_\.Dk_H_ k DN\D}M-TL

It follows from the definition of mgy that if # € D}, then there exists a dyadic

ball B with z,a(z) € B satisfying .

(3.7) | fdv > 2k

1

o(B) }
Let { By, } be the collection of ma,mmal dyadic balls with respect to inclusion
which satisfy (3.7). Observe that Dy C U, By ;. In fact, if x € Dy then
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there exists a dyadic ball B with z, a(z) € B satisfying (3.7). Hence, by the
maximality of the By ;, there exists j such that z € B C By;.
Thus,

ke w L o dy !
2 S LEDD [‘P(Bk,j)g;S fod ] ,.S- wdu

k D \Drya kg

ki koo d
1 q
=Zbk,j|:r S fadv}
kg -

where

aj = S ogdv and b [ D ]4 S d
N s kg = w djs.
Bk,j ! (Bkﬂ) #

From (1.9) it follows that

le,j

bj = af ;0(Biog) ™| Bu,jlw < cof ;| Br,l79" = caf’F.
We claim that there exists ¢ > 0 such that
Z az/jp < caq/p for all s,t.
By sCBus
Indeed, with A = A5(240 + 1), we have

S oaf= S (Bl Y Y

By,;CBap By, i CBa,s =0 dyadicballCB, :

P(B)/r(Bae)=A~"
<. %

=0 dyadichaliCB,
r(B)/r(By,¢ )=}

for some § < 1 since odv is doubling and, therefore, the reverse doubling
condition (see Lemma 2.34) is satisfied. Hence

| Br,;|2/77 | Bj |

(5li*§a.t10)4/p_l 'Bk,jlﬂ

[+.0]
ST 0l <S8 Boalo) P IMByyls by (24)
Bk,jC:Bnt [u=()

X
= M| Byal§/? 37 61070 = cfB|Y/® = calf
1=0
since 0 < § < 1 and ¢ > p, and this finishes the proof of our claim.
We now obtain (1.8) from Lemma 2.16 with a(By;) = arj, 8 = ¢/p,
t=g¢q,s=p, u=cand I'={By ]} since odv is a doubling measure. This
cencludes the proof of Theorem 1.1,
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" Proof of Theorem 1.2. Let B = {B = B(z,7):z € 8D, r > 0},
Given z € D and r > #(z), let B = B(a(z),r) and Bp = B( (z), 3r ) Then,
clearly, B C By and = € By since d{z, a(a:)) 3t(z) < 3r. Thus, since ¢ is
doubling we have

1 c
-——-—S|f}dy§—————§ [fldv <c sup S}f|dv=cm¥,f(m), say,
(P(B) B (P(Bo) By z nﬁm)GB B

and hence,
Myf < emyf.
For each m € Z, define
Mym f(z) = sup S |f| dv,
e,al@)EB, r(B)>a™ B

where A = 843 as in Lemma 2.7.

It will be convenient to majorize m,nf by a suitable dyadic opera-
tor defined in terms of the dyadic cubes @ € Dy, that were introduced in
Lemma 2.7. Given B = B(z,7) € B, r > A™, select & > m such that
AR < < ARt Suppose BNQ # 0, @ = E} € Dy, and B = B(z,7) is as
above. Then, if y € B and z € BN @, we have

d(y, zf) < Afld(y, 2) + d(z, %) + d(z, 2})]
since @ C B(zf, \*+1) (see Lemma 2.7)
= 3AZNFTL,
Thus,
(3.8) ' B(z,r) C B(zf,3A5xF1).
Also, if u € @, we have
d(u, z) < Aj[d{u, 2¥) + d(zF,2) + d(, 2)]
< AGINAL R L ARHL) g AZNREL
Thus,
(3.9) Q = Ef C B(z, 343\,
Now, if E¥ NB#®, a=1,...,N, we obtain

N
(3.10) N|B(z,m)l < )" |B(2F,, 3430, by (3.8)
=]
_ N
(3.11) Sy IB(E, AN, since v is doubling

=1
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N
(3.12) <c Z |Ef& | by Lemma, 2.7
az=1
(3.13) = c‘ U E’c since the cubes are disjoint
a=]
(3.14) < ¢|B(z, 3A0A’°“*“1)|,, by (3.9)
(3.15) < clB(z, 7). since ¥ is doubling.

Therefore, N < ¢. Since 8D = |J; Ef for all & = m by Lemma 2.7, any
ball B € B8 with »(B) > A™ is contained in a finite union of dyadic cubes
{E }i<a<n, say, and the number of such dyadic cubes is bounded by a
constant that depends only on the doubling constant of . Thus for any

B € B with r(B) > A™ and M* < r < A1, we have B c JV_, E"“n with
BOE;““ # { for some N < c. Hence, for some 1 < ap < N,
s | > 2
(3.16) ==\ iflody < = flody =) —— | |flodv
#(5) ) T &
N
< —_— ody < —— adv.
o )M & )
Ejau E.Tag

It follows from (3.9) with j replaced by ju, that if B and k are as above
then BX C B(z,343A%t!) and, therefore, p(EX*) < cp(B(z,7)) = cp(B),
since 1s doubling, where Ek; is the outer ball associated with E" Hence,
it follows from (3.16} that

1 _
Wyflffd’f

Since BN B # 0, it follows from (3.8) that
B C B(zF,3430%+) = 3A3B(of, A¥+1) = 3A3 B}
Thus, if B is as above with z & B and a(z) € B then (3.17) implies that

(3.17) { |flodv.

(Ek* Ek

1
|flodr < ¢ sup ——— | |flodv = INE, (fo)(z), say
‘P(B) S QG'DmmE:iAa@* ‘P(Q ) g _ ")
Therefore, we have
(3.18) Wp,m(f0)(x) S M, (fo)(z), €D

For each k € Z let ym = {z € D : MY, (fo)(z) > a*}, where a > 1
will be chosen later. Thus, & € (2, if and only if there exists @@ € D;, such

that x € 342 Q"‘ and
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1

(3.19) m

S |flodv > a®.

Q

Let {QF}; be the maximal (with respect to inclusion) dyadic cubes (in D)
which satisfy (3.19). We claim that 2 . U 34, Q’“‘ Indeed, since any
cube Q¥ satisfies (3.19), for any z € 3A2Qf* we have

zmdy (fo)(z) > (Q"‘) S |flo dv > a¥,

which 1mpl1es that © € g m. On the other hand, if © € (2, then there
exists @ € D, such that z € 343 Q and (3.19) holds. Since the Q’c are

maxima)l with respect to inclusion, there exists jo such that @ C Q and,
therefore, € 3A3 Q C 34 Qk* that is, © € UJ 3A2Q ’“* ; this proves our
" claim.
Now

(3.20) 19, (o) Ly o,
S[imdy (fo)fwdp<a®d a* | wdp

k 25, m\2k+1,m
< aﬂZakq S wdy = a? E a,'“q|F;fm|w
kg 3AZQE \iia,m kod

where Ff, = SA%@f* \ et1m
<at¥ [(p(Qk* { IflcrdV] |Ffnlw by (3.19) with Q@ = Q%

k. Q%

=" ¥ b)) 1A(Q,>]q[

A 5 f '“d”]

where A(Q) = [Q|l/r (S

q AZOk* v ky—1 kvl 1 d }
< o Y BAR Wlel@f) 4@ | 75 § Vo

since Ff,, C 3A5@;‘*
=a?y " [BAFQN |Le(QF) 9 Q¥ 2] QF SR AIQ))

L

x'[I(LQ?)’Q? 1f|crdvr.

rdy)l/r
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We claim that

|3AS@?*[ww(Q?*)—QIQ?ig[|Q?];1A(Qf)]q < cA(QN)YP  for all &, j.
Indeed,
34205 | (QF") 2 QR I QF 11 A(QE))
5 ~q/(rp")
5clcz§|zfp(1m ﬁa dv) (G5 AQE)F by (111)
—q/(rp")
— Qv (@Em nggrdy) A@b)

1y ~q/(rp')
(:gm 5 o)A@

— C(i@ﬂ,(,r_l)/r( S o" dy)lfr)mq/p’A(Q?)q
4
= cA(Q;?)“q/P'A(Qf)‘? = cA(Q;-“)‘I/P,

which proves our claim. Thus, it follows from (3.20) that

<cZ.A (Q5/» ’ S]ffadv q.
A(Q)

(3.21) I (FoNZa,

We claim that _
(3.22) S AQNP < eA(Q)T?
k7 QR CQl

with ¢ > 0 independent of | and 4. First, we show that Q¥ ¢ @} implies
I<k I Qb ¢ Q! then it follows from the maximality of the Q¥ that

(3.28) o' <o(QF) | Iflody <o,
@4
which yields | < k, since a > 1. Now, suppose that Q¥ = Q}, and for any

Q € Dy, let Q* denote the smallest dyadic cube in Dy, such that @* 2 Q.
Thus, since v is doubling, we have

(3.24) d < (@) | Iflody = (@) | Iflodv
Al Q%
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< ey ;?**)"1 S |flodv < ca®  since Q;? is maximal
Qi
< ght? if we select @ > c.

Therefore, I < k.
Observe that the same argument employed in (3.24) can be used to

obtain

(3.25) ot < @) | [flodv <ot forall jik.
4
Thus, since g = p, we have
a/p
(3.26) Soa@hrrs (> A ))
k.j:QYCQl kj:QECQ}
= a/p
=(¥ % a@)
k==l 5:QF C QY
Now, for a fixed k > I, we have
- ' 1/r
Gan Y A@N= 3 1&(§ o )
1Q¥CQl Q¥ Q! (0l
. 1/ ” 1/r
<(T ) (X few)
JQyc@t #QYcal Qf

by Hélder’s inequality
. i/r' 1/r
(T @) (jow
Q! Qi
since the Q;? are pairwise disjoint in j. Using the first inequality of (3.25)
and the fact that (|Q'./|Qls)° < cw(Q™)/w(Q*), we obtain

. L, _ 1/
(328) ¥ |Q?|Vsm—'§—-;*')1~,—; S (o | o)
7QECQl P Qi ¥

(o} —k 1e
Le——rtr Z a S | flo dv
Q)Y (m;«ccea & )

< iQHu (a"’“ S lﬂo_dy)ll'a
ot

since 1/e 2 1

= Qe

i

since the Q% are pairwise disjoint in j
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1
< c IQ2|”
= (@ )ME

by the second inequality of (3.25) with k = I. Thus, combining (3.26)—(3.28),
we obtain

oAb < (
kgiQyCQl
= {I4+1-k)/((1~)r") '51/,.' rd 1/rN g/p
( a |Q Iy (g!‘o‘ V) )

! s 4 /
= g/ ((1=7)pr") ( Z g~k ((1=7)r )A(Qi))q F_ cA(QHY?P,
k=0 ‘

("R p(QINYE = ol 1P|,

(a(""‘l'k)/(l—w)mﬂu)lh (g: o" dy)l/r)wp

ngLI AL

-
i

where ¢ = a?/(1=MPr) (520 | g~ */(1=0)m)a/P, and this yields (3.22).
Thus, if we take 3 = ¢/p and I to be the set of indices %, 7, and a; =
A(Q;) and u = o, then from (3.21) and Lemma. 2.26 we obtain

' (a2, kya/p L e dy ?
025) 1)l o) < © 3 AQ) @ §v )

_<_c( i f”udu)q/p,

oD

provided we verify (2.27) and (2.28). Note that (2.27) follows from Holder’s
inequality with ¢ == 1. Condition (2.28) holds due to (3.22).
It follows from (3.18) that

: /
(3.30) Imgm(F0) g,y < c(SSD frodv)"”,

where
My m(fo)(z) = sup S |fledv, =z €D.
z,a(x)EB, r(B)>2™ B

Therefore, letting m tend to —co in (3.30), we obtain

/p
(3.31) ||m,,(fa)u1w)gc(§ chrdy)q :
: ap

Replacing f by fo~! in (3.31) and using the fact that M, f < emy f (see
the beginning of the proof of Theorem 1.2), we obtain (1.12). This concludes
the proof of Theorem 1.2. » :
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In order to prove Theorem 1.3 it will be convenient to define the following
dyadic maximal function: for m € Zand z € X put
1
e, f(z,t)= sup \ 1r14dw,

oep,., Y@+ z)
(et)ed+2 Q=

(:B,t) & X+ﬁ

and for k > m, let

{ [ fldw.

z,r)

1
ME x,t) = sup ————
lp,mf( ) Ak zromax{i™ t} (p(B(:n,'r)) Bt

We have

LEMMA 3.32. Let (X, d, u) be a homogeneous space with group structure
satisfying conditions (1.13)-(1.16). Suppose 1 < p < o0 and w(z,t) > 0 in
X, = X x (0,00). Then there ezists C > 0 such that

(§ (0 0Pl s, )

X4

1/p
< Csup (| O () u(,0) ap(z,1))
z€ 3—(_-+
for all f > 0 with C independent of m.

Proof. Fix k > m and (z,t) € X, . Suppose B(z,r) is a ball in X
satisfying
1 1

—= |fldv > S M f(x,1).

©(B(z,7)) B(L) 2
Now, select m < I < k such that A*~! < 7 < Al. Let By, be the ball in X of
radius A® about the identity element of X. Define 2 = {z € By43 : 3Q € D,
with AF < I(Q) < A+ and B(z,7) C Q+2}. Thus, if @ = B{*  and z €
then Q + 2 C B(z, 240A%r) and, therefore, ¢(Q + 2) < cp(B(z,7)). Hence,

1

o
M= (@) 2 e QLW dv
c k ;
2 @(B(z,m)) B(i,r)*ﬂdy = CM%mf(x’t).

Thus,
(3.33) | iy, flz,t) dv(z) 2 M f(z, v (2)

Brys
(3.3¢4) > My o f(@,1)v(Birs);

provided we show v(Byis} < cv(12).
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Let I' = {j : EX™' 1 B(w; A¥*2) # 0}, where [ is as in the definition of
2. Now suppose #z is in ——B(z;-"'l,)\l) + 1z where —B={we X : —w € B}.
We show that B(z,r) C Ej-“ + z. First note that
z—z€ BTN C Bz A1) C E,
whence z € E;T + z. Now, let y € B(z,r). Since 2 — z € B‘(z;“,)\‘) and
dly — z, % — 2z) = d(y,z) < A by (1.13), we have
d(y ~ 2, 251) < Apld(y — 2,2 — 2) +d(z — 2, zj+1)] < Ag[AM 4+ N < X,
Thus, y — z € B(zé“,)\”l) - E’;-Jrl and, therefore, y € E;TH‘ + z. Now
if j € I then —B(2™, M) + 2 C Biys. Indeed, if w € B(z;*, ) and
u € E{TH 0 B(z, \*?) (which exists since j € I'), then _
d(u,w) < Agld(u, 2574 + d(5, w)] < AgIN T + M| < 2400+,
which implies
d(z, w) < Ag[d(z, u) + d(u,w)] < Ag[AFT? + 24020 +?] < BATNT,
which in turn yields
30, w) < Agd(0,) + d(z, w)] < Ap[AF + ZATNT2] < 445482,
since = € By. Thus,
(0, —~w + ) < Ap[d(0;z) + d(z, —w + x)] < Ag[A* + (0, w)]
since # € By, and by (1.13) and (1.14)
< Ag[N* + 4ABXFTY] < BAINRTE < AFHS,

as desired. Now, since the sets {—B (zg'*"l, M) + z};er are pairwise disjoint,
we have

(3.35) v(2)> > v(-B(z*N)+1) by (1.15) and (1.16)

jer
(3.36) zc Z y(E;‘-""l) since v is doubling
jer
(3.37) - cu( U Bi+Y) 2 (B, AF%) by (237)
jer
(3.38) > ev{Blz, AF+3)) since j is doubling
(3.39) = cv(B(0, \FT?) + z) by (1.13)
(3.40) = cv(B(0, \F73)) = cv(Biya) by (1.15).
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We are now able to finish the proof of the lemma. By (3.34) and Min-
kowski’s inequality, we get

/
[ 0. OPuE ) du(e 0]
By x(0,7(Bg))

] 0 e 0P, Otz )] ()

<o
#(Bky3) Buss %,

1/p
<c sp | § (M. (m,t))Pw(m,t)dM(m,t)} ,
zEBiys %,

and letting k — oo finishes the proof of Lemma 3.32. =

‘We now prove a version of Theorem 1.3 with M, f replaced by Dﬁg?fm,z f
‘We have

THEOREM 3.1. Let (X,d,v) be a homogeneous space, where X has a
group structure end d and v satisfy conditions (1.13)~(1.16). Let w and v be
weights in X, and X, respectively, and suppose that 1 < p < g < oc. Then

(3.41) (§ o Arwdn) " < o { fevar) "
X, X

forall f in L2, ,m inZ and z in X if and only if

(3.42) ( | [, (oxqra)ltw d#)l/q <C ( | UdV)l/p
Q+z Q42

for all dyadic cubes @ in Dy, m in Z and z in X, where Q=qQxUQ). ‘:

Proof. Let f(z) = oxo4.(z) where Q is a dyadic cube in Dy, m € Z
and z € X. Now, if (3.41) holds we obtain

(| e loxasstwan)
Q+=

1/
= ( S [mg‘!:'m,z(UXQ+z)]qwdp) f

—

X
< C’( S [oxX Qe PV dv)llp = ( S odr/)lfp,
X Q2

which is (3.42).
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Conversely, assume that (3.42) holds. Define

1
MWE f(5,t) = su 7 ey dv.
Pmsfmt)= @(sz)qu v
(m,8)EQ+=
diam (Q*)<H

Let f € L¥, and for each k in Z and R > 0 define

ovdy
2F = {(3,8) € X s MBE, (o) (,8) > 2¥).
For a fixed m in Z let
QR = {(x,t) € QF :3Q € Dy, (3,1) € D+ 2, Q" +2C ).

Let {Q;c }jesr denote the dyadic cubes maximal among those @ € D,, with
the property that Q* is contained in 2. Then

(3.43) Of = ) (@i +2) forkinZ
jerp
(3.44) QFNQh=0 fori#jkinZ,
1
(3.45) ———— | |fledv>2* forjinJP kinZ.
We have

P(QF +z)<27% | |flodv by (3.45)

Qh+z
1/p 1/¢'
= Tk( S \f |p°"*””) ( S Udu) by Hélder’s inequality.
Qi += Qh+z

Let éf be such that éf +z= (@f +2)\ ‘Qf'+1,m~ We have

| [mdnl (fo))wdu
Xy
<2 Z oka S wdy
kEZ nf.m\”l?}l,m

s 1
<2 tQk —+ Zl d (—“——*——
;Z 7T (QF + 2)
jerm : :

[ fladv)q by (3.43) and (3.45)
Qh+z
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> 1@ L | o)
= 24 !Qj'i'zlwdp(—““f;;—““ o I/)
kEZ (QF +2) Qhz
FEIT
(s § toav),
X | fadu)
|Q.§: + z!a’du QF 4z
1 q
d
2 Zz (HS (M‘P?m,z(UXQf-i-z))quf-‘) (m :,S |f|ody)
JE%';“ Qf+= Qi+=
g
=99 Z bk z)( k() S |f|cra'.v) ,
kel
jei
where
() = | O, (xqrea)wds md ab(z) = QF
§ - TN, 2 XQ’“»{-Z)) wag  an a’;( )_ ;Qg +z|ddy-
é}“+z

We show that

Y Bi(2) < cag()7P

kEZ, je?
QFcQo

for all Qg in Dy, z in X and m in Z, where ag(z) =
If Qg is as above then

IIERAOEIDS

iQO + zlo’dv-

S (M @,mz(o'XQh+z))q'wd,u,

kez, jery kEZ,JEJk Qb 4z
Qo Qo
< S (mi,mz(o-XQu-l-z))quM
Qo=

since the (5?’5 are disjoint in k and j

' a/p
< c( S o*dv) by (3.42)
Qo+=
= cap(z)9/?.
Using Lemma 2.38 we obtain
1/q
(Jimiszfirwan) " < o flrpvar)”
X+ . X
and letting B tend to infinity we have (3.41). m
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Now we are able to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Ifin (1.18) we set f = oxg+. where Q@ €
U, P and z € X, we obtain (1.19).

Now suppose that (1.19) holds. It is enough to show (1.18) with M,
replaced by M, and c¢ independent of m, since we obtain the des1red
result by letting m tend to ~co. By Lemma 3.32 it is enough to show (1.8)
with M., replaced by ED”tg’:’m, , and ¢ independent of m and z. By Theorem 3.1
it is enough to show that

1/q 1/p
( S [Mg?m,z(crx@-i-z)]qw d.u') < O( S UdV) )
Q= Q2
for all @ € |J,,, P and z in X.
Let Qg be a dyadic cube in D, and let @ and Q2§ be the inner and outer
balls, respectively, associated with Q. Let z € X. If x — 2 € Qo then

1 c
—_— ody < ——g—— odv
#(Qo +2) Qus+z w(Co +2) Qos-%z

[+
L = 0 dv < eMy (X o)z, 1),
(O + 2) st+szo+ m( Qo+z )z, t)

since x — 2z € Qo and the radius of Qf is larger than ¢. Hence,
cp,m z(UxQD+z)(m t) < M, ,m(XQo+ZU)(E t)
for all (z,t) in Qo + z and, therefore,

/
( } [Wtdz,’m,z(axqw)]qwdu)lq
Qn+z

/ /
S C( ,.S [M vm(JXQo-‘rz)]qw d.u')l ! S ( S O’dv)l p’
Qo+z Qo+=

by (1.19). This finishes the proof of Theorem (1.3). m
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Minimal pairs of bounded closed convex sets
by

J. GRZYBOWSKI and R. URBANSKI (Poznan)

Abstract. The existence of a minimal element in every equivalence class of pairs
of bounded closed convex sets in a reflexive locally convex topological vector space is
proved. An example of a non-reflexive Banach space with an equivalence class containing
no minimal element is presented.

Let X = (X, 7) be a topological vector space over the field R. Let B, (X)
(resp. Ky (X)) be the collection of all bounded closed (resp. compact) convex
subsets of X. For A, B C X, let

A+B:={a+b|a€ A be B}

and let A 4+ B denote the closure of A -+ B. For (4, B),(C,D) € B(X),
let (A,B) ~ (C,D) if and only if A + D = B+ C. Let (4,B) < (C,D)
if and only if A ¢ ¢, B ¢ D and (A4, B) ~ (C,D). The relation “ ~ ” is
an equivalence relation by the ordered law of cancellation [5] in BZ(X) and
“<” is an ordering in the equivalence class [4, B)] of any pair (4, B).

The study of minimal pairs of compact convex sets was stimulated by
the development of quasidifferential calculus [1]. Any given quasidifferential
may be identified with the equivalence class of a pair of compact convex sets
(A, B), where A and B are, respectively, a super- and a sub-differential.

The existence of minimal pairs of compact convex sets in all topological
vector spaces and the uniqueness up to translates in R? were already proved
in [2] and [4].

In this paper we extend our investigations to pairs of bounded closed
convex sets.

THEOREM. Let (X,7) be a reflexive locally convex topological wvector
space. Euvery class [A, B] € BZ(X)/~ contains a minimal element (C, D)
such that (C, D} < (A, B).
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