

94

[SW2] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.

[SWZ] E. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580.

[St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

[W1] R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272.

[W2] --, Norm inequalities for off-centered maximal operators, Publ. Mat. 37 (1993), 429-441.

Departamento de Matemática Instituto de Ciências Matemáticas de São Carlos Universidade de São Paulo Caixa Postal 668 São Carlos, SP 13.560-970 Brazil E-mail: szani@icmsc.sc.usp.br

> Received November 14, 1996 Revised version February 12, 1997

(3781)

Minimal pairs of bounded closed convex sets

by

J. GRZYBOWSKI and R. URBAŃSKI (Poznań)

Abstract. The existence of a minimal element in every equivalence class of pairs of bounded closed convex sets in a reflexive locally convex topological vector space is proved. An example of a non-reflexive Banach space with an equivalence class containing no minimal element is presented.

Let $X = (X, \tau)$ be a topological vector space over the field \mathbb{R} . Let $\mathcal{B}_{\tau}(X)$ (resp. $\mathcal{K}_{\tau}(X)$) be the collection of all bounded closed (resp. compact) convex subsets of X. For $A, B \subset X$, let

$$A + B := \{a + b \mid a \in A, b \in B\}$$

and let $A \dotplus B$ denote the closure of A + B. For $(A, B), (C, D) \in \mathcal{B}^2_{\tau}(X)$, let $(A, B) \sim (C, D)$ if and only if $A \dotplus D = B \dotplus C$. Let $(A, B) \leq (C, D)$ if and only if $A \subset C$, $B \subset D$ and $(A, B) \sim (C, D)$. The relation " \sim " is an equivalence relation by the ordered law of cancellation [5] in $\mathcal{B}^2_{\tau}(X)$ and " \leq " is an ordering in the equivalence class [A, B] of any pair (A, B).

The study of minimal pairs of compact convex sets was stimulated by the development of quasidifferential calculus [1]. Any given quasidifferential may be identified with the equivalence class of a pair of compact convex sets (A,B), where A and B are, respectively, a super- and a sub-differential.

The existence of minimal pairs of compact convex sets in all topological vector spaces and the uniqueness up to translates in \mathbb{R}^2 were already proved in [2] and [4].

In this paper we extend our investigations to pairs of bounded closed convex sets.

THEOREM. Let (X, τ) be a reflexive locally convex topological vector space. Every class $[A, B] \in \mathcal{B}^2_{\tau}(X)/\sim$ contains a minimal element (C, D) such that $(C, D) \leq (A, B)$.

¹⁹⁹¹ Mathematics Subject Classification: 52A07, 26A27.

Key words and phrases: convex analysis, pairs of convex sets.

Proof. In the case of finite-dimensional vector spaces, bounded closed sets are compact, and our theorem follows from [3]. Denote by τ^* the weak topology in X. Every bounded closed set $A \in \mathcal{B}_{\tau}(X)$ is compact in the topology τ^* and, consequently, belongs to $\mathcal{K}_{\tau^*}(X)$. On the other hand, every τ^* -compact set is closed in τ^* and in τ (since $\tau^* \subset \tau$). Take any $(A, B) \in \mathcal{B}^2_{\tau}(X) \subset \mathcal{K}^2_{\tau^*}(X)$. Then

$$A + B \in \mathcal{K}_{\tau^*}(X)$$
 and $A \dotplus B \in \mathcal{B}_{\tau}(X)$.

Then A+B is τ -closed, convex and contained in A+B, which is bounded. Therefore, $A+B\in \mathcal{B}_{\tau}(X)$ and, in consequence, A+B=A+B in all reflexive vector spaces. Hence $[A,B]\subset [A,B]^*\in \mathcal{K}^2_{\tau^*}(X)/\sim$, where $[A,B]^*$ is the equivalence class of pairs of compact sets in the topology τ^* as defined in [3]. According to the Theorem of [3], the equivalence class $[A,B]_{\tau^*}$ contains a minimal element $(C,D)\in \mathcal{K}^2_{\tau^*}(X)$ such that $C\subset A$ and $D\subset B$. Since C,D are τ -closed, convex and contained in bounded sets, it follows that $(C,D)\in \mathcal{B}^2_{\tau}(X)$. Moreover, $(C,D)\in [A,B]\subset [A,B]^*$. Therefore, (C,D) is a minimal element in [A,B] and, of course, $(C,D)\leq (A,B)$.

Let c_0 be the space of all infinite sequences $a=(a_n)$ of real numbers such that $\lim_n a_n=0$. Let $||a||=\sup_n |a_n|=\max_n |a_n|$ be the norm in c_0 . The space c_0 is a non-reflexive Banach space.

EXAMPLE. Let U be the unit ball in c_0 . Let $A:=\{a\in U\mid a_n\geq 0 \text{ for all } n\in \mathbb{N}\}$ and B:=-A. Then A+B=U. Let $A_m:=\{a\in A\mid a_1=\ldots=a_m=1/2\}$ and $B_m:=-A_m$, where $m\in \mathbb{N}$. Then $(A_m,B_m)\in \mathbb{B}^2(c_0)$ for all $n\in \mathbb{N}$. Moreover, $A+B_m=A_m+B$. Thus (A_m,B_m) is a decreasing chain of pairs in [A,B], i.e.

$$(A, B) \ge (A_1, B_1) \ge \ldots \ge (A_m, B_m) \ge \ldots$$

with empty intersection, i.e. $\bigcap_m A_m = \bigcap_m B_m = \emptyset$. In the proof of existence of minimal pairs of compact convex sets, it was essential that the intersection of a decreasing chain of pairs of compact convex sets is non-empty.

Let m be the space of all bounded sequences of real numbers with the norm $||a|| = \sup_n |a_n|$. Let $c = \{a \in m \mid \lim_n a_n \text{ exists in } \mathbb{R}\}$. Of course, $c_0 \subset c \subset m$.

THEOREM 2. Let $X = c_0$, c, or m. There exists a class $[A, B] \in \mathcal{B}^2(X)/\sim$ that contains no minimal elements.

Proof. Let A and B be the sets defined in the Example. Let $p: X \to \mathbb{R}$ be defined by $p(a) := a_1$. For $E \in \mathcal{B}(X)$ and $\alpha \in p(E)$ let

$$E_{\alpha} := \{ a \in E \mid p(a) = \alpha \}.$$

Take any $(C, D) \in [A, B]$. We shall prove that (C, D) is not a minimal element.

Case 1: card p(C) > 1. Since p(C) is an interval, int p(C) is non-empty. Fix $\alpha \in \operatorname{int} p(C)$. Let $c \in C_{\alpha}$, $b \in B_0$ (according to the definition of E_{α} , $B_0 = \{a \in B \mid p(a) = 0\}$) and $\varepsilon > 0$. There exist $c', c'' \in C$ such that $\|c' - c\|$, $\|c'' - c\| < \varepsilon/4$ and $p(c') < \alpha < p(c'')$. Let $\delta = \min(p(c'') - \alpha, \alpha - p(c'))$. Let $e = (1, 0, \ldots, 0, \ldots) \in X$. Since $B \dotplus C = A \dotplus D$, we have $(b - e) + c' \in B + C \subset A \dotplus D$. Then there exist $a' \in A$ and $a' \in D$ such that

$$||b-e+c'-a'-d'||<\delta.$$

Hence

$$\delta > |p(b-e+c'-a'-d')| = |0-1+p(c')-p(a')-p(d')|.$$

Then

$$p(d') < p(c') - p(a') - 1 + \delta \le \alpha - \delta - 0 - 1 + \delta = \alpha - 1.$$

Similarly, $b + c'' \in B + C \subset A + D$, and there exist $a'' \in A$ and $d'' \in D$ such that

$$||b+c''-a''-d''||<\delta.$$

Then $|0 + p(c'') - p(a'') - p(d'')| < \delta$, and

$$p(d'') > p(c'') - p(a'') - \delta \ge \alpha + \delta - 1 - \delta + \alpha - 1.$$

Since $p(d') < \alpha - 1 < p(d'')$, there exist $\beta, \gamma > 0$ with $\beta + \gamma = 1$ such that $\beta p(d') + \gamma p(d'') = \alpha - 1$. Let $d''' = \beta d' + \gamma d''$, $a''' = \beta a' + \gamma a''$ and $c''' = \beta c' + \gamma c''$. Since the sets A, C, D are convex we have $a''' \in A$, $c''' \in C$ and $d''' \in D$. The inequalities $||b - e + c' - a' - d'|| < \delta$ and $||b + c'' - a'' - d'''|| < \delta$ imply that $||b - \beta e + c''' - a''' - d''''|| < \delta$. Hence $||0 - \beta + p(c''') - p(a''') - \alpha + 1|| < \delta$, and

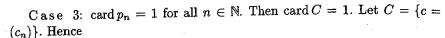
$$|\beta + p(a''') - 1| < |p(c''') - \alpha| + \delta \le \varepsilon/4 + \delta < \varepsilon/2.$$

Now notice that

$$\begin{aligned} \|b+c-a'''-(1-p(a'''))e-d'''\| \\ &= \|b+c-c'''+c'''-\beta e+\beta e-a'''-(1-p(a'''))e-d'''\| \\ &\leq \|b-\beta e+c'''-a'''-a'''-d'''\| + \|c-c'''\| + |\beta-1+p(a''')| \\ &< \delta + \varepsilon/4 + \varepsilon/2 < \varepsilon. \end{aligned}$$

We have $a'''+(1-p(a'''))e \in A_1$ and $d''' \in D_{\alpha-1}$. Since ε may be arbitrarily small, it follows that $b+c \in A_1 \dotplus D_{\alpha-1}$. We have just proved that $B_0 + C_\alpha \subset A_1 \dotplus D_{\alpha-1}$. Since $\alpha-1 \in \operatorname{int} p(D)$, we can prove in the same way that $A_1 + D_{\alpha-1} \subset B_0 \dotplus C_\alpha$. Therefore, $(C_\alpha, D_{\alpha-1}) \sim (A_1, B_0) \sim (A, B) \sim (C, D)$. Thus $(C_\alpha, D_{\alpha-1}) \leq (C, D)$ and $(C_\alpha, D_{\alpha-1}) \neq (C, D)$, and the pair (C, D) is not minimal.

Case 2: card $p_n(C) > 1$ for some $n \in \mathbb{N}$ where $p_n : X \to \mathbb{R}$ is defined by $p_n := a_n$. The proof is the same as in Case 1.



$$[0,1] + p_n(D) \subset p_n(A \dotplus D) = p_n(B \dotplus C) = p_n(B+c) = [c_n - 1, c_n].$$

Thus $p_n(D) = \{c_n - 1\}$. Then for any $d \in D$ we have $d_n = c_n - 1$, and so for any $a \in A$ and $b \in B$ we obtain

$$||a+d-b-c|| \ge \limsup_{n} |a_n+d_n-b_n-c_n|$$

= $\limsup_{n} |0+c_n-1-0-c_n| = 1.$

Since a, b, c, d are arbitrary elements of A, B, C and D we get $A \dotplus D \neq B \dotplus C$. Therefore, this case is impossible.

Remark. Let A and B be the subsets of l^1 defined in the same way as A and B in c_0 (see Example). A and B belong to $\mathfrak{B}(l^1)$. Let $(C,D) \in \mathfrak{B}^2(l^1), (C,D) \leq (A,B)$. Let $e_i = (0,\ldots,0,1,0,\ldots), \ i=1,2,\ldots$ Let $p_i: l^1 \to \mathbb{R}^2, \ p_i(a_n) = (a_1,a_i)$ for $i=2,3,\ldots$ Notice that

$$(\overline{p_i(C)},\overline{p_i(D)}) \leq (p_i(A),p_i(B))$$

and that $(p_i(A), p_i(B))$ is a pair of closed triangles in \mathbb{R}^2 . Since $p_i(B) = -p_i(A)$, the pair $(p_i(A), p_i(B))$ is a pair of convex compact sets in \mathbb{R}^2 . Then

$$\overline{p_i(C)} = p_i(A)$$
 and $\overline{p_i(D)} = p_i(B)$.

Since $(0,1) \in \overline{p_i(C)}$ and $a = e_i$ is the only element of A such that $p_i(a) = (0,1)$, and C is a closed set contained in A, we conclude that $e_i \in C$. In a similar way $e_1 \in C$.

Now, let
$$q: l^1 \to \mathbb{R}$$
, $q(a_n) = \sum_{n=1}^{\infty} a_n$. Again

$$(q(C), q(D)) \le (q(A), q(B)) = ([0, 1], [-1, 0]).$$

We know that $1 = q(e_i) \in C$ and $-1 \in q(D)$. Then $0 \in q(C)$. Since $a = 0 = (0, \ldots, 0, \ldots)$ is the only element of A such that q(a) = 0, we get $0 \in C$. Since $A = \text{conv}(\{0\} \cup \{e_i \mid i = 1, 2, \ldots\})$, it follows that C = A. Similarly D = B. Therefore, (A, B) is a minimal element of [A, B].

Notice that $A_i = \emptyset$ for $i = 3, 4, \dots$ (see Example).

The following theorem is a simple generalization of a result of [6]:

THEOREM 3. Let $X=(X,\tau)$ be an infinite-dimensional topological vector space. Let \mathcal{M} be the collection of all minimal pairs in $\mathcal{B}^2_{\tau}(X)$. Let $\mathcal{NM}:=\mathcal{B}^2_{\tau}(X)\setminus\mathcal{M}$. Then card $\mathcal{M}=\operatorname{card}\mathcal{NM}$.

In conclusion, we ask the following question: Does there exist in l^1 or, generally, in every non-reflexive locally convex topological vector space, an equivalence class $[A, B] \in \mathcal{B}^2_{\tau}(X)/\sim$ containing no minimal elements?

References

- [1] V. F. Dem'yanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., New York, 1986.
- J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel) 63 (1994), 173-181.
- [3] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
- S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
- R. Urbański, A generalization of the Minkowski-Rådström-Hörmander theorem,
 Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
- [6] M. Wiernowolski, On amount of minimal pairs, Funct. Approx. Comment. Math. 23 (1994), 35-39.

Faculty of Mathematics and Computer Sciences Adam Mickiewicz University Matejki 48/49 60-769 Poznań, Poland E-mail: rich@math.amu.edu.pl

> Received February 24, 1997 Revised version April 17, 1997

(3846)