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Hardy spaces associated with
some Schrodinger operators

by

JACEK DZIUBANSKI and JACEK ZIENKIEWICZ (Wroctaw)

Abstract. For a Schrédinger operator A = —A + V, where V i3 a nonnegative poly-
nomisal, we define a Hardy HY space associated with A. An atomic characterization of
HY is shown.

1. Introduction. Let A be a Schrddinger operator on R? which has the
form
(1.1) A=-A+V,
where V(z) = 3} gc, apz” is a nonnegative nonzero polynomial on R%,
a=(o,...,00)-

These operators have attracted attention of a number of authors (cf. [Fe],
[HN], [Zg) Recent results of J. Zhong [Z] deal with the Riesz transforms
R; = 32~ A~Y/2. Among other things it is proved in [Z] that H'(R?) is

=
mapped by R; into L*(R?). In general, however, this does not characterize
HY(R%), i.e. the norm || f|| 2 +Z?=1 |R; f|i is not equivalent to the H'(R%)
norm. _

The operator A, however, gives rise to a perhaps more natural notion
of the space HY which is the following. Let {T;}i>0 be the semigroup of
operators generated by —A (e.g. on L*(R%)), Ty(z,y) being their kernels.
We notice that, since ¥V is nonnegative, we have
(12)  0<Ti(e,y) < Bilwy) = @rt) P exp(~lo — o]/ (42)).

Let

(1.3) Mf(z} = sup T3 f(z)|.
t>0

By (1.2), M is of weak type (1, 1). Therefore we may say that a function f
is in the Hardy space H& associated with A4 if

(1.4) I fllzy = [MSFlizs < o0
1991 Mathematics Subject Classification: Primary 42B30; Secondary 43A80, 47D03.
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150 J. Deziubanski and J. Zienkiewicz

As we shall see later H'(R?) is a proper subspace of HY.

The aim of this paper is to study the space H} in more detail. Our main
theorem concerns an atomic characterization of H}.

Since the operator A is neither translation nor dilation invariant, the
position and size of the support of atoms play an important role. Indeed,
our notion of atom is the same as that of the classical (1, co)-atom, except
that the mean zero condition is required only if the diameter of the support
of the atom is small and its center and size are related to the level sets
of the potential and its derivatives. Therefore the use of Goldberg’s theory
of local Hardy spaces with a localization properly scaled is natural here
{cf. Section 3 for the details).

We make the utmost use of the idea which relates the operators —A+V .

to operators IIp, where IT is a unitary representation of a nilpotent Lie group
and P is a specific left-invariant homogeneous operator on the group. The
results of P. Glowacki [G] and W. Hebisch [He] are crucial in this context.
These enable us to derive appropriate estimates for the kernels Ty(z,y) of
the semigroup; the details will appear in a separate paper where some other
applications will be presented. The estimates will be used to show that in
time and space variables our kernels behave “locally” as the appropriately
localized Weierstrass heat kernels and globally, for large time, they are small.

As one might expect, the space H} can be characterized by means of
suitable Littlewood-Paley square functions. Also our H} space is natural in
the sense that the Zhong Riesz transforms characterize it. Indeed, the norm
1 fl| 3 is equivalent to the norm EJ _1 1(8/82) A=Y2 f|| 1n + (|f||L1

Acknowledgements. This paper was written when the authors were
visiting Washington University in Saint Louis. They would like to express
their gratitude to Mitchell Taibleson and Guido Weiss for their hospitality.
The authors would also like to thank Andrzej Hulanicki for useful comments
and the referee for pointing out the reference [Z].

2. Decomposition of R?. For our potential V(z) =
forn=1,2,3,... we define the sets A, by

(21) A, ={zeR: 2“/2'5 SuP{Q*”(l’B""l)/zID’GV(Q:)L} < 2(2~+~5a|+n)/2}_
Bte

Y apa” and

We also set
(2.2) Ao ={zeR*: Sup{|D‘3V(m)f} < 2@+lal/2y,

Let By = Ay, and B, = A, U"‘l Ag. We have R? = |22 B,. We will
denote by B(z,r) the ball in R? with center z and radius r.

The following lemmas follow from the definition of B,, and the Taylor
formnula. .
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LemMMA 2.3. There is a constant C such that for every R > 2 and every
n, if © € By then
#{k : B(x,27"*R) N By, # §} < Clog, R.
LEMMA 2.4. There is a constant C' and a collection of balls By =
B((n k) 277/2) n=0,1,2,..., k=1,2,. ., Such that Ty 1y € By, Bn C

Uy Benys and #{(n, k) : B (0t B22) 0 B(ww.kf)aRT”'/ ) #0} <
RC for every (n, k) end R > 2.

As a consequence of Lemma 2.4, we obtain

LEMMA 2.5. There are nonnegative functions ¢, k) such that

(2.6) Ying) € C° (B(2(n, k)=21”"’2)),
(2'7) Z ":b (n k)

('n':
(2.8) [ Vn il < C272.

3. Atoms. We say that a function a is an atom for the Hardy space HY
associated with a ball B(xq,r) if

(3.1) suppa C B(zo,7),

(3.2) lellze < (vol B(zg, )™,

(3.3) if 2y € B,,, then r < 2 R/2,

(3.4) if zp € By and 7 < 2717"/2, then {a(z)dz =0.

The atomic norm in the space H} is defined by

5) 171 =inf{fl:)l%|},
&

where the infimum is taken over all decompositions f = 3°2., ¢;a;, with o;
being H} atoms and c; being scalars.
Our ajm is

THEOREM 3.6. There is a constant C > 0 such that
(3.7) CH fllay, < 1flla £ Cllfllary
for every f € LY(R4).

We now state some results from the theory of local Hardy spaces
{cf. [Go]} we shall need later.
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Let {’f}}t . be the semigroup of linear operators generated by the Lapla-
cian A on B9, For n € Z we define the local maximal function M,, setting

(3.8) Maf(@)= sup |Tif(z)l.
0<ig2—"

We say that a function f is in the local Hardy space h} if

Ifllns, = IMafllzr < oo
A function @ is an atom for the local Hardy space b}, if

(3.9) suppa ¢ B(z,r), r< g-n/2
{3.10} ez < (vol B(z,r))"F,
(3.11) if r <2772, then (&(z)dz=0.

The atomic norm in hl is defined by
(3.22) g, = inf {3 Jes
i

where the infimum is taken over all decompositions f = 3 ¢;d;, where G,
are h! atoms.
THEOREM 3.13 [Go]. The norms || |lny and || [lnz  are equivalent with

constants independent of n € Z. Moreover, if f € hl and suppf C
B(z,2'" /%), then there are h} atoms @; such that suppd; C B(z, 22~™/?)
and

(3.14) F="es Yl <Cllfllmy
J J
with a constant C independent of n.

4. Estimates of kernels. Let

Af =\ XdBa(N)f
0
be the spectral resolution of the operator A. The results in [He] combined
with [DHJ] (see [D] for details) imply that there is a nilpotent Lie group G, a
unitary representation I7, and a regular symmetric kernel P of order 2 such
that IIp = A. The construction of the Lie group and the representation IT
allow us to show that for a ¢ function ¢ such that

41 pelF(1/2,2]),  |e(N)>e>0 for )€ [3/4,7/4)

the operators

(4.2) Quf =p(27FA)f = T(p(Z"'“A) dEA(N) f

Hardy spaces 153
are expressed by
(4.3) Quf(z) = | Qulz,1)(y) ay,
]Rd

where
(44) Qulz.y)

= 22 (2 (y — 1), 27V (z), . .., 2—#IAD2 DAY (), .. )
with F being in the Schwartz space of functions on R* x RP, D = (0 + 1)

% (@2 + 1)...{ag + 1). Moreover, the Schwartz class functions Fyp (z) =
941/2 F(—2#/2g, 0) are the convolution kernels of the operators

(4.5) Quf = p(—27+A)].

Denote by Ti{z,y) the kernels of the operators Tj. It was proved in
(D, Proposition 3.17] that for every b > 0 there is a constant C; such that

(4.6) 0 < Ty(x,y) € Cot™ 21+ 2y — gy~
% H (1 + [tIBHD2 DAY () [y,
BLo

Proposition 3.13 of [D] asserts that the kernels K,(z,y) of the operators
AT, = —£T, are given by

(47 Ki(z,)
= s~ s~ 28 (s (y — 1), sV (2),.. ., sUPHD2DBY (), ),
where
(48) E(2,6) < CL+]s)
and
(4.9) |5 (x,£) — 8(z,0)| < C(1+|z|)~?"'|¢]* with some e > 0.
Similarly
(4.10) B, (x) = 5715~ 25(s~Y* (~x),0,...,0)

is the convolution kernel of the operator - AT,.

5. Some lemmas

LEMMA 5.1. There is a constant C such that for every nonnegative in-
teger n,

(5.2) | sup Ti(@bn e )(E) = TeldmmH@Nlor @) < Cliviary fllz,
O<tga-n

where 'e,b(n’k) are the functions from Lemma 2.5.
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Proof Let 0 <t < 27" Then

Te () ) (@) ~ Te(n iy F)@)| =

¢
S Ci "l’)(nk )($)d8
0

gn
< | AT + AT (Wi ) ()] ds
0

By (4.7) and (4.10), the functions R, (z,y} = Ky(z,y) — f?s($ — y) are the
kernels of the operators AT, + AT,

Obviously,
(5.3) (AT, + AT Wiy Fll 2t S Do Winy Fllz,
where Dy,n 1 =supy, § |Ra(3,9)|x 5y, ,,(¥) dz, and By, 1) =B(&(nk), 21-n/2y,
If 7 € By ) = B(S(n,r),227"/%), then 3~"IEHD/2 DAY (z)| < C2n/2,
and, consequently, |sU#+2/2D8V (z)| < C2"s. From (4.9) we conclude that
(5.4) sup S |Rs(z, 9)|xBy, ,, (W) de < CanesEt,
Y zeBp:,,
X @ ¢ By, then o —y| > 277/2 for y € B, . Since |Ry(,y)| <
s7smY20(1 + |s7 3 (y — @)|) 792 (cf. (4.8)), we obtam

sup S

IRs(m’y)IXBE‘n'k) (y) da
¥ oogBy L,

< g~lg—420 S
|m|>2-—n/2

+ 25"g¢~1). Finally, the left-hand side of (5.2) is

(14 |4 2g))~9"2 dg < C2™.

Therefore D, n 5 < C(2"
estimated by

g—n

Iy Fller §

0
which. completes the proof of the lemma.

Let wi™(2) = {1 + jz|)~". From Lemma 2.4 we deduce that for N
sufficiently large,

(5.6) Z wN(2n/2 (g — T(nk))) € L  as a function of z.
(n.k)
"We define the maximal function M, ¢y by
My f(@) = sup  [Te(dhn k) f) (@)
0t

Ds,n,k ds < G“"ﬁ(n,k)f”bh

— Yin, (@)L f ().
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LemMMA 5.7. For every N > 0 there is o constant C such that
(5.8) My Fllzr < Clfflz)w™ (2772 (2 ~ (i) | £ (dz) -
Proof We have

[Win, k) Te)f () Z Ti (n k), (1) F (),

(n',k')

where T}, (n,k), (w60 F (2) = § ST (@, 4) (Wi, () — 9

nk:)( ))"pn’ k) ) Y.
Let

M), e k) F(®) = 8D (T} (0,1, (1) £ ().
0<tgomn
Set Jney = {(0,F) ¢ [Tk = Ba
{0 1) 2 |ont oy = T py| > G277
Note that the number of elements in Jy, x) is bounded by a constant
independent of (n, k). Moreover, taking C' sufficiently large we see that
Bly i N By ey = @ for (n', k") € Ip, ky. Thus, by (4.6), we get

< 612“"/2}, and I(-n.,k) ==

”M(n,k),(n',k’)fnLl
Ollfllzsr, o)
{ONTN”/ZI% 8~ 2w | TV Fllosy
Applying the above estimates, we have

My Fllzr € > Mgy i £l 2
(n',k')

<Cc 3
(n', k’)EJ(n *)
+C Y OnTN g fﬂ(nf x|~
(n' k") €lm vy
< Ol f ()™ (22 (% = B4, 1)) 22 (d)-

if (n', k') € Jn i)
if (n’, k’) c I(n,k)-

(n k') )

Al 22 (B2 o 1y, 02 n72))

M Fllzaeae, 4oy

6. Proof of Theorem. 3.6. Let.
My f@)= sup [Tef(z)|

O<tgamn

Proof of Theorem 3.6, We first assume that f € H}. By Lem-
mas 5.1 and 5.7,

[ M (4,3 )| 22 < C'(||Mn(¢(n,k)f)\|f.1 + %,y F11)
< (||, (M)l 22
+ £ (@)@ (2 — 2 22 (02):
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From (5.6) we conclude that
(6.1) 3 1My Dlizr < CUMS NIz + [ Fllz1)-

(n.k)

An application of Theorem 3.13 gives

(6.2)  Ymupf= chn’k)ag."'k), where a,(”" ) are HY atoms,
J
and
(6.3) 3165 < CN M (i )l 23+
J

Finally, using (6.1) and (6.3), we obtain the required H} atomic decompo-

sition

(6.4) f= Z chn’k)agn’k) and Z Z 1c§n’k)} < CliIMfil s,
(”!k) i (nlk) b

and the inequality ||f|la < C||f||ay is proved.

In order to prove the reverse inequality it suffices to show that there
exists a constant ' > 0 such that

(6.5) |Malzs <€

for every HY atom a.

Let o be an H} atom associated with a ball B(zg, 7). Let n be such that
2o € By. By definition, » < 2772, By Lemma 5.1, | Mpe| 1+ < C|iﬂna\|L1.
Theorem 3.13 asserts that the right-hand side of this inequality is bounded
by a constant C' independent of a. It remains to show that

(6-6) | sup |Tia{@)|llzs(aay = C
t>2-m

with a constant C independent of a.
Let P?, be the operator defined by

Prf(@) = §IF @)t xa0m ™y - )
% ( T Xt (0492 D9V (2)) ) dy
BLa
According to (4.6), we have
(6.7) |Tta(m |< > bmPha
m>2

where by, < Cp(1 +m)~? for every positive p. We shall use the following
lemma.
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LEMMA 6.8. There is a constant Cy > 1 independent of n such that for

every f € L*(R?) such that supp f C B(z,,2'~™/?), z,, € B,, and for every
m > 2, we have

(6.9) Pif=0 fort>mCra ™,

The proof of Lemma 6.8 will be presented below. Using (6.7) and Lem-
ma 6.8, we get

| sup |Tya(z)| llzaqany =1l sup
t»2mr 2—mt

<2-mmf1

< Z bun | sup

m>2 2t m
<G Y bmm*laf 1) S C.
mr2
Proof of Lemma 6.8. Let f € LY(R?), supp f C B(zn,217"/2),
T, € By. Then, by Lemma 2.3, supp f C UM“O2 ¢, Bk Assume that P! f

k==t

# 0. Then there are z € R? and y € supp f such that
tUB+2/2 DBy (1) € B(0,m) for all ﬁ < @,
t~12(y — z) € B(0,m).
Since DTV (y) = Tpea APV (@)(y — o) for every 7 < o,
1DV (y) < Omleltly—(vi+2)/2,

On the other hand, |D7V (y)| > 20~ Cat{n—Ca){7H+1))/2 thug
9(n=Cat(n=Ca)(I7l+1))/2 < O lel+1y=(ri+2)/2,

(Tra(x)] [l Lt (de)

| Praa()lllz2(de)

This implies ¢t < m®12™", which completes the proof of the lemma.

7. Characterization of H} by square functions and Riesz trans-
forms. For a C* function ¢ satisfying (4.1) we define the square function

1/2

(7.1) si@) = (3 1Quf@I?)
uez
where @, = ©(27#A). Our purpose is

THrROREM 7.2. There i¢ a constant C > 0 such thot

(7.3) CM N Filzy < 18 Flles + 151z < Clfllay-
For an integer n we define the truncated square functions

19 i) = (SIef@r) ", Sus@ = (T 1ds@r) "
uzmn - [0

where Q) = p(-2"+A).
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- Theorem 7.5 below is a simple consequence of the results of Goldberg

[Go].
THEOREM 7.5. There is o constant C > 0 independent of n such thot

(7.6) C A s < 18afllza + IFlze < Cllfllma -

The two lemmas below can be proved by the same means we used in
Section 5.

LEMMA 7.7. There is a constant C' > 0 such that for every integer n,

1@uWinirf) = QubinmyHllzr < C2=W2 gy Fll 3.

LEMMA 7.8, For every N > 0 there is a constant C > independent of n
such that

18a (%m0 F) = a,y (Sn )22 < O F (@)™ (272 (@ — 203, 1) ] £ ().
A simple application of Lemma 7.7 leads to
COROLLARY 7.9. There is a constant C such that for every n and k,
(110) (8@ DI < CUS Wiy Nz + Wity Fllza),
(111)  I8a{m DI < CUB G Hllzs + i, Fl2)-

Proof of Theorem 7.2. Assume that f € HY. Since the infimum
of the spectrum of A is strictly positive, @, = 0 for u < B. Hence

(7.12) 15 F]|z: < Z 18n(Win,) M1zt + D7 158 (Win ey Hllct

(n,k) (n.k)

where S3(¥n 0 F)(5) = (D pepcn |Qu®mr (@))% By (7.11), Theo-

rem 7.5, and Lemma 5.1,
HS (in iy FHz < C(“Sn("tb (n) S ML + IW’(n wfllr)
< C|IM, n(@mm iz € CIMu(Win iy FHllze-
According to Lemma 5.7, we obtain
(7.13)  18n((nmy Hll
< Clin gy Mz + I F (@)™ @2 (2 ~ w0 50| 22 (d0) -
As a consequence of Lemma 6.8 we have
(7.14) 188 in ke FH 22 < Cllnpy iz

Therefore, by (7.13), (7.14), and (5.6), we get | Sf||z: + || f]l2 < Cll ey -
Our proof of the reverse inequality is similar. Aqsumc that ||.Sf|z +
I flizt < co. Trivially,

(715)  Mflz <Y HMn(d’(n,k)f)llLl + 2 IME W ),

(n.k) {n.k)
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where MP (Uni)f)(x) = supynon [Te(h(n iy f)(z)|. We conclude from
Lemma 6.8 that ‘

(7.16) M2 (k) Plizs € Cl@pniy F)llzs-
Using Lemma 5.1 and Theorem 7.5, we obtain
[ Mn (@ Pl 23 S ClM(im iy )l 22 € CUS Wiy 2+ () £l )-
Lemma 7.8 and (7.10) yield
M@y FilLr £ CUISA (Y nk)f)”Ll + v,y Fll 1)
< Ot n gy Sflles + 1 f (= Yt (22 (g ~ T ) L) + [ (n,my Fll22)-

Finally, by (5.6), we have ||fllg3 < C(|Sfllz + [|f]lz1), which ends the
proof of Theorem 7.2.

Let us define the Riesz transforms R,;, j = 1,...
operator A setting

,d, agsociated with the

8 . T -
(7.17) Bif = oA Vif = S)\ Y2 4B

Similar arguments can be used to prove the following characterization of the
Hl .
space Hy:

THEOREM T.18. There 18 a constant € > 0 such that

d
CM ey, S Hfllza + D IR Fllze < Cll |y -

=1
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Perfect sets of finite class without the extension property
by

A, GONCHAROYV (Ankara and Rostov-na-Dom)

Abstract. We prove that generalized Cantor sets of class e, o # 2, have the extension
property iff o0 < 2. Thus belonging of a compact set X to some finite class & cannot
be a characterization for the existence of an extension operator. The result has some
interconnection with potential theory.

1. Introduction. Let K be a compact set in R™. Then £(K) is the space
of Whitney jets with the topology defined by the norms (in what follows we
will consider only the one-dimensional case)

(B £)¥)(z)]
m|:1;1’,—'__‘W :m’yEK’ x#ya kzo,lv"':.Q}:

11 = 17l sup {
g=0,1,..., where |f|g = sup{|f®)(z)| : 2 € K, k < ¢} and Rif(z) =
f(z) — TZf(x) is the Taylor remainder. We say that K has the eztension
property if there exists a linear continuous extension operator L : £(K) —
C>*(R™}. The problem of finding such an operator was investigated by many
authors (see e.g. [2], [9], {11], [12], [14]-[17]). In [16] Tidten applied Vogt’s
condition for a splitting of exact sequences of Fréchet spaces and gave a
topological characterization of the extension property (see Th. 1 below). In
order to give a corresponding geometric description Tidten introduced in
[17] the following property: a compact set K C R is a perfect set of class o
(a0 2 1) if there are constants C > 1 and § > 0 such that for any y € K
one can find a sequence (x;)%2, < K such that |y — z;| | 0,y — z:1] =
Sand Cly — @41} > |y ~ ccjr“ for any j € N. In this case we will write
K € (a). It was proved in [17] that

(i) Ke()= _
(ii) K has the extension property =
(iif) K € () for some o 2 1.
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