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Strongly continuous integrated C-cosine operator functions
by

SHENGWANG WANG and ZHENYOU HUANG (Nanjing)

Abstract. We extend some recent results for regularized semigroups to strongly con-
tinuous n-times integrated C-cosine operator functions. Several equivalent conditions for
the existence and uniqueness of solutions of (ACPs) are also presented.

0. Introduction. The Hille-Yosida-type theorem for regularized semi-
groups was proved by G. Da Prato [D] in 1966, but it has been generally
overlooked for many years. Since 1987 when it was reestablished by Davies
and Pang [Dav-P| and, at the same time, the related notion of integrated
semigroups was introduced by W. Arendt [A], the theory and applications
of the subject have been extensively developed and the related literature has
been rapidly growing. The technique developed during these years, common
now for a good number of mathematicians working in this field, is clearly
presented in the 1994 monograph [del] by R. deLaubenfels.

A parallel theory for regularized cosine operator funetions and integrated
cosine operator functions has also been attracting the attention of many
mathematicians (see [del-P], {L-81], [L-82], [S-L1], [S-L2], [W-Wa] etc.)

It is well known that, in the classical theory, all strongly continuous semi-
groups and strongly continuous cosine operator functions are exponentially
bounded. But unfortunately, this is no longer true for regularized semigroups
[deL, P. 4] and regularized cosine operator functions (see examples in §3).

This paper will concentrate on regularized cosine operator functions
which are strongly continuous on a sequentially complete locally convex
space without assuining exponential boundedness. For this case, some new
techniques are necded, §1 offers several equivalent conditions for the exis-
tence and the uniqueness of mild solutions of (ACP3). In §2, we study the
relation between 2n-times (resp. (2n + 1)-times) integrated C-cosine cpera-
tor functions and (s* — A)~"C-cosine (resp. (s* — 4)~""'C-cosine) operator
functions. In vur last Section 3, two illustrative examples are given.

1901 Mathematics Subject Classifieation: 4705, 47TA35.
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1. Basic properties of integrated C-cosine operator functions
and (ACPz). Throughout this paper, X is a sequentially complete locally
convex space and L(X) is the algebra of all continuous linear operators
on X. C € L(X) is injective.

Consider the following abstract Cauchy problem:

u’(t, 2,y) = Aul(t, 2,y),
(ACP2) {u(O,m,y) =x, w(0,ey)=y, zyelX

DEFINITION 1.1. A solution of (ACP;) is a function ¢ — u(t,2,%) be-
longing to (R, [D(A)]) N C*(R, X) and satisfying (ACP3). An n-times in-
tegrated mild solution of (ACP;) is a function ¢ — u(¢,,y) belonging to
C([0, 00), X} such that for all ¢ > 0, Sf) (t = r)u(r,z,y}dr € D(A), with

t o gl
(*) Ag(t—r)v(r,m,y)dr=v(t,m,y) - ',;;"-'-.T (TL+1 !Ja

A family {C(f)}i>0 © I{X) is said to be strongly continuous if C(-)z is
continuous on [0, 00) for every z & X.

It is easily seen that the uniqueness of solutions of (ACP;3) and the
uniqueness of n-times integrated mild solutions of (ACP») are equivalent.

DerINITION 1.2 ({L-S1] and [S-L2]). Suppose n € N. A strongly con-
tinuous family {C(t)}iyo in L(X) is called an n-times integrated C-cosine
operator function if

(a) CC(t) = C(t)C for every t > 0, and C(0) = 0;

(b) for s, >0 and x € X,

Yo,y e X.

lo—t|

2O(t)O(3)m=(—né—~1~)~i{(~l)” | (s =t =r"1C(r)Cadr
0
a-pt % L]
+ 1: S —S—S}(swi-twr)”"lC‘(r)der
0 0 0

] 4
+ S (8~ t+r)" 10 \Ca dr + S (t— g+ )"t C(r)Ca dr}.
i 0
A strongly continuous C-cosine operator function is called a O-fimes inte-
grated C-cosine operator function.
The n-times integrated C-cosine operator function {C'(t Yo 18 said to
be nondegenerate if C(t)x = 0, for all ¢ > 0, implies z = 0.

All n-times integrated C-cosine operator functions in this paper are as-
sumed to be nondegenerate. It is easy to see that a gtrongly continuous
integrated C-cosine operator function is locally equicontinuous. For conve-
nience, we dencte the right-hand side of the equality in Definition 1.2(b) by

C-cosine operator functions 275

Jn{t,8)z. Thus we have
(1.1) 20(tYC(s)z = Jo(t, s)e.

DerFINITION 1.3 ([S-L2]). Suppose A is closed and {C(t)};>0 is an
n-times integrated C-cosine operator function. A is a subgenerator of
{C(®)}sz0 if

(a) C(t)A G AC(t) for every t > 0;

(b) {2 (t - )C(r)wdr € D(A) and

¢

" tﬂ
(1.2) AS (t—r)C(r)xdr =C(t)x — ma, Yt>0and e X.

: !
We also say that {C(t)}>0 is an n-times integrated C-cosine operator func-
tion for A, or that A has an n-times integrated C-cosine operator function
{Ct}ez0-

LemMa 1.4. Suppose that A is a subgenerator of {C(1)}izo. If z € D(A),

then C(t)z is differentiable and

d t n—1

t
7CWz= ‘SJO(T)A:B dr + mm.

Proof. By closedness of A and Definition 1.3(b). =

The following theorem asserts that a strongly continuous operator family
{C(t)}s>0 satisfying (a) and (b) of Definition 1.3 is automatically an n-times
integrated C-cosine operator function.

THEOREM 1.5. Suppose A is closed and {C(t)}i»0 @5 a strongly contin-
uous family of linear continuous operators. Then {C()}:>0 is an n-times
integrated C-cosine operator function with A as a subgenerotor if and only
if one of the followring conditions is true.

(X) (a) ond (b) of Definition 1.3 hold.
(I1) (i) CA € AC;
(i) (b) of Definition 1.3 holds;
(iii) all solutions of (ACP2) are unique.

Proof. (I)=(IT). We only have to prove that (i) and (iii) of (II) hold.

Let ¢ € D(A). From C(H)A C AC’(t) and

C(t) Az — ;ﬁcm = S(t ~7r)C(r) Az dr
) 0

t n
= A? tS) (t —r)C(r)e dr = AC(t)s — —ACz,
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we have CAx = ACz. Now we prove (iii). It suffices to prove that the n-times
integrated mild selutions of (ACP3) are unique. To do this, we prove that
the function identically equal to zero is the only sclution to the equation

¢

(1.3} AX (t —ru(r)dr =v(t), ()& C([0,c0), X).
0

Let v(t) be a solution of (1.3). Then, by Lemma 1.4,

(1.4) E% [c(t- 5 (s = r)vir) d'r]

0
=-A is C(a) da § (&8 —r)u(r)dr
0 0
- -(t(;—j):)%—l-c § (s—r)u(r)dr+C(t— s)iv('r) dr
0 0
= — ng C(a)v(s)da — g—_—"’—)ECi (s = r)u(r)dr
H (n=1)0 "
+ Ot — 8) §~u(r) dr.
0
Integrate (1.4) in ¢ from 0 to ¢ to obtain
it—g s
Lt — g)nt
g Cla)v(s)dads — QWCE(Smr)v(r)drds

-
S

+1C(t — s) 3 (r)drds.

Since
i“f.—:,g t 8
~{ § Cleyo(s)dads [t = 8) | w(r) drds = 0,
0o 0 5
we have
k (t—g)n=t ¢

Differentiating the above equality n 4- 1 times in ¢, we get v(t) = 0.

Now assume (II) holds. We prove that {C(£) }4»q i8 an n-times integrated
C-cosine operator function with A as a subgenerator.

We first prove that C(¢)C = CC(¢) for all ¢ > 0. From CA € AC and
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from (1.2), we get
A§ (t - P)CC(r)e dr = CASJ(t = P)C(r)zdr = CC(t)s ~ :—;czm.
Condition (1.2) also implies that

A § (t = 1)O(r)Cadr = CH)Cx - %c%.

Hence C(8)C = CG‘(s) by the uniqueness of solutions.
By (i) and (i1) of (II), for s > 0,
¢ N
(L) At - r)C(r)C(s)e dr = CH)C(s)a :—JCC(s)mA
] [
We now claim that J,(t,3) in (1.1), as a function of #, satisfies

t T
(1.6) AS (¢~ r)Ju(r S}z dr = Jo(t,8)z — %ZCC(s)m.
: !

We prove (1.6) only for s > ¢t and n > 2. The case of n = 1 is much easier.
Write

(t —a)Jp(o, 8)ada=h +...4+ I

(=T

where
1 ts—a et
I = =1 (S) .§) (t—a)(s—a-7)"""CC(r)zdrdo;
1 Ea-ox
ILy= S S (t — a)(s + o —r)""1CC(r)z dr do;
(n—1); 3
p e - |
gz — S § g (t=a)(s+a—r)"" CC(rjedrda;
1 t4 -
= — CE=5N] (S)é(t ~a)(s4a~r)""1CC(r)z dr do:,
Iy = o E o éz (t - a)(s — o — r)""CC(r)adr doy
Ty = - ﬁ(t—- a)(a ~ &+ )" CO(r)w dr de.
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Define
t?‘?y
K{#)=CC(t)r ;;'629:.

We have

1 8 1 t—1

el — m A W g =t - 71

I = Igt(s r"CC(r)x dr -+ T §) (s =t —r)"FCC(r)zdr
1 8
CF) Eﬁ)(.«,- — )" O (r)a dr.

(Simple proof by differentiating in ¢ and changing the order of integration.)

Thus, by (i)—(ii)

El _ 1 81
AL = )'St YK (r (r)dr + 7= ==yl S (s—t—7r)""K(r)dr
0
1 ; n—1
alewsy (s —r)* 1K (r)dr
‘0
Moreover,
iit (s —r)"CC(r)z dr + —i—ﬁr( +t —r)"PCO(r)w d
n’o (n+ 1)} ¢ 4 (r)wdr
] S (s ~r)"MCC(r)wdr
0
and
1 -
Al = - (RHZ)TS (s — )™ 2K (r) dr
1 g1
+ o) S (s+t—r)""tK(r)dr
)
1 : n~1 g
- CEN S(.s-mfr) “K(r)dr.
0
By definition,
1 , ’
1. + T n—1\ —1-+(-1} e L +2
3+l = '%( ; )('i+1)(i-|-2)8 §)( rYT2CC(r) dr
and
1

A(lz + Iy) = [(s =t 7)1 = (5 41— )"~ K () dr.

D)ty o

(n— 1)
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Finally, by definition again,

-1 n—1 M_1+( 1)1 3
- n—i+1 i
L+ls= 'Zﬁ( ) RN g(s—r)CC('r)dr
and
. £
A(ly+Ig) = -~ —K(s)
! o
s 1)13[(?5-—34-7*)" (s +t—r)" K (r)dr
0
- § (s—r)"1K(r)dr
(n—17
Therefore,
6 om 1 51
A;L = Jn(tﬂ S)w - R—‘-,‘ZCO(S)m - m{ (S) (.5‘ —ft— 7-)'"-“'11"“ dr

8-t i a t
S——H(S-M--r)”“lr“'d"r+S(s—t-l—r)”"lr'”df‘

¢ 0 0 0
&

—i-é(t—-s%—r)"“ dr}czm+2( r)2

A direct computation yields that the coefficient of C*z equals 0. Hence
Ju(t, s)z, as a function of ¢, satisfies (1.6). This, combined with (1.5) and
the uniqueness of sclutions to (), shows that (1.1) holds. Since C(0) = 01s
an immediate consequence of (1.2), it remains to prove that

Ct)A C AC(t) ¥t=0.
For every @ € D(A), define

+
|

[ n
B(t)e = | (4 ~ )C(r)du dr + = Ca.
0 "
By (i) and (i) of (II), Cx, Sé {t = r)C(r)x dr and S; (t - a)C(e)z de: belong
to D(A4), and

n+2

(tw w)d S (a —7)C(r) Az drdo + ——=CAw

A(S)(t——a)O(c:e)mda n2)

(t —r)C(r)Azdr = Ctys — —Cm

[
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Hence C(t)z = C(t)z, and

t n
Ct)e = | (£ = r)C(r) Az dr + %EC:&:.

0
Thus
¢ ¢
AS (t —r)O(r)x dr = S (£ = r)C{r) Az dr.
0 0

Since A is closed, differentiating the equality twice, we have
AC(t)x = C(t)Az.

Thus, {C(t)}:>0 is an n-times integrated C-cosine operator function with 4
as a subgenerator

In order to complete the proof, it is enough to note that if {C(#)}so is
an n-times integrated C-cosine operator function with A ag a subgenerator,
then (I) is automatically true. w

PROPOSITION 1.6. Assume that A is a subgenerator of the n-times in-
tegrated C-cogine operator function {C(t)}zo. Then {C(t)}no is uniquely
determined by A.

Proof. The proof is similar to that of the uniqueness of solutions to
(ACP2) given in the part (I)=-(II) of Theorem 1.5. We give it here for
completeness. Suppose A is a subgenerator of n-times integrated C-cosine
operator functions {C;(t)}spq for i = 1,2. For any z € X and s,1 > 0,

(17) %[C’l(t -9 (S] (s~ @)Ca(a)ado]
o s)gﬁg(r)md'r - A? C?_L(r);\j(.a - ) Chla)e dacdr
%‘:S"%ri ¢](s = )Cale)nda
= Cit—s) § Calr)ar dr - T O (M) Ca(s) dr

n I8

-+ %—! §) Ci(r)Czdr — % i (8 = r)Co(r)Cu dr.
0
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Tntegrate (1.7) in s from 0 to t to obtain

i tt—a
(1.8) SSCl(t——s)Gg Yt dr ds ~ S S Ci{r)Co(s)z dr ds
a0 00
1 tt—g
+-—-|-S S §*Cy(r)Cx drds
n'o 0
1 4 "
i t— &))" (g~ rYCo(r)Cx dr ds.
IILEDANTLETC

Since \
SC’l t — 5)Co(r)x dsdr
”

n

S 01 S)Cz T')LUdS dT‘
0

DL’-ln.-l- O ey

(1.8) implieq

.\ (t(; ’:‘)1) Cu(r)Cadr — g "('t'(::)'l_)T"CZ(T)Cm dr = 0.
0 0

Differentiating the above equality n -+ 2 times in #, we get
C[Ol(t) - Cz(t)]ﬂl =0
This implies C1(¢) = Ca(t). w
We close this section with a remark on the existence and uniqueness of
n-times integrated mild solutions of (ACPy). N
The following definition is an analogy of [deL, Definition 2.3].
DEFINITION 1.7, A mild n-times integrated C-ezistence family of second
order for A is a strongly continuous family of operators {C(t)}}e0 & L(X )
such that for any x ¢ X and ¢ = 0, % (t - r)C(r)wdr € D(A) with
[ "
A ‘ (b= ) () dr = Ct)z — a—!Cm.
0
PROPOSITION 1.8. Suppose A is a closed operator, C is injective ond
CAC AC. Then the following are equivalent:
(a) (ACT,) has o unigue n-times integrated mild solution for allz,y
Im(C);
(b) all n-times integrated mild solutions of (ACP,) are unique and there
exists o mild n-limes integrated C-emistence family of second order for A;
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{c) there exists o mild n-times integrated C-existence family of second
order for A such that C(£)A C AC(Y) for allt = 0;

(d) there exists an n-times integrated C-cosine operator function with 4
as a subgenerator.

Proof. (a)=(b). For every x € X, define
C(t)e = v(t,Cx,0),

where v(t, Cz,0) is the n-times integrated mild solution of (ACP,) with z, y
replaced by Cz and 0, respectively. As in [del,, Theorem 4.13], C(¢t) is the
desired family.

(b)=(c)=(d) follow from Theorem 1.5 and its proof. (d)=>(a) is clear. m

2. Integrated C-cosine operator functions and (s* — 4)~"C-cosine
operator functions. [S-1.2, Theorem 4.1] shows that A has a 2n-times inte-
grated C-cosine operator function if and only if A has an (a2 ~ 4)~"C-cosine
operator function, under the assumption of exponential equicontinuity. In
this section, we remove this condition, To do this, we have to follow a quite
different path. In order to find this path, let us return to the exponentially

equicontinuous case. Assume {Chy, (t) }ix0 is a 2n-times integrated C-cosine
operator function. Define

Pit) = i—k' (k=0,1,...,n), hy(t) = e,
Hy(t) = kzzl(—l)n*ka‘% (Paciha) * (Paeihey)](£)(s* — A)~*C.

For r > s > 0 sufficiently large, from
(r* — 4)"Y(s* — 4)"Ca

TS (:) GQ—S;%—)_E {ﬁ];ﬁ(ﬁ — 4)Ce

i
; 1
_.M 2 ﬂ.k .
’ cho(_l)n WT(" - A)y""Cx,
from
; 5 o1
1 ’ — S t e-—-(?‘:l:a)t dt’
(T = S) 0 (k: - 1)!
and from
1%
(?"2 — A)—lca‘,‘ = F S e—rtczn(t)mdt’
o :
we have
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g 2'00 tk”l —(r—a)t T tk—l ~(r+s)t
:(—1)”2(:)5 " Ik (r=2) dt(é R (r+) dt)

1T n
x = § e Com(t)adt ) +(-1)
"o

S

o8
[ e Con(t)z dt
1}

- e by T t”_k —(r—a)t dt)
+ km()(“l) ( §) (n— k;)!e

N

S v g irdalt dt) (6% — A)*Cu
. (n— k)

1T
+ (_1)*1; 5 e Con (a dt
0

-+ ! S e,»—rtz:("‘l)nmk% (Pr—ihs) * (Po—kh-s)](t) dt (% — A)"*Ca.
" 0 k=1 g

For z € X, if we define

e > () Brctt) # Bicst) Onn} 0
+ (1) Canlt

“+ é(—i)n-k%[(Pn-kha) * (Pﬂ-‘kh—s)](t)(sz - A)*Ca

then

3l

[5,9]
(P e A)"H8?  A)"C = S e~ Co(t)z dt.
0

: —n

From [L-§1, Theorem 2.10], it follows that {Co (t)}iz0 18 an ({;2 — .?)x (C):
cosine operator function. Therefore, if we r!emove the assumption o(2e 11)) iy
nential equicontinuity to define {Co(t)}sz0 in terms of {Ozngt)-}t?{O)nsform
possibly a proper choice, since it does not contain the Laplace tra .
The following theorem confirms it.

TuROREM 2.1. Let A be a closed operator such that 32.'— Ads z’nject:’ve
end Tm(C) ¢ D({s* — A)~""1) for some s € C. Then A is a subgenerator
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of the 2n-times (resp. (2n + 1)-times) indegrated C-cosine operator func-
tion {Can(t)}imo (resp. {Cang1(t)}ezo) if and only if A is a subgenerator
of the (8% — A)""C-cosine (resp. (s* — A)="=1C-cosine) operator function
{Co(t) }eza, where {Co(t)}ezo is defined in (2.1) if {Can(t}}iz0 18 given in
advance, and ,

L

1 -1y
m S (t - 7‘)2 1(1()(?").’11 di",
"0

(2.2) Con[t) = (g% — A)"
if {Co(t)}ez0 1s given in advance.

Proof. We first assume {Cap(t)}ep0 is a 2n-times integrated C-cosine
operator function with A as a subgenerator and prove that {Cy(t)}e>o de-
fined in (2.1) is an (s* — A)~"C-cosine operator function with 4 as a sub-
generator. We have

t
AS (t — @)Cyla)z dex
0
ml)ni (:)3%‘ 2A§(E-—-a iguk 1 ,,“_“)Ir-l
k=1 [(k —1)1] 0 00

:
x e Con (0~ r)z dudr da - (~1)" A | {t — a)Chn{)z do
9

n (l'"'m
+Z =k

DL——"?r\b

Sun =k(p )k u=1) Ao ) RO dydr
0

k=1
n 2;‘-, o
" Z T~ D)2 S [Su’“"‘l('r' )1 ge(BuT) dn]
k:l 0

t :
A\ (t = o)Conla — M)z devdr - (—1)" A S (b~ ex) Clay, (¥)i de
v

L nk%t"

+Z (n— k)|]zn

.'e:l

u)nmlces(Zu-"T')A(Sg — A)""k’cm du dr.

Since A(s? — 4)~'C = 5*(s* — A)~1C ~ C, the above expression equals

'"' 2k

Colt)a = (1) Z )¢
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Zn 2n

8(211-—'!") (t T) C d d oy t

Gy G dudr = (=1) (2n)!c’"

n—=k 4 & Jc
Z [ n_ _d_S,u"ﬂ f’ Z'LL t)(s A)Mkc.’ﬂdﬂ

0
n )n.»-«k te .
FZ Wi S\ n-hiy ,u)ﬂ--—k a(2u—r) 2 (3 )_kcwdud'r'

k:l 00

n (ml)nmk, tr . .
- —— T]l \Sun—— ('r — ) es(2u—r)(82 _ A)"k"'"lC:c du dr

o - 00
Colt) = (8* = 4)™"Cw
S R k1 _s(ou—r) (£ = 1)%"
1 .Y LA iy s(2u c d
(-1) ; Th— I)I}zgéu (r—u)*"e o)) z dudr
£ 0 Y J. n 1 s(2u r)
(=1)% e K u" Cx dudr
(2n)! [(n - 1 [(n - 1312 U(SJ
n-l ﬂ.wk t
- ___E S (n k u)n——-k—l _ aun—k(t _ u)n«-k]
k:l m ' ' 0

X e"(z“"*)(s ~ A)y*Cx du

et tw
(~1)nh ok n~kos(2u=r) 2( 2 _ A\RCy du dr
+§[(n— )']ziéu (r—u)""e ( )

.. tr
_ Z RN S S un-~k~1(,’, . u)ﬂ-—kwles(zu—'r‘)(s2 _ A)"“Cm dudr
fmt 1N 1700

= Co(t)m = (% = A)""Cu -+ [1(t} + Fa(t),
where
O LR b1
At)= —(~1) Z“["(’;;’:”TESS” (r-u)
k=l 00 o

t
5 gt(2u~ ")(( ))| St O du dr — (~1)" o )!Cﬁ

Cm kT .
+ (—1) - ‘ Sun~L(,,, — )Lt )Cm du dr,
00

[CE
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and
el (__1)'".-*-?(: t
f2(t) = - Z K—ntW S [(?’L - k:)un“k(t - ’U.)n“kwl - su"_’“(t — u)”“’“]
k=1 oo
x €252 — AY R0 du
n-1 (__1 n-k tr '
-+ —-——-—[(n I Hun-—k(,‘“ _ u)n—kea(2u~r)32(32 _ A)“ka dudr
k=1 oo
n~—1

— Z (_"1)n_k-l §§un—kz-1(,r - u)n-1c—l
el Gl I T

x e*@u=ri(s? _ AYRCx du dr.
Choose A > max{Re s,0}. Then, by integration by parts,

T G O
§] € )‘tfl(t) dt = —;\—27;;? m Cx -+ ————rCx = 0.
Hence f1(t)

= 0 by the uniqueness of the Laplace transform. Since f4(t) = 0,
we have fo(t) =

f2(0) = 0. Therefore

¢

S a)Cola)z da = Co(t)z — (5% — A)""Ca.
0

From. Proposition 1.8(c), (d), we conclude that {Co(£)}s»0 is an (s?—4)~"C-
cosine operator function with A as a subgenerator.

If {Cony1(t)}en0 is a (2n+1)-times integrated C-cosine operator function
with A as a subgenerator, then

i
0211.+2 (t)ﬂ: = S an+1(8)m ds
0
defines a {2n+-2)-times integrated C-cosine operator function {Chia(£) hizo
with A as a subgenerator. In this case it suffices to replace n by n + 1
in (2.1).
Now assume {Cp(#)}4>0 I8 an (5% — A)~"C-cosine operator function with
A as a subgenerator. Then the proof of (2.2) is contained in the following
lemma,

LeEmMA 22. Let A be o closed operator such that s — A is injective
and Im(C ) C D((s* ~ A)™=1) for some s > 0. If A is o subgenerator of
the (s — A)™"C-cosine operator function {Co(t) k>0, then for each 0 < m
<m, A zs also a subgenerator of the 2m-times (resp. (2m +- 1)-times) inte-
gmted (8%~ A)""t™C cosine operator function {Com (@) }eno defined by (2.2)
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with n replaced by m (resp. {Comy1(t)hizo defined by o, itz =
St CZm(T)"I" d'l")

Proof. Let Com(t) (t 2 0) be defined in (2.2) with n replaced by m. We
claim that Com () (¢ > 0) is a 2m-times integrated (s® — A)~"+t™(_cosine
operator function. F‘rom

¢
AN (t = r)Cam(r)s dr
0

; i
= (% — A)"”%—J;—-)—!Aé(t - r)g(r Y 10()e da dr
— (s A)”*(Qmi_l)lAg(t 0)2™ . Co () ds

= Co (£} = 7t (52 = A) ™My,

(2m)!

and from Theorerm 1.5, the conclusion follows. =

COROLLARY 2.3. Let A be a closed operator such that s* — A is injective
and Im(C) < D((8* ~ A)™™"1) for some s € C. If there exists some 0 < m
< n such that A is o subgenerator of the 2m-times integrated (8%~ A)""t™C-
cosine operator function {Cuon(t) }ezo, then for every 0 < k< n, A is a sub-
generator of the 2k-times integrated (s* — A)~"KC-cosine operator function
{Canlt) beno-

3. Examples. In this section, we give two exarples which are nonex-
ponentially hounded regularized cosine operator functions. Example 3.1 is
a version of [del, Examples 4.10].

ExamrLe 3.1, Let 2 = {z=a+iy |y 20, & << 82”2} and
let X = BC(12) be the space of all complex-valued bounded continuous
functions on £2. Equipped with the norm

171} == sup{|£(2)| | 2 € 2},

X is a Banach space. Define (4f)(2) = ~2*f(z), on X, with maximal
domain. Then A generates the A~'-regularized cosine operator function
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{C(£)}en0 with
—~2r itz e—z’tz
A =), vrex

We claim that {C(%)}4»0 is not exponentially bounded. Set Jo(2) = 1. Then

[C®l > [0() foll sup { e e 0}

2
el — e~
> { Sy | = v )

by by 2
2 Msup{e"™"" | y > 0} = Me? /16,
for some M > 0.

ExXAMPLE 3.2. Let X = L'(R). Then X is a Banach algebra with the
convolution product

(f % g)(s) = | f{s —w)g(x) du,
R
Let {fa}- (@ € A) be an approximate identity of X, i.e. (i) Ifa]l = 1 for all
a€A; (i) limy fo*x f = fforall f € X.
Denote by ch the hyperbolic cosine and set
Gy = Flu r (chiu) exp(—u?))
where F is the Fourier transform

F(F)s) = [ e f(u) du.

R

fgeX.

3

Then
(CWL)(s) = (Gux f)(s)

defines a C{0)-cosi . _
S Fr(m)ncomlue operator function {C(t)}s»o with generator A =

IC@I = ICEH) fall = Gy  fall — 1G4

and
et'u. + e-—-f."u, 2
|G|l = S ¢ du
R
— et2/4 S e—u2 duy = \/'TFE‘LB/II,

R
it follows that

IC@)]| = vae/4,
{C(t}}4z0 is thus not exponentially bounded.
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