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THE GRADIENT PROJECTION METHOD FOR SOLVING

AN OPTIMAL CONTROL PROBLEM

Abstract. A gradient method for solving an optimal control problem
described by a parabolic equation is considered. The gradient projection
method is applied to solve the problem. The convergence of the projection
algorithm is investigated.

1. Introduction. The theory of optimal control systems with distrib-
uted parameters is one of the leading sections of optimization theory. It has
wide applications in various practical fields. The theory of optimal control
problems has been studied by many workers [1, 2, 6, 7]. They have shown
[4, 9, 10] that these problems arise in many physical applications such as
heat conductivity, filtration and diffusion.

2. Statement of the problem and definitions. Let it be required
to minimize the function

(1) f(v) =

l\
0

|u(x, T ; v) − g(x)|
2
dx + β

T\
0

|v1(t)|
2
dt

provided that u(x, t; v) is a solution of the boundary value problem

ut = a2uxx + B(x, t)u + v2(x, t), (x, t) ∈ Ω = [0 < x < l, 0 < t ≤ T ],(2)

u(x, 0) = φ(x), 0 ≤ x ≤ l,(3)

ux(0, t) = 0, ux(l, t) = ν[v1(t) − u(l, t)], 0 < t ≤ T,(4)

where a2, l, ν, T , β are positive numbers, v1(t) the temperature of the
external medium, v2(x, t) the density of heat sources, and the control v is in
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V =
{

v
∣

∣

∣
v = (v1(t), v2(x, t)); v1(t) ∈ L2[0, T ], v1min ≤ v1(t) ≤ v1max;

v2(x, t) ∈ L2(Ω),

l\
0

T\
0

|v2(x, t)|2 dx dt ≤ R2

}

,

where v1min < v1max;R > 0 is a given number; g(x), φ(x) ∈ L2[0, l], B(x, t)
∈ L2(Ω) are given functions and H = L2[0, T ] × L2(Ω).

Definition 1. The problem of finding a function u = u(x, t; v) satisfy-
ing conditions (2)–(4) for a given v ∈ V is called the reduced problem.

Definition 2. The solution of the reduced problem (2)–(4) corre-

sponding to v ∈ V is a function u(x, t) ∈ H1,0(Ω(4)) satisfying the integral
identity

(5)

l\
0

T\
0

[−uηt + a2uxηx + B(x, t)uη − v2(x, t)η] dx dt

=

l\
0

φ(x)η(x, 0) dx + a2ν

T\
0

[v1(t) − u(l, t)]η(l, t) dt

for all η = η(x, t) ∈ H1(Ω) with η(x, T ) = 0.

Equations (1)–(4) are the mathematical formulation of the optimal con-
trol problem for a linear parabolic equation with controls in boundary con-
ditions and the right side of equation (2). Optimal control problems for
linear and nonlinear parbolic equations have been widely considered in the
literature (see for instance [4, 8, 18]), and were studied by Madatov [11] and
Mokrane [12], where the existence, uniqueness and regularity of the solution
were proved. In addition, Farag [3] and Phillipson and Mitter [13] have
derived numerical results for the heat equation with strong nonlinearity.

3. The gradient of the function. The principal result in this section
is Theorem 3.1. Its proof will be prepared by two lemmas:

Lemma 3.1. Let δu(x, t) be the generalized solution of the boundary value

problem

δut − a2δuxx − B(x, t)δu − δv2 (x, t) = 0, (x, t) ∈ Ω,(6)

δu(x, 0) = 0, 0 ≤ x ≤ l,(7)

δux(0, t) = 0, δux(l, t) = ν[δv1(t) − δu(l, t)], 0 < t ≤ T.(8)
Then

l\
0

|δu(x, T )|2 dx ≤ C
[

T\
0

|δv1(t)|
2 dt +

l\
0

T\
0

|δv2(x, t)|2 dx dt
]

(9)

= C‖δv‖
2

H ,

where C > 0 is a constant which is independent of the choice of δv ∈ V.
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P r o o f. We multiply (6) by δu and integrate it on the rectangle Ω. By
using the conditions (7) and (8), we obtain the reduced equation:

(10)
1

2

l\
0

|δu(x, T )|2 dx + a2ν

T\
0

|δu(l, t)|2 dt + a2

l\
0

T\
0

|δux|
2 dx dt

= a2ν

T\
0

δu(l, t)δv1(t) dt +

l\
0

T\
0

δuδv2 dx dt.

Applying the inequality ab ≤ ε
2
a2 + 1

2ε
b2, ε > 0, we obtain

(11)
1

2

l\
0

|δu(x, T )|
2
dx + a2ν

T\
0

|δu(l, t)|
2
dt + a2

l\
0

T\
0

|δux|
2
dx dt

≤
1

2
a2ε1ν

T\
0

|δu(l, t)|2 dt +
1

2ε1

a2ν

T\
0

|δvl(t)|
2 dt

+
ε2

2

l\
0

T\
0

|δu(x, t)|
2
dx dt +

1

2ε2

l\
0

T\
0

|δv2(x, t)|
2
dx dt.

Since

|δu(x, t)|
2

=
(

l\
x

δux(θ, t) dθ − δu(l, t)
)2

≤ 2
(

l\
x

δux(θ, t) dθ
)2

+ 2|δu(l, t)|
2

≤ 2l

l\
0

|δux(x, t)|2 dx + 2|δu(l, t)|2

we have

(12)

l\
0

T\
0

|δu(x, t)|2 dx dt ≤ 2l2
l\
0

T\
0

|δux|
2 dx dt + 2l

T\
0

|δu(l, t)|2 dt.

From (11), (12) and by reducing these terms we obtain

(13)
1

2

l\
0

|δu(x, T )|
2
dx +

(

a2ν −
a2νε1

2
− lε2

) T\
0

|δu(l, t)|
2
dt

+ (a2 − l2ε2)

l\
0

T\
0

|δux|
2
dx dt

≤
a2ν

2ε1

T\
0

|δvl(t)|
2 dt +

1

2ε2

l\
0

T\
0

|δv2(x, t)|2 dx dt.

Letting ε2 = a2ε1 and 0 < ε1 < min[1/l2; 2ν/(ν + 2l)], from (13) we
obtain (9) with C = max[a2ν/ε1; 1/(a

2ε1)]. The lemma is proved.
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Lemma 3.2. Let λ(x, t; v) = λ(x, t) be the generalized solution of the

conjugate boundary value problem

λt = −a2λxx − B(x, t)λ, (x, t) ∈ Ω,(14)

λ(x, T ) = 2[u(x, T ; v) − g(x)], 0 ≤ x ≤ l,(15)

λx(0, t) = 0, λx(l, t) = −νλ(l, t), 0 < t < T.(16)

Then

(17) 2

l\
0

[u(x, T ; v) − g(x)]δu(x, T ) dx

=

T\
0

a2νλ(l, t; v)δv1(t) dt +

l\
0

T\
0

λ(x, t; v)δv2(x, t) dx dt.

P r o o f. Applying the conditions (6)–(8) and (14)–(16), we obtain

(18) 2

l\
0

[u(x, T, v) − g(x)]δu(x, T ) dx

=

l\
0

λ(x, T )δu(x, T ) dx

=

l\
0

T\
0

[λtδu + λδut] dx dt

=

l\
0

T\
0

[−a2λxxδu + a2λδuxx + λδv2] dx dt

=

T\
0

a2νλ(l, t; v)δv1(t) dt +

l\
0

T\
0

λ(x, t; v)δv2(x, t) dx dt.

The equality (17) is thus obtained. The lemma is proved.

Definition 3. The solution of the conjugate boundary value problem
(14)–(16) corresponding to v ∈ V is a function λ(x, t) ∈ H1,0(Ω) satisfying
the integral identity

(19)

l\
0

T\
0

[−λξt + a2λxxξ + B(x, t)λξ] dx dt

= −2

l\
0

[u(x, T ; v) − g(x)]ξ(x, T ) dx

for all ξ = ξ(x, t) ∈ H1(Ω) with ξ(x, 0) = 0.
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Theorem 3.1. The function (1) is differentiable in H and its gradient

at v ∈ V is given by

(20) fv(v) =
∂f

∂v
= −

∂ℜ

∂v
≡

(

−
∂ℜ

∂v1

,−
∂ℜ

∂v2

)

,

where ℜ is defined by

ℜ(x, t, λ, v1, v2) ≡ −[a2νv1λ(l, t; v1) + βv2
1 + v2λ(x, t; v2)].

P r o o f. Consider the increment of the function (1):

δf(v) = f(v + δv) − f(v)(21)

= 2

l\
0

[u(x, T, v) − g(x)]δu(x, T ) dx + 2β

T\
0

v1(t)δv1(t) dt

+

l\
0

|δu(x, T )|
2
dx + β

T\
0

|δv1(t)|
2
dt

where v ∈ V , v + δv ∈ V , δu(x, t) ≡ u(x, t; v + δv)−u(x, t; v), u ≡ u(x, t; v).

By substituting equality (17) and estimate (9) in (21), it follows that the
function (1) is differentiable in H and its gradient is given by the expression
(20). The theorem is proved.

4. The gradient projection method. One of the first authors who
used projection methods for solving constrained problems was J. B. Rosen
[16, 17]. A lot of projection algorithms were described by Polak [14] and
Pshenichny̆ı and Danilin [15]. Having the gradient function (1), we can use
the gradient projection method for solving the problem (1)–(4). According
to this method we construct a sequence {vk = (vk

1 (t), vk
2 (x, t))} by setting

vk+1

1 =







vk
1 − γkfv(v

k
1 ) if v1min ≤ Z1(v

k
1 ) ≤ v1max,

v1min if Z1(v
k
1 ) < v1min,

v1max if Z1(v
k
1 ) > v1max,

(22)

vk+1

2 =







vk
2 − γkfv(v

k
2 ) if Z2(v

k
2 ) ≤ R2,

R[vk
2 − γkfv(v

k
2 )]

√

Z2(vk
2 )

if Z2(v
k
2 ) > R2,

(23)

where Z1(v
k
1 ) = vk

1 − γkfv(v
k
1 ) and Z2(v

k
2 ) =

Tl
0

TT
0
|vk

2 − γkfv(v
k
2 )|

2
dx dt.

The values γk ≥ 0 in (21)–(22) may be selected in one of the following
ways:

(i) γk is defined by

(24) γk = min
γ≥0

f(γ) = min
γ≥0

(f(vk) − γfv(v
k)).



146 M. H. Farag

(ii) If the gradient fv(v) satisfies the condition

(25) ‖fv(v) − fv(w)‖H ≤ L‖v − w‖H

for any v,w ∈ V , L = const > 0, then γk may be found from the conditions

(26) 0 < c1 ≤ γk ≤
2

L + 2c2

.

Here, c1, c2 > 0 are parameters selected by computer.
(iii) The parameter γk ∈ [0, 1] can be chosen from the monotonicity

condition f(vk+1) < f(vk).
(iv) γk can be chosen from the condition

(27) f(vk) − f(vk − γkfv(v
k)) ≥ εγk‖fv(vk)‖

2
, ε > 0.

Theorem 4.1. Let V be a closed convex subset of H, and f ∈ C1,1(V )
with f∗ = infV f(v) > −∞. Let {vk} be the sequence of controls generated

by the projection algorithm formulated in (22)–(27) for an arbitrary ini-

tial approximation {v0} ∈ V . Then the sequence {f(vk)} decreases and

limk→∞ ‖vk − vk+1‖ = 0. Moreover , if f is convex in H and the set

M(v0) = {v0 ∈ V : f(v) ≤ f(v0)} is bounded , then the sequence {vk}
minimizes the function f(v) in V and converges to v∗ weakly in H, and it

also satisfies the estimate

(28) 0 ≤ f(vk) − f∗ ≤
c3

k
, k = 1, 2, . . . ; c3 = const ≥ 0.

If f is also strongly convex in V , then {vk} converges to the unique mini-

mum control v∗ such that

(29) ‖vk − v∗‖
2 ≤

c4

k
, k = 1, 2, . . . ; c4 = const ≥ 0.

The proof directly follows from that of Theorem 5.2.1 of [19].
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