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Perfect sets of finite class without the extension property
by

A, GONCHAROYV (Ankara and Rostov-na-Dom)

Abstract. We prove that generalized Cantor sets of class e, o # 2, have the extension
property iff o0 < 2. Thus belonging of a compact set X to some finite class & cannot
be a characterization for the existence of an extension operator. The result has some
interconnection with potential theory.

1. Introduction. Let K be a compact set in R™. Then £(K) is the space
of Whitney jets with the topology defined by the norms (in what follows we
will consider only the one-dimensional case)

(B £)¥)(z)]
m|:1;1’,—'__‘W :m’yEK’ x#ya kzo,lv"':.Q}:

11 = 17l sup {
g=0,1,..., where |f|g = sup{|f®)(z)| : 2 € K, k < ¢} and Rif(z) =
f(z) — TZf(x) is the Taylor remainder. We say that K has the eztension
property if there exists a linear continuous extension operator L : £(K) —
C>*(R™}. The problem of finding such an operator was investigated by many
authors (see e.g. [2], [9], {11], [12], [14]-[17]). In [16] Tidten applied Vogt’s
condition for a splitting of exact sequences of Fréchet spaces and gave a
topological characterization of the extension property (see Th. 1 below). In
order to give a corresponding geometric description Tidten introduced in
[17] the following property: a compact set K C R is a perfect set of class o
(a0 2 1) if there are constants C > 1 and § > 0 such that for any y € K
one can find a sequence (x;)%2, < K such that |y — z;| | 0,y — z:1] =
Sand Cly — @41} > |y ~ ccjr“ for any j € N. In this case we will write
K € (a). It was proved in [17] that

(i) Ke()= _
(ii) K has the extension property =
(iif) K € () for some o 2 1.
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162 A. Goncharov

If K has the form of a sequence of closed intervals tending to a point,
then (under a minor restriction of regularity) the conditions (ii) and (iii) are
equivalent ([4]).

Nevertheless the class () cannot be in general a characterization of the
extension property. We give here examples of generalized Cantor sets of
finite class () without (ii). Some interconnection of the extension property
and potential theory is presented for our case.

We shall use the class Dy (see [19]) or the property DN (see [18]) of
Fréchet spaces:

C
(1) Vg InC>0: |-l <t -lp+5l-le >0

Here and in the sequel we consider (F') spaces with an increasing system
of seminorms; p,¢,7 € N= {0,1,...}.

THEOREM 1 (Tidten [16], Folg. 2.4). A compact set K has the extension
property iff the space E(K) has the property DN.

ProprosITION 1. The following statements are equivalent to D.N:
. c
2 F3R>0VgInC: | StV 5l
(3) IpVYe>0Vg I C: - lIg™ SO loll - 17

Proof For the equivalence (1)<(2) see e.g. [3]; (1)<(3) can be found
in [8], Lemma 29.10. m

t> 0

2. Cantor type sets without the extension property. Let (In)og
be a sequence such that g = 1, 0 < 2l,01 < I, » € N. Let K be the
Cantor set associated with the sequence (I,,), that is, K = {),—q Kn, where
Ky = Ipy = [0,1], K, is a union of 27 closed intervals I, of length l,
and: K, is obtained by deleting the open concentric submterval of length
Iy — 2,4y from each Iy, k=1,2,...,27.

Fix o« > 1and Iy < 1/2 with 21“— < 1. We will denote by K@ the
Cantor set associated with the sequence (I,,), where lo = 1, lnt1 = 17
...=1¢", n > 1. From the definition of the class {c) we have (see also [15],
Prop. 2.1)

PROPOSITION 2. K(*) € (a) and K & (8), V8 < a.

Our purpose is to show that for a > 2 the space £(K(®)) does not satisfy
(3). First we give a sharpened version of Lemma 3 from [4].

Lemma 1. Let g(z) = H;._.1($ a;), where |z —a;| <l< i, ,j=1,...,N.
Let f(z) = g¥z). Then forn < Ng,

{4 £ (@) < C(N,g,n)iVe™,
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If in addition n < g, then

(5) |F(@)] < C(N, ¢,m) g(m) [~
Here
(Vg)!
C(N,q,n) = Naon)t

Proof. By the Faa di Bruno formula for the derivative of superposition
(see e.g. [5], 0.430) we have
2)

®  SOE=gr
ky) € N* such that k; +

Here the sum is taken over all sequences (ki,...,
4 kn < q. In the case N < n all

Qo+ ...+ nk, =nand k =k + ...
terms corresponding to (k, e k) with k; # 0 for some i > N vanish. If
i < v = min{N,n}, then ¢ (z) is a sum of N1/(N — i)! terms and every

term is a product of N — ¢ factors of type z — a;. Therefore

n b L /N
(7) 15 )(m)lgzkllﬁ.kﬂ!.(q—(-]-k)!_]-l(@) -

i)ki. Mn < N, then o = N(g—

k q q 'k)|gq~..k($)]___[(

iw=1

where o = N(q~Fk)+3 i (N~ EY+Nk—n =
Ng—mn.Ifn > N, then
n ) n
g=Ng—=N 3y hki—n+ Y ik>Ng-n.
=N A1 i=N+1

Thus, | F(™ ()| < C(N,q,n)I¥9"", where the Coeiﬁcient is the right side
of (7) without {%. In order to find it one can take g = % and apply (6) at
z =1 f(")(1) = G(N, ¢,n). On the other hand, f(n3(1) (Ng)l/(Ng—n)l.

If n < ¢, then we neglect all factors of type IV "% Since k < n and
gl47* < 191", we get (5). w

THEOREM 2. If o > 2, then K% does not have the extension property.

Proof Fix o > 2, & = (o —2)/2 and M € N such that M > 2a/(a-2).
We will show the negation of (3):
Unllolifally

AL

For arbitra.ry p € Nlet ¢ = Mp+ 1. For any r > ¢ take s € N with
22 >r/g > 271 Fix natuml n > g+ 3, and consider the first 2¢ intervals
of K 17!1 = [0 ln} 12 = [ln-—l - Imlnml},- -;In,zﬂ = [En—a - ln)ln—sl-
Let ¢; denote the 1n1cip0mt of In grd =1,...,2° Set fu(z) = g¥(z) where
g(z) = H? T —¢p) for z € K@ N[0, 1y and g(z) = 0 elsewhere on Ko,
Let us evaluate the norms of f,.

¥p 3¢ g ¥r > ¢ A(f,) ¢ (K™ .

as n — oc.
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Upper bound of ||fn|lp- Fix natural k < p and z € UJ =1 4
have

n,g- By (5} we

118 (z)| < C(2°, g, k)lg(=)| 7",

Throughout the proof let C, denote C(2°,g,p) = maxk<p, C(2°, ¢, k). It fol-
lows from the structure of the set K@) that |g(z)| is a product of 2¢ terms
where one term is less than I,, another is less than l,—1, two others are less

than I,_z,...,2°"! largest terms are less than l,—s. Therefore, lg(x)] < LA,
where A denotes (here and in the sequel) ln. 12 .. l2 o - Thug,
(®) |79 (@)] < Cpllad)e*.
From this |f|p < Cp(lnA)¢~*. Furthermore, we can estimate
£ (k)
po= BRI g iy a e K,
|z — ylp=F

If |z — y| < lp—1— 2, then x,y belong to the same interval I, ; for some j.
Applying the Lagrangian form for Taylor's remainder we find £ € I, ; such
that

(y — =) *

(R2f) W (y) = e

[F® (&) ~ FP ()]

Therefore, 4, < 2C, (I, A)97F.
Let |z ~y| = z,,, 1 =2y = Ly (1-21977). Since @ > 2 and n > s+3 > 4,
we see that [7} < 1,1 <l < 1/4. Then |z ~ y| > ln—1/2 and by (8),

Ay <UD o =7+ 301 “zgy") -
1..-.k

< Gyl )P [(2 , IZ:_AI)P ( )p—a]
<

Since 2{,A < l,-1, we get the uniform bound A, < Cp(1 + e)(IA)97P.
Therefore,

= (%-

[ falp £ (2 + )Cp(lnA)?~

Lower bound of ||falig- Clearly, ||falle = |fnlq = |f,gQ)(c1)|. If we apply
(6) for n = q and T = ¢y, we see that the only nonzero term in the sum
corresponds to the case ky = ¢, ks = ... = k; = 0. From this,

FiP(er) = gl {g'(er)).

20
Here Ig’(cl)| == Hjmz(cj — Cl) and ¢y — ¢y = lp_1 — ln > lnul/Q; g — €1 =
lpeo —lu1 > ln_.gfz; C4— €] > €3 — CL > l.,l...z/Q; caajCpe — 0 > Iy —
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ly—st1 > In—s/2. Therefore,

tn_ 2 ln...a 25_1 )\
el > 25 (B5) L (Bee) T
where C' = 22°~! < 22/4_ Finally, we get
anl]q > q!2—2r)\q'

Upper bound of ||fullr. Let k < r and o € [0,1,—,). Since 2°¢ > r from
(4) we conclude that

|F B ()| < €(2°, g, B)IL =R,
Therefore, |f|r» < Cr = maxi<, C(2°, ¢, k).

Let now A, = [(Re /)M () lo ~y* " k < r, 2,y e KO T m,y €
[0, Lh—s], then arguing as above we see that for some point £ € (0, 1,_),

A <|FOE) - F) (@) < 26,

Otherwise, |v — y| 2 ln—yi — ney > ln—y a8 n > s+ 3. (We exclude the
trivial case: z,y & suppg(x)) f & > ly_go1 ~ln—s and y <ln_,, then
@

= [fP W)l -y £ Gl -y < G
Fe<l,yandy >l g1~ ln_g, then
T — =7
< D@ E <o
tonk
Thus,
[ fallr < Cr(1+e).
Now we can estimate the corresponding fraction:
Unllellfull o a2, Gampy—ge=s,
¥ e < O e =0
where the constant ¢! does not clepond oL M.
By the definition, L. = l“,‘q L h=0,1,...,8 and
P S ...af,,‘:; = Y,

where

4 L] § &
. ST o — 2 o
w—gz « o2 <a-12'
Therefore the right side of (9) is equal to CILITP* =% Lot ug show
that the exponent of [,-, here is positive. Then the right 31de of (9) tends
to 0 as n - oo, which completes the proof.
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In fact,

R o-2 o’
(g~ plo’® - (ge+p)w > (¢ - p)o —(q 5 +p)a_2

o -1 M -1
zqg——-pa"—z-—>pa"(—-—a )>O,

2 -2 2 a—2
due to the choice of M. m

3. Cantor type sets with the extension property. In [17] Tidten
has shown that the Cantor set has the extengion property as a perfect set
of class (1). Let us extend this result to the case 1 < a < 2. First we give a
general form of Lemma 2 from [4].

For 7 + 1 distinct points (2;}j—q let h; = |2 — zo|, ¢ = 1,...,7; let w(z)
denote the polynomial [];_,(z — z:); £7(K) is the Banach space of r times
differentiable Whitney jets on K equipped with the norm || - {i,.

LeEMMA 2. Let K be a compact set containing r -+ 1 points (x;)].q such
that hy < b1, t=1,...,r— 1. Then for any f € E"(K) and 1 < k <7,

) (@o)] < 2C Flop + || il pizs

where
rlk 1
Thopr TR b B
T
#2:hk+1...h hz

TR

Proof Fix f € £7(K). Let F; = f(x) — f(20) — Ry flwe), i =1,...,m
Consider the system of equations

TR
Zf (:LO)(:Z"L_m())FU =Fis 1w 1,-":"":

|
— k!
with the “unknowns” £ (zq)/kl, k = 1,...,r. The coefficients of the systern
give the Vandermonde determinant V' = V' (2o, 21, ..., 2,) = [T, (2 — 2i)-

Applying the symmetric functions Sg = 1, S;(04, ..., an) = @109 .. G54, ..
On—j41 -+ On (the sum of (}) products of j factors without repetition), we
have the following expression of the auxiliary determinant N, k= 1,...,7
(see [4] for more details):

r
v
Ay = (*‘“1)T+k Zﬂm&—k(wl—mo, oy Ty —EQ Tit 1 — XD, - - -amr—wo)-
k)

=1
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By Cramer’s rule, omitting the argument of the symmetric function, we get
f(k) (3:0) k ” Sr—k
AN et S S L g § :F-——— =

k' ( ) o tﬂ"(ﬂ')i)’ k 1,...,'!‘.

Here (Sr—k| < () kt1hets - by and [Fi] < 2|flo + || £|l»hY, which proves
the lemrma, m :

THEOREM 3. If 1 < @ < 2, then K{® has the extension property.
Proof. Let us show (2} for the space £(K(®)), Given o € (1, 2) let
TRare
C’a—-:( 4 ) @ R 24C,

2~ ' =

2 —a

Take p = 0 and arbitrary natural ¢ > 1. For v = min{k € N: 2¥ — 1 > 2¢}
let g1 = 2¥ — 1; then 2¢ < ¢; < 4g. Fix natural s such that r ;= 2% —1 >
Camr > 2074 — 1. Then r/q1 < 3C,. Fix f € £(K(®)) and t > 41/2"1 Let n
be such that

(10) ln—a < 1/t e ll/m

n—s*

We first estimate | ) (zo)[t5 % 2y € K(®), k < ¢1. To this end, consider
Kn= Ul Lu; D K@), Let g € L jo. Also, @ € Inwsjy © Knos. The
interval 1, j, covers 2° intervals of K. Let us take the right endpoints of
these intervals except I, ;, and enumerate them in the order of increasing
distance to zo. Thus we have r + 1 distinct points (z:)]_q in K(®). Clearly,
hp = |2y — 20| € lp—s. In order to use Lemma 2 let us bound p1, gz in our
case. On the one hand, |7'(z;)| is a product of 2° — 1 terms where one term
is more than I,y — 2l,, two others are more than l,_p — 20p~1,...,2°7%
terms are more than ln_.s — 20, s4.1. From {10) and by the choice of £ we see
that 41971 < 1, hence lymy = 2p—gp1 > ln—s/2. All the more fori < s—1
we get ln—; — 2ln.it1 > ln.i/2. Therefore,

Lyt { Ipwt 2 lys 2t A
o, el f s = —
oz 52 (B52) (5 2

On the other hand, arguing as above, one can show that
(@) = ha o P <A

For this reason
or 2Thl

™' (o)
, < :
hl...hk K2 hi...hg

'rr’(ml)

pg = (hy ... h,vq)'—l max
Also,

zu-—-l
- I i
(11) Py by 2 ”‘21 (J‘?‘i) = 270X,
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where

L
' . 2 —a
- 2 :zzhlaa—-z =Y )
: 2—a

Let us show that
(12) ax<Rg and x+g<r

In fact,
logg o logy &
_ 1 r) |
o = <(—)  <ackme,
(q1+1) (fll *

Since 2¥ — o < g1 < 4q, we get ax < 2x < Rg. Moreover,
01032 @ gy =

X+q<301°5”°‘ o +--—< Cogr < 7.

2~
Combining (10)-(12), we get

- ko 2T-|-111l X lQl“k < or+a1 4 Ryp—~ 41+k
hl L hql n—g 2

to < 27‘+¢11lg1_';k+?“—x < 2r+q1t—q1+k-—q.

1 <

Now by Lemma 2 we have
(13)  |f®) )|tk
S 2HEO ot + (| lt7Y), VYoo € K@), k< g

To shorten notation, we write §(t) for the right side of (13). We see that
|f|q < S(t). It remains to estimate Ay = I(RIFHYE ()| « | — yl*~9, k < q,
T,y € K(Q)
If |z — y| > 1/t, then

Ay S OG- o — g1+ 3 9 ) @ EIE < )
1=k

+ L@y

<SSR +e), by (13).
If |2 — y| < L/t, then RIf(y) = RPf(y) + 0 40 FO@)(y — 2)'/it.
Hence
4 < Wl lo =yt 30 FO@IEITT < o sy,
ot (e~ k)t
asgsqr—kwithk <gq.

Thus, A, £.25(t) and
[llg < 3S(t) = Culflot™ + Col| £t
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with 1~ > 4, where C,C> do not depend on f and ¢. This easily implies
(2), which completes the proof. w

It is interesting to note that for the Cantor sets X(*) the value a = 2 is

also a limiting value in potential theory. It is easy to see that the function
In 2

palr) = (ln 1)_m

.
is associated (see [10], V, 6.7) with the set K (=),

COROLLARY 1. For the Cantor set K{®), 1 < &, a # 2, the following
statements are equivalent:

(i) o< 2

(ii} the (logar:'th'rmc) capacity of K(®) is positive;
(ili} the logarithmic measure of K% is positive {or infinite);
(iv) K} is reqular in the sense of the Green function of C\ K with
a pole at o0;

(v) K{®) hgs the extension property.

Proof. The equivalence (i)«(ii) follows e.g. from Theorem 3 of [10];
and (i)« (iii) e.g. from Theorem 4 of [10] and 4.5.2 of [6] as @4 () = o(h(r))
for & < 2 and h(7) = o{pa(7)) for o > 2, where h(r) = (ln(1/7))~!; for
()& (iv) see Proposition 2 of [13]; (i)<»(v) is the content of the present

paper. m
ExampLe, Let K = {0} U U2, In, where I, = [1/n + ty,] with ¢, <
1/n?. Let v, = —(Int,)/Inn. It follows from Theorem 3 of [4] that £(K)

has the extension property iff the sequence (vy) is bounded. On the other
hand, by Wiener’s criterion (see e.g. [7], Theorem 5.6) the corpact set K is
regular iff > 1/, diverges. Therefore the case ¢, = n~" gives us a regular
compact set; i, = n™™ gives an irregular one at x = (. Neither has the
extension property.

Remark. Inview of Pledniak’s result ([13], Prop. 1) (see also [1}) for any
a > 1 the Markov inequality is not satisfied for some polynomials on K{®),
but in the case 1 < « < 2 the compact set K(®) preserves the extension
property (compare this with [3]).

QuesTiON. What is a geometric characterization of the extension prop-
erty?
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On the range of convolution operators on non-quasianalytic
ultradifferentiable functions

by

J. BONET (Valencia), A. GALBIS {Valencia)
and R. MEISE (Dasseldorf)

Abstract. Let £,)(42) denote the non-quasianalytic class of Beurling type on an open
set 2 inR™. For p € Efw) (R™) the surjectivity of the convolution operator T« £ (1) —
E(w)(ﬁz) is characterized by various conditions, e.g. in terms of a convexity property of
the pair (21, £23) and the existence of a fundamental solution for J or equivalently by
a slowly decreasing condition for the Fourier-Laplace transform of p. Similar conditions
characterize the surjectivity of a convolution operator S, : Df[w}(ﬂl) - D%w}(ﬂz) be-
tween ultradistributions of Roumien type whenever ;1 € Eiw}(R“). These results extend

clasgical work of Hormander on convolution operators between spaces of &'™-functions
and more recent one of Ciorfinescu and Braun, Meise and Vogt.

Since the classical work of Ehrenpreis [10] and Hérmander [14], convo-
lution operators on various spaces of infinitely differentiable functions and
distributions have been investigated by many authors (see e.g. Berenstein
and Dostal [1], Chou [8], Cior&nescu [9], Franken and Meise [11], v. Grudzin-
ski [12], Meise, Taylor and Vogt [20], Braun, Meise and Vogt [7], Meyer [23],
Momm [24], [25]). The starting point for the research presented here was
a recent result of Bonet and Galbis [3]. They proved that sach convolution
operator T, acting on the non-quasianalytic class £,)(R") (defined in the
senge of Braun, Meise and Taylor [6]) for which T, (€q,)(R)) contains some
smaller class £,y (R") already acts surjectively on £y (R™).

In the preseut paper we show that this holds in greater generality and is
an immediate corollary to the following extension of results of Hoérmander
[14] to the non~cuiasianalytic classes £,)(R™) (see 2.7-2.9).

THEOREM A. Let pn € &, (R") and open sets 02y, 2y in R* with {4 +
Supp ft C (2 be given. Then the following conditions are equivalent:

(1) For cach g & Ery (1) there ewists | € £,y (£22) with p+* fla, = g.
(2)  For each g€ Ew)(12y) there ewists f € Déu)(ﬂz) with p* flo, = g.
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