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BV coboundaries over irrational rotations
by

DALIBOR VOLNY (Praha)

Abstract. For every irrational rotation we construct a coboundary which is contimu-

ous except at a single point where it has a jump, i3 nondecreasing, and has zero derivative
almost everywhere.

Let o € (0,1) be an irrational number. Let T be the rotation of the unit
circle T represented by the unit interval [0, 1), defined by Tz = £+« mod 1.
We denote by m the Lebesgue probability measure on T,

Let F be an K- or T-valued function on T. The transformation
Tr(e,y) = (Tz,y+ Flz)), z€T, yeR(yeT),

of TxR (TxT) onto itself is called a skew product; Tr preserves the product
measure (see e.g. [9]). The function F is called a cocyele. If there exists a
measurable function G such that F = G — Go T, then F is a coboundary. If
F is T-valued, it is called an Anzai cocycle.

If H is a continuous function on [0, 1) with H(0)—limy_;_ H(¢) € Z, then
the factorization F' = H mod 1 is a continuous Anzai cocycle. In this way
we get all continuous Anzai cocycles. The difference H(0) — lim,—,,_ H(t) is
called the (topological) degree of F,

Recall that by [2] every Lipschitz Anzai cocycle of nonzero degree is
ergodic (hence not a coboundary) and by [3] every absolutely continuous
Anzai cocycle of nonsero degree is ergodic. In [2], p. 583, H. Purstenberg
stated that there exists a continuous Anzai cocycle of nonzero degree and
bounded variation which is a coboundary. A first proof was, however, pub-
lished probably by Iwanik, Lemancsyk, and Rudolph in [4]; in [L] even a
Halder continuous cocycle was found. In [4], [1] the constructions were not
given for all irrational rotations: the existence of continuous coboundaries
of nonzero degree and bounded variation was left as an open problem.
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254 D. Volny

For every irrational rotation we shall construct a (real) cocycle F' which
is momotone and continuous except at a single point. As the factorization of
a real coboundary modulo Z gives an Anzai coboundary, this implies that for
every irrational rotation there exists an Anzal cocycle which is continuous,
has nonzero degree, is of bounded variation, and is a coboundary.

The construction is based on an idea similar to the proof that for an
absolutely continuous cocycle F' with ﬁ] |F'(z)|3+¢ dz < oo there exists a
cohomologous Lipschitz one (see [10]). The proof of the gengral result is
much longer than the proof for rotations with unhounded partial quotients
in [4]. Tt seems that in the case of rotations with unbounded partial quotients
the existence of some cocycles is easier to decide. For example the existence
of an absolutely continuous cocycle of type Iy, or ergodic and squash-
able, in the case of bounded partial quotients remains an open problem
(cf. [4], [11]).

THEOREM. Let 0 < @ < 1 be an irrational number. Then there exists a

(real) cocycle which is continuous at oll points except one ot which it has a
Jump, is monotone, and is a coboundary.

The cocycle has both one-sided limits at each point. Because a multiple
of a real coboundary is again a real coboundary, the jump can have any real
value; to get an Anzai cocycle we are interested in integer values.

In [7] there is a construction of stably ergodic cocycles of bounded vari-
ation (i.e. a small perturbation of the cocycle in the sense of the BV norm
remains ergodic). In particular, the straight line f(z) = z — 1/2 is stably
ergodic. Using the result from [4] one can show (see [7], Remark 5} that for a
rotation with unbounded partial quotients there exists a continuous cocycle
of bounded variation which is stably ergodic. Using the Theorem one can
immediately extend the result to all irrational rotations.

I conjecture that using ideas from the proof of the Theorem one can
construct, for every irrational rotation, a purely singular (i.e. continuous,
with zero derivative almost everywhere) real cocycle which is stably ergodic.

Proof of the Theorem. We denote by a1, az, ... the partial quo-
tients in the continued fraction expansion of ¢, and ¢y, g2, ... ave the de-
nominators. For every n=1,2,...,

1) Gn+1 == Gp4g1bn T gn-1
(k. [5]).

As usual we denote by [z] the integer part of a real number z, and
{z} = z - [z] denotes the fractional part. {|z| = min({z},1 — {z}) is the
distance of x from the integers.

Rokhlin towers. We shall use the Rokhlin towers for the rotation Tz =
z + ¢ mod %, Recall that for 7' two Rokhlin towers are defined:
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For n even we have
o [{ja} {0 + @n-1)a}), 5 =10,1,...,¢, — 1 (the bigger tower), and
o {gnad, 1), {(F +anla} {da}), 5 =1,. ., qn_1 ~1 (the smaller tower);
for n odd we have
. [{fln-lﬂf}v 1}, [{(-7 + Q'n—-l)a}a{ja})’ = 0,1,”'.
tower), and
o [{GoH(F+gu)a}), 7=0,1,... g1 — 1 (the smaller tower).

The two Rokhlin towers are disjoint and together they form a partition of T.
In fact, we shall use the bigger towers only.

For any positive integer n, the sets

I(”:"‘) = Tiloa HQH——laH)’

vdn — 1 (the bigger

i=0,1,...,¢,— 1,

form thus a Rokhlin tower: for n even we get the bigger Rokhlin tower and
for n odd the bigger Rokhlin tower is rotated by g,_;0.

Note that for any fixed j =0, 1,...,¢n—0—1, the intervals I(n, +ig,—1),
i = 0,...,an, are adjacent; similarly for any § = gn—2,...,qn—1 — 1 the
intervals I(n,j +ign-1),4=0,...,an—1, are adjacent—in both cases on T;
on the interval [0, 1) they can be separated by 0.

By (1) we have gnyi = gn, Gntl = 2¢n—1, and hence for all j = 1,2,. ..,

2) Gntj 2 24/,

By [5], 1/(2gn) < 1/llgn—1c¢ll < 1/gn, hence
1 1

3 — < | I(n,0)| £ — foralln=1,2,....

®) 5 S Um0 < =

Construction of the function F. We shall construct a function F

on T which is continuous and nondecreasing on the interval [0,1) and
limygesy . F(8) — F(0) = 1.

In the sequel, (r2g), k = 1,2,..., will be an increasing sequence of positive
even integers which will be specified later. We shall suppose
(4) Tl 2 T +k4+3, E=12,...

First we recursively define a sequence of sets My C {0,1,...,qn, — 1},

k=1,2,... Set My = {0}. Suppose that Mj;, 1 < j <k, have been defined.
Then we define

Mk*l-l = MR? U Mk + an+1—'1-
We define
| M| = max My, k=1,2,...
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Later we shall use

(5) IMk' Sgn, — 1,
(5) for k 2 2, |Mk._1| S Gny~k-2 — 1.

Indeed, from the definition we get | M| = Z?:z =1, | Ma] =0 < gy, —1
and if |Mi! < gn, — 1 then |Myia| < gny — 1+ gnypa—1- By (4) we have
Tkl 2 T+ 2, therefore ¢n, < Gnyyy—2- By (1) we get gn, im0 - @nyyo1 <
Onyyy - Therefore, | Myy1| < gny,,, — 1. This proves (5).

We have supposed that ng_y < ny — k2. Hence, |[My_| < Gnpy —1<
Gny~k—2 — 1, which proves (6).

Next we recursively define a sequence of functions fr on T, k = 1L2,...
First, f1 is constant on I(ns,0), Sr(m,o) Hdm =1, f; is zero elsewhere.
Suppose that fi, k> 1, have been defined and

¢ fi s nonnegative, constant on the intervals I (Mpp1,1), © € My, zero
elsewhere,

L S; f,rc dm=1.
Then we define fi4 so that:

® fis1 is nonnegative and constant on the intervals I (M2, 1), 1 € Myya,
and zero elsewhere,

o for ¢ € M), we have

S frndm = S fk+1 dm -+ ‘ fk+1 dm,
I{ng41,1) HTFERA! T(at2yitang, g -1)
| forrdm/ | Ferrdm=Fk+1.
I('nk+21“) I(nh+21i+gnk+l—1J

Notice that fr1 is uniquely determined and that 33 Jerr1dm =1,
For 0 <i <gn —1land j =1,2,... we define Uj = Npppg, ¥ = 1+

g1
2 Origqt—1, and

(7) Ity 8) = [ I(ugovy),  TH{na,i) = F(ruyi o+ gny—1).
i=1

Becall that ny has been assumed to be even. The set | (ng, %) is thus an
1nt.erva.1 and by (2)-(4) it is a subinterval of I {nx,©) with the same left end
point; I(ny,i) UI*(ng,i) is also an interval (on the circle).
From the properties of the Rokhlin towers we get ||g o = 302 lantic|
. b o L = + )
From this and the definition of I(ny, 0) we get i .

(8) [(n1,0)| < 2|I(ng41,0)|.

Coboundaries over irrational rotations 257

LeMMA L. Let k be a positive integer. Then

(9)  for each i € My, the integrals Sf(mn,@') fe+j dm hove for all § = 0,1, . ..
the same value (which may depend on ), and

Y. | fgdm=1,
&My I(ny, i)
(10)  foreveryk 23,1 € My_1,5=0,1,...,
V feridm/ § fujdm =k,
Plrng,) T+ (ns )
(11)  for the same k, 1, j, we have fiq; =0 on [0,1)\ Usear, T(na,4).

The proof follows directly from the definitions and is left to the reader.
On [0,1), for k=1,2,... we define

Fy(t) = ka(w) dz — S S fr(z) dz du.
0 00

PROPOSITION 1. Suppose that the sequence (ng) increases sufficiently

fast so that
[+0)
m( U U I(nk,i)) el 0.
k=N ic M)

Then the uniform limit F = limgco Fy exists on [0,1), F is continuous,
nondecreasing, Séde = (), |[F(0) — limy—.1_ F(z)| = 1. Moreover, F is
singular on [0,1), i.e. # has zero derivative on a set of measure 1.

Proof. On the interval [0,1) we define auxiliary functions
¢
Fiult) = | fule) de.
0
For every k=1,2,... we define Ay =[0, 1)\ Uicar, F(ng, i). Lemma 1(9), (11)
shows that Fy(t) = Fiy(t) for every t € A; and j > 0. Because

Usenseys T(ar1,1) € Usep, I(nk,5), we have Ay C Apyr. The functions
Fy, thus converge on [J52| Ag.

We shall show that the functions Fy, are uniformly continuous. The func-
tions fi are nonnegative and 3(]} Jrdm =1, hence § T(ns ) Tk dm < 1 for every
k=1,2,...andi=1,...,gn, — 1.

Suppose that for all 4 = 0,1,...,¢s, — 1l and all j = 0,1,... we have

S fk._|.j dm S c,
Fing 1)
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By Lemma 1 it follows that

1
] | firrgydm < C<1 - m)
F{np41.8)

foralli=10,1,...,¢n,,, — 1 and all § = 0,1,... By recursion it follows that
forany k =1,2,...,4€ {0,1,...,¢n, — 1}, and j = 0,1,... we have

i fk+jdm£ﬁ(1~%).

f(nk:i) =32

It follows that for |z — | < |{(ng..1,1)| and for every j = 0 we have
ko, ;
- - j=-1 1
|Frpita) — Frys @) < T =%
i=2

The functions Fy, k= 1,2,..., are thus uniformly continuous.
By the assumptions of the proposition,

oQ
m(glA,ﬂ) = lim m(4) = 1,

hence |Jpw; Ak is & dense subset of [0,1). Because the functions Fy are
uniformly continuous and converge on a dense subset of {0, 1), they uniformly
converge to a continuous limit F on [0, 1).

Let A} denote the interior of A;. We have Ay C Ap,;, m(4}) =
m(Ay) — 1 for k — o0, and the functions Fy.;, j > 0, are constant on
Ay Therefore, F has derivative 0 on | Jim, A5 and m({Jie, A7) = L.

The functions Fj, = Fj — 3(1) Fi dm are thus continuous and converge

uniformly to the limit F = F — SE Fdm. All the remaining properties of F
are easy to see. m

Proof that F is a coboundary. It is well known that a cocycle F is a
coboundary if and only if the partial sums

n—1
Sn{F) =) For
i=0
are stochastically bounded (see [9]), and F is a coboundary & — G o T' with
a square integrable transfer function G if and only if the norms ||S,(F)|2
are bounded (see e.g. [8]).

The rest of the proof of the theorem will thus consist in proving the next
proposition:
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- PROPOSITION 2. There exists o real number K such that for every positive
integer N,
5w (F)llz < K.

Hence, F is o coboundary with a square integrable transfer function.

Proof. For any positive integer N we have the Ostrowski decomposition

n
N=>3"cjg_y
=1

where 0 < ¢; < a; are integers and ay are the partial quotients and ¢; the
denominators in the continued fraction development of . We thus have
SN(F) = SGlQ’c (F) "|"' Schl(F) o T—Cqu + L
+ S"ﬂ‘i’nﬂ (F) o T80 — -~ Cn—10n-2

Define
Ny =Y {c;qj-1: 3k, [ —me| Sk}, Np=N-NL

We have [|Sn(F)llz2 < [1Sw(F)llz + 18w, (F) 0 T=M |y = ISy, (F)l2 +
|Sw, (F}]l2- We shall show that the sums of the norms of the summands in
Sn,(F) are bounded (independently of N). The norms of the sums
Sejgjer ¢+ |7 — ne| € k) k= 1,2,..., will be estimated by 1/k and
shown to be almost orthogonal, which will prove the boundedness of the
norms || Sy, (F)lje.

The rest of the proof will be devoted to carrying out this plan.

Next, we shall suppose that the number NV is fixed. The function F' will
be approximated by an absolutely continuous function.

For 0 < § < 1 let f5 be a function on [0, 1) such that

5
<o, Ji=0 onlg1), |(fdm=-1.
0
For each & = 1,2,... and for 0 < § < 1 (which will be chosen very small)
we define
fop = f5 -+ fus
when § ig fixed, we shall also use the notation ﬁ, = J?‘s,k-
For positive integers N, k, 0 < § < 1, and a € [0,1) we define
+
Fypnalt) =\ Sn(fsp)dm, te[0.1).

When there is no danger of confusion we shall orit some of the indices.
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LEMMA 2. For every N =1,2,... and ¢ > 0 we can choose k and § so
that for every a € [0,1),

ISn(E)2 < [ Fxall2 +e,

1
”SN(F) — (FN,a — SFN,Q dm)“z <E.
0
Proof We define
- 1w

o (2 )dm-—Hﬁ(m)dmdu‘
0o '

Fsu(t) =

8 b 5

Recall the definition Fj(t) = So fr(x) dz— Sé {5 fi(z) dz du from the proof of
Proposition 1. Now, Fy, and ﬁg,k are absolutely continuous on [0, 1) and have
the same derivatives on [§, 1), hence there exists b € R such that F;c X[5,1) =
bX[,s n+ ﬁg kX[5,1)- Because |Fk| |ﬁ5 kl < 1 and Sl Fodm=0= S ngdm
we have b(1-— 6) < 26 and hence b < 26. The functions F, converge uniformly
to F', therefore

11{% hm Fep(t) =F(@t) forall0<¢<1.

Let N be fixed. The functions ﬁ,s}k are uniformly bounded, hence we
have

%i{rllj kllrn‘;lo 1SN {(Fr,6) = Sn (F)]|2 = 0.

The function SN(FM} has zero mean and the derivatives of SN(ﬁglk) and
Fi kN, are equal, hence

1
Sn(Fex) = Fpng — SFE,F@,N,a, drmn.

0
This proves the second inequality.
Let ¢ == S; Fs 0 dm.. Then
| Fr|l? = SN(FM )+ ¢)? g(sN(FM)) dm + ¢

0
1
§ (Sn{Frs))? dm,
which proves the ﬁrst inequality. w

By [ we shall denote nonnegative integers such that

Ng—1 < ng — 1.
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We define I;(6) = I(ny — 1§ + ignyera), IF () = Tt(ng, 5 + ign,—1—1)
(cf. (7)) and
ank—d
U Ij(i)UI;‘I—(ank—l): 0<j<gnpmi—a—1,
im0
JJ = ank—l_
U L) UIHan-1~ 1), Gny-1-2 € § < gyt — 1.
f=e()

The sets J; are mutually disjoint intervals;

For 0 € J < Gny—1-2 — 1 the sets I;(0),..., I;j(an, 1) are adjacent and
similarly for gn, <12 £ § < gnp—i~1 — 1 the sets I;(0),..., I (an,~r — 1) are
adjacent. The sets I; (i) form the bigger Rokhlin tower (if nk—l is even) or the
bigger Rokhlin tower rotated by gn,—1~1¢x (for ng —1 0dd), respectively. For
1> 1 the intervals I (@, —1) are subsets of I;(an, ), 0 < § < gny—i-3 — 1,
and 1’J (@ny—-1—1) are subsets of I;{an, —1—1), gny—1-2 < § < gny—1—1—1. The
intervals I/ (an,) are adjacent t0 [ (an,), 0 < j < gny—2~1, and If (an, —1)
are adjacent to Ij(an, — 1), ¢ny—~2 € J € gn,—1 — 1. They are subsets of the
smaller Rokhlin tower, hence the intervals J;, 0 € j € gp,—1—1 — 1, are
digjoint. m

Recall that | M| denotes max Mj,.
LeMmma 3. Let ¢ be an integer, 0 < ¢ L ay, . Then

I(ng,0) | IMpa| 1
¢ 3 < | —— 4 + —.
1) I PR s (143) TRy Bl L
Let1 21,0 < ¢ < any—ty |My—1| € Gny—i—-2. Then
(M| | 4 M
+o

Gny—i-1  K* Gny—i-1

|f(nk:0)| +_]j_ U(ﬂ'kso)l i
EI(HR‘ -1, 0)‘ k2 II('I’L}: - !, 0)'

(13) [ Seguy-rca (I < 4
+4

(14} In buth cases (12), (13) there exists a € [0,1) such thai the function
ﬁuqn p-i-na o be ezpresaed by

Q‘nk—l—i'—l

~ _ ¥ —j
Fﬁan‘-zulaa - § : ol

where F* {5 zero outside Jp.

Before proving Lemma 3 we introduce some notions and derive several
auxiliary statements.
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All the time we shall suppose that & is fixed.
Recall the definition of the intervals I(ng,1} and It (r, ) = I(ng,i+
@n,—1), and recall that ng is supposed to be even.

The number § = & > 0 will be considered negligible with respect to
the length of I{ny41,0) so that the function fy i3 zero outside the intervals
f(nkai): f+(nk:i)s i€ Mk—l-

Let L > gn,,, be an integer. We define

f=fu, F=lor, F=71s

Recall that ! denotes nonnegative integers such that ng—; < ng — 1 in the
expressions cgn,—1—1, and ¢ denotes an integer satisfying

F = FE,L,C‘]N-;“:}:-!)-'J‘:“"

0<e<Lan,——1.

Set
iMie—z| |My—s]
A= U I(?’bk,i), B= U I*T’I’Lm’é),
i=0 i=0
foy=Fxa.  foy=fxs.

Notice that ANB =0 and f = fi1y + fiz)- From Lemma 1 we get

. 1t 1
(15) Sﬂnmnzl—g, Sﬁ@wnmg.
0 0

"For z € [0,1) we have

Cng ——1~1

Seqmprs (D@ #0=ze ] T, 8),
=0
ank-—tnl“l
(16) SCan-l—l(f(l))(m) 7& O=>xe€ U T'EA:
i=0
C‘In;ﬂml*l"‘l
Setnyraf@)@) #0m0e | ) T'B.
i=()

For every integrable function g and every measurable set I we have
90T dm =§, ., gdm, hence

‘:an—l——l_l

Ssﬁan-—L-—1(9) dm = Z

¥ i=0

S g dm.
iy
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Let
057 = g1 - 1,
0 <i< {ank—h 0<) <gny-1-2-1,
T T %t — L G122 € i1 — 1,
Iy = T9+Mm-t=2 iy 0),
I = T9H—i=1 T+ (ny 0),
I=[{{7 +igny—t-1)a}, {(§ + i, ~1-1)0t} -+ 6).
We have

Cng-1—11

= ~ ~1, 0<i<e—1,
(17) Sscq"k"l‘l(fé)dmﬁ Z S fodm = {0; c <4 X ay,,
I 2=0 r-ujg
and we shall prove that for ¢ > 1,
U, 8 =0,
, 1-1/k, 1<i<e—1,
j%WHMMMm 1-1/k—wv, i=¢,
! 0, izc+1,
(18) W, =0,
1/k 1<i<e—1,
S chn,ﬂ—x—_:x(f(:z))dm'z 1/]1:,“ w, i=e
L 0, i>c+,

where 0 < v <1-1/kand 0 < w < 1/k.

Proof of (18). We need the following auxiliary proposition:
For every 0 € ¢ € tpy—1 — 1 and 1 <4 < ey —1-1,

(19) T g, ) NA=0, T (ng, 0N B =0

The sets [(ng, ), T*(ng,1), 0 €4 £ g, -1, are Rokhlin towers. We have
x € T I (ng, 0)N A if and only if T2 € I{ny, )LM= iy ). By (6),

i [ My1| £ gny, = 1, heuce the intersection is empty.
The proof of I*(ng,0) N B =@ can be done in the same way. =

By {15) and Lemma, L(9),

. 1
> ) Jwdm=1-g,
UEMp.1 Fng,u)

{20)

1
J fwmdm=g.
UEMpmy [+ {ny,u)
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By (19) and Lemma 1(9), for e = 1,2 and ¢ > 1 we have

egn, —1-1—1

(21) S ch'nk—l—].(f{e))d'm = Z

uz=0 T=ul,

Te
=S { | fwdm:itiguato1—ue Mooy, 0Su S ognyia ~ 1},
T-ur,
It follows that {; Seqn,..-i(fy) dm equals 0 < v < 1 - 1/k for i = 0,
1-1/kfor 1 <i<e¢—1,08v" €1 ~1/kfori=c and 0fori>c+1;
and similarly for I; and fa).

From the assumption ! < ng — ng—y — 1 and (5) we get |My..1| <
Gny—1—1 — 1. Now, M is the disjoint union of {j —u € M1 : 0 <
U < Cnp~i-1 =~ 1} and {§ + en,~1-1 — 4 € Mg—1: 0 < u < gy —1-1 — 1},
hence v’ +v"” = 1 — 1/k and the corresponding equality holds for I3 and
f@)- =
(22) Ifj > [Mg—y| thenv =1~ 1/k, w=1/k.

If j = ‘Mk_zl -+ 1 then

9 1 1
p R S {1 e ).
vzl-g w“k(l k—l)

Proof. The first statement follows immediately from (21) and (20).
By Lemma 1, for j < |Mj—2] we have

S f(e) dm

\ fdm/ | fdm=k-1,
I{nk_1.9) It (ne—1.4)
{ fdm/ | fdm=k
T(ny,g5) Fr(nge,g)
and
S fdm = S fdm,
Flng—a.4) YO P ()
S fdm = S 1 dm,
f+ (’n'lu—fl.’j) f(""‘ksj""“fﬁk,.l*l)Uf#-(“kv.'i+CITLk4..1‘*-1)

and by Lemma 1(9),

2

FE€EMr—s (ny—2,7)

> ) fwdms= (1— %) (1'- 7;}—1-)

J€EMi—3 T{ng,j)

Fdm=1,

hence
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> f(-z)dm=%(l—~l—)-

J€Mmz T (i f) k1
From this and (21) we get

1 1 2 1 1
2l1l=- )l ) =1~ 7=
"u__(l k)( k—1> 1 p and wzk(l k—l)'.

We have |Mp—1| < @ny—i-1 — 1 (from ! < ng ~ ny_y — 1 and (5)), hence

g~ g =l L

U T4uB)
=0
n"rlh--imzk---l—l"’l an*!ml_l
= U U T I (ng, w) U IT (g, ) C U Jj.
() WEMp G=
From this and
Cq“k-—-l—-l“l an...:ul—l
U 7oec U 75
=0 4=0
by (16} we derive
Gng—i—-1-1
FIT ) =0, =0, 6p 1gn-11~1 forze0)\ |J
F=0
hence
(23) ’S‘c‘qu,,ﬁ»-l-q(-f)(m) =0 (0 <c< ank—l)‘

Proof of Lemma 3
Proof of (12} and of (14) for I = 0. Recall that by our assumptions, ng
is even, hence 0 is the left end point of Jy. Let 0 € j £ gpp—1 — 1 and let 2z
be the left end point of Jy, Le. 2z = {ja}. Recall the notation
t
F(t) = sz;-,ﬁwhz(t) = X'Sc‘]nk-«l (f)dm.

2

We shall study F on the interval J, i _
By definition #(z) = 0, On the interval I = [z, z + [I{nx, 0}]) = I{nk, j)
the function F first decreases by

S Sc’ﬁ‘u,"_._], (f) d?'n, = —1
I

(see (17)), and following (18) it grows by

S Scankml(ﬁl))dm =
f('n'klj) .
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to the value F = v — 1 and remains constant on the interval [2- |I (‘nkaN

2+ I, 3)) = I(re, ) \ L(nx, 5) (cE. (16)). )
Suppose that ¢ > 2. On the interval I (ne, 4) = I(ng,§ + gny-1) the

function F' decreases by

~1= | S (Hdm

f"‘(”kz:j)
(cf. (17)}, then it increases by
1
1 - T]; = S Sc%uk—wl (f(l)) dTn’

I(nh 1j+‘1nk - :I‘)
and by

w = X Sﬂ‘]nh—l(f(Z))dm
T+ (my,4)
(cf. {18). At its end it thus reaches the value v — 1 4w — 1/k and keeps it
until the end of I{ny, § + ¢n,—1) (cf. (16)).

On the intervals I'(ng, j +ign,—1), 1 € i £ ¢—1, the function F behaves
similarly: on I(ng, 5 -+ ign,~1) we first have a decrease by 1 (due to f;) and
an increase by 1—1/k (influence of f(1y) and by 1/k (influence of fisy), then
F keeps the value v — 1w — 1/k.

On the interval T(ng,J + cgny—1) U JH{ng, 5 + cgn, —1) the function fs
does not contribute any more (cf. (17)).

If gny—2 £ J £ gny-1 — 1, the functions fiyy and frgy do not contribute
either (on J;) and we have v = 1 — 1/k, w = 1/k (cf. (22)); on I(ny,
J+ €qny—1) = It (ny, § + (¢ — 1)gn, —1) the function fry does not contribute
either, while f5) contributes 1/k. Hence, F =0 at the end of Jj.

Let 0 < .7 < dng—2 — L. On I(nkaj + cqn.;,—l) = T-l_(’i'?,k,mj -+ (CM 1)qna—1)7
fuy contributes 1 — 1/k — v and f(5) adds 1/k, while on It {(ng, j + ogu,-1)
the function f(zy contxibutes 1/k —w. Hence, at the right end point of J; the
function F reaches the value v—1+w—1/k-+1~1 Jh—v1 k41 k—w =
and F = 0 at the end of J; as well.

In particular, if ¢ = 1 we have

| Sequ,a(Pdm=0,

f+(nk!j)
1
S chnkv-l(f(l))d‘m,x 1 - —}'q-; -,
I (np,d
S Seqn, -1 (Fz)) dm = w,
T+(n’°aj)
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S Sm]nk—l(f(2))dm =

I+(nh:j+anw1)

E - w.
Hence, at the right end point of J; the function F reaches the value v— 1+
w—1/k+1-1/k—v+1/k+1/k—w =0,
By (28) we have Seq,,., ()(z) = 0 for all 2 € [0, DAUSE™ ™ J;. There-
fore, I, o -1.% o(t) = F.«-an 1,0(t) for every ¢ € J; and on [0,1)\ Uq"’“'1 le
we h(lve ch"l:"”l’a(r) = 0-
Let F = ﬁﬂqw.__l,g on [0,1). We can see that (14) is fulfilled.
We have
. 1364%_1(1?)] < 2 on the sets J; with 0 < § < |Mp_;/, hence on a set of
measure smaller than |My.1|/gn, -1,

¢ [Seqn, o (F)] £ 1+ 1/k on the sets I{ng,j + ign,-1), | Mr—q| +1 <
J S dn-1+1,0<4<c—1, hence on a set of measure smaller than
U(nka O)|ﬂf(nk: O)la

¢ [Seqn, - (F)| < 1/k on the rest of [0,1).

A direct computation shows that

- IN? F(npgs, 0)] | Ma| 1
. [+ 2 < -4 — th _—
S, (Fo)llz < (1 l k.) |7(n4, 0)] 4 Qny—1 e

From this and from Lemma 2 we get (12). m

If ny, is odd, the intervals J; are reversed (in the order of [0, 1) the interval
I{ng, 0) is on the right of I{ng, ¢y, 1)) and by a similar computation we get
the same estimate.

Proof of (18) and of (14) for 1 £ 1 £ ng — ng-1 — 1. We consider
the Rokhlin tower I(ng —~ 1), i = 0,...,¢ns—1 — 1, and the intervals J;,
0<7 < gngmtt =~ 1o

For simplicity suppose thal { iy even; the other case is similar,
Let z ba the left end point of the nterval Jy, and

f
F(t) = Fug,, 0s(t) = { Sog, i (Fdm,  te€ ;.
k-

As in the proof of (12), on the interval [ = iz, 2 + [T(ng, 0)]) = I(ny, ) the
function F first decreases by \ chn i 0 ) dm = —1 (see (17)) and following

(18) it grows by SI(M A S,“q,,”_l(f 1)) dm = v to the value F =v—1; by (16)
it is constant on the interval [z-|F(nk, )], 24+ (n, 5)]) = L(n, J NI (g, 5).-
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On the interval I* (ny, j) the function F increases by

w= | S, (fn) dm
I+ (ng,5)
(cf. (18)). At its end it thus reaches the value v — 1w and by (16) it remains
constant until the end of I{ng — 1,5 + gny—i~1). ~

On the intervals I(ng ~ I, § +ign, ~i1~1) the function F behaves similarly:

Suppose that 1 < i < ¢— 1. On I{nk,j + ign,—i~1) we first have a
decrease by 1 (due to f5) and an increase by 1 — 1/k (influence of Fo);
on It (ng, j + ign, —i—1) we have an increase by 1/k (influence of fi4)), then
by (16), F remains equal to v — 1+ w until the end of I(ny —1, 5+ Uy —1-1)-

Let i = ¢. On the interval I{ng — [, + cgn,—i-1) the function fz does
not contribute (cf. {17)).

If gy —-1-2 £ § < dny—1-1—1, the functions fyy and fig) do not contribute
either (on J;) and we have v = 1 - 1/k, w = 1/k (cf. (22)), hence F=0at
the end of J

Let 0 < § < gny—1—2—1. On I(ng, j+cgn, -1} the function f(1 contrlbutes
1—1/k — v, and on I*(ng,j + can,—1), Fay contributes 1/k —w (cf. (18)).
Hence, at the right end point of J; the function F reaches the value 0.

Define
p

F(t) = Frgn,1-1.0(8) = { Segu, i (H dm  on [0,1).
0 .
0 is the left end point of the interval Jy (this is not the case for ! odd,

¢ > 11). By the previous computation the values on both end:-. of each of the
intervals J;, 0 < j < gn, 11— 1, are the same and by (23), F(t) is constant
(hence zero) on [0,1) \U‘f"k-‘"’1 J;. Thus (14) is fulfilled.

If (Mi—1|+1 < § < gny—1 — 1, we have (cf. (22))

. |F| < 1 on the sets J(ng, 7 + ign;,—1-1), 0 S 1 € e~ 1,

o B =—1/k on I{ng, j + ign,—1-1} \ I(ng, § -+ ignym1n), 0 SES e~ 1,

¢ 02 |F| 2 ~1/k on I™ (g, 5 + g, -1-1), 0 S4 S ¢ - 1,

e [ == on the rest of J;.

Let |Mg—a|+ 1 < j < |My-1]. By (22) we then get

. |_1$| < 1+ 2/k on the sets I(ng,j+ign,—1-1), 0 < i< e—1(< Lon

I(nk7j))7

. _1/k 2 ﬁ Z _Z/k on I(nhaj 'Jf""':an-lul) \f('n’k:j +"';Q11.;¢——I--1)7 01
S c— 1:

o |F| < 2/k on the whole of J;, and on its end it equals 0.

By direct computation we get the required estimate. m
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Recall the Ostrowski decomposition N = 2;;1 ¢;g;—1, which implies
Sn(F) = Sergo (F)+Seqqy (F)oT™ 804 FSengny (F)OT_CWQM”'-E"'MTL_Q:
and define

ﬁk = S.’Jn‘n—k.f]nkmhn—l (F) -+ Schk-.pﬁ,.qunkmh(F) o T—cnk"’“qﬂk_k“l + ...
+ Sc'lk‘F*“IVl;ﬁ+kml (F) fe} T.-(cﬂhl"“kan'k‘1+"'+c"k+k—1qnh+k—2),
Dy = f)“k o T"‘(Clql)"l"wﬂnhwkmlq“;d--luv-ﬂ)’ k=1,2,..
‘We thus have
SN(F) 1f‘lflu (F) f'n‘n( ) omeado 4|
+ Sﬁ-nll”ﬁ‘fnl'-fl (F) o T @190t eny ~20m; —5)
+ D1 + Sﬂn‘l-l-m]‘vu-l-l (F) o TH(CIQO+".+0"1+W“1) + ...
+ Scnk—kaTn,“wk»«‘z (F) o T{e1g0 e hng k-2, ——3) + Dy,
+ SCnhvluk—hlqﬂk-'l-Al(F) o T (610t teny 4hny+6-1) + ..
Consider the sums
D AlSesgses (M2 1 ¥E, | — maf > b},
Define
g = Z{”Sc,qj ()2 i g1+ B € 5 < — K}
By Lemma 3 we have
”San g —i— (F) HQ

<9 |- 2l [ (n, 0)] Mial |Z(nx, 0
TV nt 1 |I iy — 1, 0)| "G Grajg—i- T (e — 1, 0)|
From this and (5), ( ), (8) it follows that there exists a constant K

such that for any N

< K, (\/ Tnjy..n T /an-« {dn ) 4K,
— ) - + - ’

2k/4 Trig -1 Drin g, T 2k/4
and hence there exdats Ky < oo such that for every N,

(24) > o < Ka
kel

To finish the proof of Proposition 2 it thus suffices to show that the sums
2.1 Di are uniformly bounded in L2

If the sequence (ng) grows sufficiently fast (which we assume), using’
Lemma 3, (5), (2), (3), and (8) in the same way as above we can prove that
there exists a constant Ky such that || Dyl < Ks/k for every N and every k.
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Let 0 < k' < k' be positive integers, I',1” integers for which |I'| < ¥/,
|l"| S ]G”, 0 S Cr S a’”k“ 0 S C” $ anku: N, = chnkr-{-l’—l; N“ =
"Gy 417 —1. By Lemma 2 for any £ > 0 there exist §,6" > 0 sufficiently
small and integers K', K" sufficiently large so that for every o/,a" € [0,1),

ISovr(F) = (B g0 = BB v, 12 < e,
”SNH(F) - (ﬁ‘s-‘f,Kl,NH’uH — Eﬁgn’Kw!Nn’au)Hg < g,

Suppose that the numbers N', N”' are given. Choose & = 1/(k'k"2¥ ++"),
Fix &', K', o' Since ﬁ,sn, K N 18 a continuous function, we can find a
step function 7| for which Hﬁl - ﬁgf,m,Nr,a,'ilg < & In Lemma 3(14) we
showed that the function Fgu, K1 N7 g has the same values .on subintervals
of the intervals Jj, 0 € j < gny -1 — 1. Because the sequence ({ja}) is
uniformly distiributed (cf. [6]), for every fixed interval I < [0,1), and for
ng~ sufficiently large, the fraction #{J : J; C I}/qn 411 i8 close enough
to m{I). Therefore, if ng1 < npe is sufficiently large, we have

1E(ﬁ6f1Kl’Nl”af el Eﬁ&f,f{i,Nl,af)(ﬁ&f’,I{I'Nl.‘,aH —— Eﬁé‘”,K”,N”,ﬂ.”)l < £,
From this we deduce that if the sequence (ny} grows sufficiently fast, then
there exists a constant M such that for every k, 2,},.:11 |ED;Dy| < M27%
(independently of N').

Therefore, the sums 377 | Dj are uniformly bounded in L? for all N.

From this and (24) it follows that the norms ||Sy(F}||s are uniformly

bounded independently of &, which proves Propaosition 2. This finishes the
proof of the Thecrem. w

A substantial part of the paper was written during my stay at the Uni-
versity of Tours; I thank my colleagues, especially E. Lesigne, for their hos-
pitality. I also thank M. Lemadczyk and F. Parreau for helpful discussions.
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