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Minimal pairs of bounded closed convex sets
by

J. GRZYBOWSKI and R. URBANSKI (Poznan)

Abstract. The existence of a minimal element in every equivalence class of pairs
of bounded closed convex sets in a reflexive locally convex topological vector space is
proved. An example of a non-reflexive Banach space with an equivalence class containing
no minimal element is presented.

Let X = (X, 7) be a topological vector space over the field R. Let B, (X)
(resp. Ky (X)) be the collection of all bounded closed (resp. compact) convex
subsets of X. For A, B C X, let

A+B:={a+b|a€ A be B}

and let A 4+ B denote the closure of A -+ B. For (4, B),(C,D) € B(X),
let (A,B) ~ (C,D) if and only if A + D = B+ C. Let (4,B) < (C,D)
if and only if A ¢ ¢, B ¢ D and (A4, B) ~ (C,D). The relation “ ~ ” is
an equivalence relation by the ordered law of cancellation [5] in BZ(X) and
“<” is an ordering in the equivalence class [4, B)] of any pair (4, B).

The study of minimal pairs of compact convex sets was stimulated by
the development of quasidifferential calculus [1]. Any given quasidifferential
may be identified with the equivalence class of a pair of compact convex sets
(A, B), where A and B are, respectively, a super- and a sub-differential.

The existence of minimal pairs of compact convex sets in all topological
vector spaces and the uniqueness up to translates in R? were already proved
in [2] and [4].

In this paper we extend our investigations to pairs of bounded closed
convex sets.

THEOREM. Let (X,7) be a reflexive locally convex topological wvector
space. Euvery class [A, B] € BZ(X)/~ contains a minimal element (C, D)
such that (C, D} < (A, B).
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Proof In the case of finite-dimensional vector spaces, bounded closed
sets are compact, and our theorem follows from [3]. Denote by 7* the weak
topology in X. Every bounded closed set A € B, (X) is compact in the
topology 7* and, consequently, belongs to X,-(X). On the other hand, every
7*-compact set is closed in 7* and in 7 (since ™ C 7). Take any (4,B) €
B2(X) C X2.(X). Then

A+BeX(X) and A+ Be B (X)

Then A+ B is 7-closed, convex and contained in A 4+ B, which is bounded.
Therefore, A+B € B, (X) and, in consequence, A-+B = A+ B in all reflexive
vector spaces. Hence [4, B] C [A, B]* € K2.(X}/~, where [A, B]* is the
equivalence class of pairs of compact sets in the topology 7* as defined in [3].
According to the Theorem of [3], the equivalence class [A, B],» contains a
minimal element (C,D) € X2.(X) such that ¢ € A and D < B. Since
C,D are T-closed, convex and contained in bounded sets, it follows that
(C, D) € BE(X). Moreover, (C, D) € [A, B] C [4, B]*. Therefore, (C, D) is
a minimal element in [4, B] and, of course, (C,D) < (4,B). m

Let co be the space of all infinite sequences a = (a,) of real numbers
such that lim, a, = 0. Let ||a| = sup,, {an| = max, ja,| be the norm in cp.
The space ¢p is a non-reflexive Banach space.

ExXAMPLE. Let U be the unit ball in ¢g. Let A == {a € U | a,, > 0 for all
neEN}and Bi=—-A. Then A+B=U.let 4,, ={a € A|ay =...
am = 1/2} and By, := — A, where m € N. Then {Am, Bm) € B?(cy) for all
n € N. Moreover, A + By, = Ay, + B. Thus (Ap, By, is a decreasing chain
of pairs in [4, B], i.e.

with empty intersection, i.e. ), Am =, Bm = . In the proof of existence
of minimal pairs of compact convex sets, it was essential that the intersection
of a decreasing chain of pairs of compact convex sets is non-empty.

Let m be the space of all bounded sequences of real numbers with the
norm ||af| = sup,, |a,|. Let ¢ = {a € m | lim, a, exists in R}. Of course,
cpCecCm.

TAEROREM 2. Let X = ¢y, ¢, orm. There ezists o class [4, B] € B*(X)/~
thot contains no minimal elements.

Proof. Let A and B be the sets defined in the Example. Let p: X — R
be defined by p(a) :=a3. For F € B(X) and « € p(F) let

Ey:={a € E|pa) = a}.

Take any (C,D) € [A, B]. We shall prove that (C, D) is not a minimal
element.
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Case 1: cardp(C) > 1. Since p(C) is an interval, int p(C’) is non-empty.
Fix a € int p(C). Let ¢ € Oy, b € By (according to the definition of Fy, By =
{a € B | p(a) = 0}) and £ > 0. There exist ¢/,c” &€ C such that ||c’ — cl|,
| —¢cf] < e/4 and p(c') < a < p(c”). Let § = min{p(c") — a, a — p{c')).

Let e = (1,0,.. .)eX. SmceB—&—C’ A + D, we have (b—e) +¢ €
B+CC A+ D. Then there exist o' € A and d’ € D such that
l6—e+c —a —d| <é.
Hence
§>|p(b—e+c —a' —d) =10-1+p(c) —p(a’) — p(d')].
Then '

p(d) <pld)—p@)—-1+6<a—6~-0-14+é=a—-1
Slmllarly, b+¢” € B+C C A+ D, and there exist a” € A and d” € D such
that

6 +¢" ~a —-d”|| < 4.
Then [0 + p(c”) — p(a’) — p(d")| < §, and
p(d") > plc"y—pla”)-6z2a+6—1~6+a—1

Since p(d') < a — 1 < p(d"), there exist 3,7 > 0 with @+ = 1 such
that Bp(d’) + yp(d") = a — 1. Let d" = Bd' + vd", o' = Ba’ + ya" and
¢" = Be' + ¢, Since the sets A, C, D are convex we have o/’ € 4, ¢ € C
and 4"’ € D. The inequalities ||b—e+c¢'—a'—d'}| < § and ||b+c”—a”—~d”]| <$é
imply that ||b—Fe-+c —a'—d™|| < é. Hence |0—G+p(c")—p(a" })—a+1| <

§, and
|B8+pla™) -1 < |p(c")—a| +6< /446 <e/2.
Now notice that
||b+ c—a'" _ (1 _p(a‘m))e . dIH”

(1 o p(allf))e — dlh’”
Cm“ + |ﬁ — 1 +p(aﬂ.’)|

P +cm _ ﬁe+ﬁe — g -
o de + Elc _

= b+ ¢ -
S ||b-—ﬂe+cm-—am—
<b+efd+e/2<e.

We have o + (1 —p(a’"))e € Ay and &' € Dq,..1. Since £ may be arbitrarily
small, it follows that b+¢ € Ay + Ds-1. We have just proved that By+Co C
Ay + D,_1. Since o — 1 € intp{D), we can prove in the same way that
Ay+Dqey C Bo+Ch. Therefore, (Ca, Da—1) ~ (41, Bo) ~ (4, B) ~ (C, D).
Thus (Cy, Do-1) < (C, D) and (Cy, Da- 1) #(C, D), and the pair (C, D) is
not minimal.

Case 2: cardp,(C) > 1 for somen € N where pn : X — R is defined
by pn := an. The proof is the same as in Case 1.
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Case 3: cardp, = 1 for all n € N. Then cardC = 1. Let C = {c =
(cn)}. Hence :
0,1] + (D) C pn(A+ D) = pun(B +C) = pu(B +0) = [on = 1,4,

Thus pn{D) = {cn — 1}. Then for any d € D we have d, = ¢, — 1, and so
for any a € A and b € B we obtain

lla+d—b—c| = limsup |an +dn — bn — ¢l
=limsup|0+¢n~1~0—ca| = 1.
n

Since a, b, ¢, d are arbitrary elements of A, B, C and D we get A+D # B+C.
Therefore, this case is impossible. w

Remark Let A and B be the subsets of I' defined in the same way
as A and B in ¢y (see Example). A and B belong to B(I'). Let (C,D) €
B2(11),(C, D) < (A, B). Let & = (0,...,0,1,0,...), 4 = 1,2,... Let p; :
1 5 R, pilan) = (a1, a;) for i = 2,3,... Notice that

(7:(C), p:(D)) < (ps(4),p:(B))

and that (p;(A),2:(B)) is a pair of closed triangles in R2. Since p;(B) =
—pi(A), the pair (p;(A4), p:(B)) is a pair of convex compact sets in R?. Then

pi(C) = pi(A) and p(D) = pi(B).
Since (0,1) € p;(C) and a = ¢, is the only element of A such that pi(a) =
(0,1), and C is a closed set contained in A, we conclude that ¢; € C. In'a

similar way e; € C.
Now, let g : I* = R, glan) = Y oy @n. Again

(4(C),q(D)) < (a(A), a(B)) = (10,1],[-1,0])-

We know that 1 = g(e;) € C and —1 € ¢(D). Then 0 € ¢(C). Since a =
0=(0,...,0,...} is the only element of A such that g(a) =0, we get 0 € C.
Since A = conv{{0} U {e; | i.= 1,2,...}), it follows that C' = A. Similarly
D = B. Therefore, (A, B) is a minimal element of [4, B].

Notice that A; = @ for i = 3,4, ... (see Example).

The following theorem is a simple generalization of a result of [6]:

THEOREM 3. Let X = (X,7) be an infinite-dimensional topological vector
space. Let M be the collection of all minimal pairs in BE(X). Let NM :=
B2(X) \ M. Then card M = card NM.

In conclusion, we ask the following question: Does there exist in I* or,
generally, in every non-reflexive locally convex topological vector space, an
equivalence class [4, B] € B2(X)/~ containing no minimal elements?
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