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RECURSIVE SELF-TUNING CONTROL

OF FINITE MARKOV CHAINS

Abstract. A recursive self-tuning control scheme for finite Markov chains
is proposed wherein the unknown parameter is estimated by a stochastic
approximation scheme for maximizing the log-likelihood function and the
control is obtained via a relative value iteration algorithm. The analysis
uses the asymptotic o.d.e.s associated with these.

1. Introduction. One popular approach for adaptive control of Markov
chains has been the self-tuning scheme of Mandl [18]. In this approach, a
parametrized model set is postulated and the parameter is estimated “on
line” by a suitable statistical method. The control used is the corresponding
“certainty equivalent” control, i.e., the control that would be optimal at a
given time for a given state if the current parameter estimate were the true
parameter. Mandl proved the asymptotic optimality of this scheme under
a strong identifiability condition which requires complete model discrimi-
nation under arbitrary control policies. It was brought out in [7] that this
condition cannot in general be relaxed. To work around this difficulty, vari-
ous modifications were proposed, such as randomization of the control or the
parameter estimate [8], [10] and introduction of an explicit cost bias in the
estimation scheme [4], [5], [15], [16], [19]. There remained, however, another
problem with the basic scheme, viz., that a priori, it is not in a computation-
ally amenable form. There are two reasons for this. One is that it requires
the computation of optimal control policies (and, in the latter case, costs)
as a function of the parameter. Although this computation is “off-line”, so
to say, the computational and memory overheads can be considerable. Sec-
ondly, the statistical schemes employed (mostly maximum likelihood) were
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in an idealized form where the entire likelihood function (say) is available at
each step and an exact maximization is required at each step. This is not
always computationally amenable. This has prompted modifications such
as a finite grid approximation of the parameter space [22] or recursive com-
putation of control assuming a consistent parameter estimation scheme in
the background [14]. The only fully recursive schemes we know are those
of El Fattah [11], [12] where both the control policy and the parameter es-
timate are obtained through stochastic approximation procedures. These
works, however, use extremely strong and nontransparent conditions. We
propose here an alternative scheme which, while using weaker hypotheses,
retains the recursiveness and computational feasibility. Specifically, we use
a stochastic approximation algorithm for maximizing the log-likelihood and
a relative value iteration to obtain the control policy.

The paper is organized as follows. The next section sets up the notation
and describes the adaptive control scheme. Section 3 studies the stochastic
approximation scheme for parameter estimation. Almost sure consistency
of the estimation scheme is established under suitable conditions. Section 4
considers the asymptotic behaviour of the relative value iteration algorithm
and proves the a.s. ε-optimality of the adaptive control scheme. An ap-
pendix recalls two important results from [6, 13] used in the main text of
the paper.

2. Preliminaries. We shall follow the notation of [3], since we shall be
referring to it for some key results. Let Xn, n ≥ 0, be a controlled Markov
chain on the state space S = {1, . . . , d} with transition matrix

P θ
u = [[p(i, j, ui, θ)]], i, j ∈ S,

indexed by the control vector u = [u1, . . . , ud] and the unknown parame-
ter θ. Here ui ∈ Di for some prescribed compact metric space Di, i ∈ S.
By replacing each Di by

∏
i Di := D1 × . . .×Dd and p(i, j, ·, θ) by its com-

position with the projection
∏

k Dk → Di for each i, j, θ, we may and do
assume that all Di’s are replicas of a fixed compact metric space D. The
parameter θ takes values in a compact convex subset A of R

m, m ≥ 1, con-
taining a distinguished element θ0, the true parameter. The actual system
is assumed to correspond to θ0, which is unknown. The functions p(i, j, ·, ·)
are assumed to be continuous, and continuously differentiable in the last
argument uniformly with respect to the rest. Denote by P θ(·), Eθ(·) the
probabilities (resp. expectations) under θ, dropping the θ when θ = θ0. Fi-
nally, for any Polish (i.e., separable and metrizable with a complete metric)
space Y , P(Y ) will denote the Polish space of probability measures on Y
with the Prokhorov topology.

A control strategy (CS for short) is a sequence {ξn}, ξn = [ξn(1), . . . ,
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. . . ξn(d)], of Dd-valued random variables such that for i ∈ S and n ≥ 0,

P θ(Xn+1 = i | Xm, ξm,m ≤ n) = p(Xn, i, ξn(Xn), θ).

We then say that {Xn} is governed by the CS {ξn}. If ξn is independent
of Xm, m ≤ n, and ξm, m < n, for each n, and {ξn} are identically dis-
tributed, call the CS a stationary randomized strategy (SRS). If the common
law of each ξn therein is Φ ∈ P(Dd), denote the SRS by γ[Φ]. As argued
in [3], Φ may be taken to be a product measure

∏
i φi with φi ∈ P(D) for

all i. Conversely, each such measure can be identified with an SRS. For later
reference, let P0(D

d) ⊂ P(Dd) denote the compact set of product measures.
If Φ is a Dirac measure at ξ ∈ Dd (say), call the corresponding SRS a sta-

tionary strategy (SS), denoted by γ{ξ}. Under an SRS (resp. SS), {Xn}
is a Markov chain with stationary transitions, the transition matrix being
given by

P θ[Φ] = [[pθ
Φ(i, j)]]

:=
[[\

p(i, j, u, θ)φi(du)
]]
, i, j ∈ S (resp., P θ{ξ} = P θ

ξ ).

We assume throughout that S is a single communicating class under each
γ[Φ]. The chain then has a unique invariant probability measure denoted by

πθ[Φ] = [πθ[Φ](1), . . . , πθ[Φ](d)]

(resp., πθ{ξ} = [πθ{ξ}(1), . . . , πθ{ξ}(d)]).

Define π̂θ[Φ] ∈ P(S ×D) by\
f dπ̂θ[Φ] =

∑

i∈S

\
f(i, u)φi(du)π

θ[Φ](i), f ∈ C(S ×D).

Define π̂θ{ξ} analogously. Let k ∈ C(S × D). The ergodic or long run

average cost control problem is to a.s. minimize over all CS the quantity

lim sup
n→∞

1

n

n−1∑

m=0

k(Xm, ξm(Xm)).

Under γ[Φ] or γ{ξ} with θ as the operative parameter, this a.s. equalsT
k dπ̂θ[Φ] (resp.,

T
k dπ̂θ{ξ}). If θ0 were known, this is the classical ergodic

control problem. Since it is not, one has to resort to some adaptive control
scheme. We propose one below, following the statement of some additional
assumptions.

For each θ and γ[Φ] with Φ =
∏

i φi, define

F (Φ, θ) = −
∑

πθ[Φ](i)
\
φi (du)

( ∑

j

p(i, j, u, θ0) ln
p(i, j, u, θ)

p(i, j, u, θ0)

)
.

This is continuously differentiable in θ. To see this, recall our differentia-
bility condition on p(i, j, u, ·). Now πθ[Φ] is the unique solution to the linear
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system πθ[Φ]P θ[Φ] = πθ[Φ],
∑

i π
θ[Φ](i) = 1. Dropping one (say, the first)

equation from the former, we get a linearly independent set and Cramer’s
rule then allows us to write πθ[Φ] explicitly as ratio of polynomials in the
entries of P θ[Φ] with a nonvanishing determinant (the latter being a con-
sequence of our irreducibility condition on P θ[Φ] for all θ). It follows that
πθ[Φ] is continuously differentiable in θ and we are done.

A straightforward application of Jensen’s inequality shows that F (Φ, θ) ≥
0, with F (Φ, θ0) = 0. Let ψ ∈ P(D) be a prescribed probability measure
with support(ψ) = D. We say that Φ ∈ P(Dd) is a-thick for some a > 0 if
for all i ∈ S and Borel B ⊂ D, φi(B) ≥ aψ(B). Our main assumptions are:

(A1) For any θ 6= θ0 in A, there exist i, j ∈ S and u ∈ D such that

p(i, j, u, θ) 6= p(i, j, u, θ0).

(A2) For any a > 0 sufficiently small, there exists a V : R
m → R

+ such
that V (θ) = 0 if and only if θ = θ0 and furthermore,

(i) lim||x||→∞ V (x) = ∞,

(ii) for any ε > 0, sup〈∇V (θ),∇θF (Φ, θ)〉 < 0, where the supre-
mum is over all θ with ‖θ − θ0‖ ≥ ε and all a-thick Φ, and ∇θ

is the gradient in the θ variable,

(iii) for θ ∈ ∂A (= the boundary of A), ∇V (θ) is transversal to ∂A
and directed towards interior(A).

Some comments regarding these assumptions are in order here. (A1) is
a weaker identifiability condition than Mandl’s. The latter requires that the
said inequality hold for all u. We shall, in fact, argue later that (A1) is no
restriction at all. It implies in particular that for some i, j, p(i, j, u, θ) 6=
p(i, j, u, θ0) for u in an open set. Using the strict convexity of x→ x lnx and
Jensen’s inequality, it is then easily verified that F (Φ, θ) > 0 for θ 6= θ0 and
a-thick Φ, a > 0. Thus for given a > 0, F (Φ, ·) with a-thick Φ have a common
unique minimum at θ0. (A2) then ensures a common Lyapunov function for
the corresponding gradient flows. An example is the case when p(i, j, u, θ)
are affine in θ. Such parameterizations have been studied in [2], [21]. Then
F (Φ, ·) are strictly convex for a-thick Φ, a > 0, and V (θ) = ‖θ − θ0‖

2 will
do the job. It should be kept in mind that we only need the existence of V
and not its explicit knowledge in the algorithms proposed. Nevertheless, we
require the following.

(A3) There exist a > 0 and a known continuously differentiable function
W : R

m → R
+ such that ∇W is Lipschitz and

〈∇W,∇V 〉 ≥ a outside A.
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For example, for convex A with a smooth boundary, a suitable W with
∇W along the outward normal on ∂A will do.

Let {a(n)} ⊂ (0, 1) be a decreasing sequence satisfying
∑

n

a(n) = ∞,
∑

n

a(n)2 <∞.

Let K = maxi,j,u,θ ‖∇θ ln(p(i, j, u, θ))‖∞ and K ≥ 2K/a, where a > 0 is
as in (A3). Our parameter estimation scheme is

θ(n+ 1) = θ(n) + a(n)[G(Xn,Xn+1, ξn(Xn), θ(n))

−K∇W (θ(n))I{θ(n) 6∈ A}],

where G(i, j, u, θ) is any continuous extension of ∇θ ln(p(i, j, u, θ)) to S ×
S × D × R

m satisfying ‖G(·, ·, ·, ·)‖∞ ≤ K. It should be noted that we
are hereby taking the penalty function approach to enforce the constraint
θ ∈ A: The estimation scheme is allowed excursions outside A, but is forced
back towards A by using the penalty term involving W . An alternative
approach would be to drop the latter term, but project θ(n) back into A in
a suitable manner at each iteration. Such a scheme is followed, e.g., in [17].
The analysis to follow will have to be correspondingly different, but not in
any crucial way.

We also consider a relative value iteration algorithm adapted from [1].
Let [θ] = the point in A nearest to θ on the line joining θ to a prescribed
θ∗ ∈ A. For convex A, the map θ → [θ] is continuous. For i ∈ S,

(2.1) hn+1(i)

= hn(i) + a(n)
[
min

u

(∑

j

p(i, j, u, [θ(n)])hn(j) − hn(i) + k(i, u)
)
− hn(1)

]
.

Let Gn = σ(Xm, ξm,m ≤ n),Fn = σ(Xm,m ≤ n, ξm,m < n) and a ∈ (0, 1)
sufficiently small. For n ≥ 0, let

Zn = argmin
( ∑

j

p(Xn, j, ·, [θ(n)])hn(j) + k(Xn, ·)
)
,

any tie being resolved according to some fixed ordering. Let Z ′
n be a

D-valued random variable with law ψ, independent of Fn. Pick ξn(Xn)
according to: ξn(Xn) = Zn with probability 1 − a and = Z ′

n with probabil-
ity a, the randomization being independent of Fn, Z

′
n. This completes the

description of our adaptive control scheme.

3. Convergence of parameter estimates. Define

G(i, u, θ) =
∑

j

p(i, j, u, θ)G(i, j, u, θ),

Ĝ(µ, θ) =
\
G(·, ·, θ) dµ, µ ∈ P(S ×D),
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Ln(θ) = G(Xn, ξn(Xn), θ),

∆Mn = G(Xn,Xn+1, ξn(Xn), θ(n)) − Ln(θ(n)),

Mn =
n∑

m=0

a(m)∆Mm.

Lemma 3.1. {Mn} converges a.s.

P r o o f. (Mn,Gn) is a zero mean martingale with bounded increments
{∆Mn} satisfying |∆Mn| ≤ Ka(n). Since

∑
a(n)2 < ∞, its quadratic

variation process converges a.s. By Prop. VII-2-3, pp. 149–150 of [20],
{Mn} converges a.s.

Let t0 = 0 and tn =
∑n−1

i=0 a(i). Define θ(·) : R
+ → R

m by θ(tn) = θ(n),

n ≥ 0, with linear interpolation. For k ≥ 0, n ≥ k, define θ̃k(·) : [tk,∞) →

R
m by θ̃k(tk) = θ(k) and

(3.1) θ̃k(tn+1) = θ̃k(tn) + a(n)(Ln(θ̃k(tn))−K∇θW (θ̃k(tn))I{θ(n) 6∈ A})

with linear interpolation.

Lemma 3.2. For each T > 0,

lim
n→∞

sup
[tn,tn+T ]

‖θ(t) − θ̃n(t)‖ = 0.

P r o o f. For n ≥ k,

θ(tn+1) = θ(tn) + a(n)(Ln(θ(tn)) −K∇θW (θ(tn))I{θ(n) 6∈ A})(3.2)

+Mn −Mk,

where, by the preceding lemma,

(3.3) lim
n≥k→∞

(Mn −Mk) = 0 a.s.

By subtracting (3.2) from (3.1) and using an appropriate discrete Gronwall
inequality, the claim follows by standard arguments in view of (3.3).

Let U1 (resp. U2) denote the space of P(S×D)-valued (resp., P({0, 1})-
valued) trajectories µ = {µt, t ≥ 0} (resp., η = {ηt, t ≥ 0}) with the coars-

est topology that renders continuous the maps µ →
TT
0
f(t)

T
g dµt dt, g ∈

C(S ×D) (resp. η →
TT
0
f(t)ηt(i) dt, i = 0, 1), for T ≥ 0 and f ∈ L2[0, T ].

Then U1 is metrizable by the metric

d(µ, ν) =
∑

k,m,n

2−(k+m+n)
∣∣∣

n\
0

en
k (t)

\
gm dµt dt−

n\
0

en
k (t)

\
gm dνt dt

∣∣∣ ∧ 1

where {en
k (·)}∞k=1 is a CONS for L2[0, n] and {gm} is countable dense in

the unit ball of C(D). U1 is also compact. To see this, note that this is
equivalent to verifying for each T > 0 the compactness of the measures
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dt dµt on [0, T ] × D, i.e., positive measures of total mass T on [0, T ] × D
whose marginal on [0, T ] is Lebesgue, in the topology of weak convergence.
This is immediate from Prokhorov’s theorem. Similarly, one shows that U2

is compact metrizable. Consider the o.d.e.

(3.4) θ̇(t) = Ĝ(µt, θ(t)) − ηt(1)K∇θW (θ(t)), θ(0) = θ,

where µ ∈ U1 and η ∈ U2.

Lemma 3.3. The map U1 × U2 × R
m ∋ (µ, η, θ) → θ(·) ∈ C([0,∞); Rm)

defined by (3.4) is continuous.

P r o o f. Let (µn, ηn, θn) → (µ∞, η∞, θ∞) in U1 × U2 × R
m. For n ≥ 1,

let θn(·) satisfy (3.4) with µ = µn, η = ηn, θ = θn. Using the Gronwall
lemma and the Arzelà–Ascoli theorem, one verifies that {θn(·)} is relatively
compact in C([0,∞); Rm). By dropping to a subsequence if necessary, let
θn(·) → θ∞(·). Then θ∞(0) = θ∞ and for t ≥ 0 and n ≥ 1,

θn(t) = θn +

t\
0

(Ĝ(µn
s , θ

n(s)) − ηn
s (1)K∇θW (θn(s))

− Ĝ(µn
s , θ

∞(s)) + ηn
s (1)K∇θW (θ∞(s))) ds

+

t\
0

(Ĝ(µn
s , θ

∞(s)) − ηn
s (1)K∇θW (θ∞(s))

− Ĝ(µ∞
s , θ

∞(s)) + η∞s (1)K∇θW (θ∞(s))) ds

+

t\
0

(Ĝ(µ∞
s , θ

∞(s)) − η∞s (1)K∇θW (θ∞(s))) ds.

As n → ∞, the first integral goes to zero because θn(·) → θ∞(·) and the
second does so in view of our topology on U1, U2. Thus θ∞(·) satisfies (3.4)
with µ = µ∞, η = η∞. The claim follows.

Define µ′ ∈ U1 and η′ ∈ U2 by

µ′
t(i, B) = I{Xn = i, ξn(Xn) ∈ B}, i ∈ S, B ⊂ D Borel, tn ≤ t < tn+1,

η′t(1) = I{θ(t) 6∈ A},

for t ≥ 0. For n ≥ 0, let θ̂n(·) denote the solution of (3.4) on [tn,∞) when

µ = µ′, η = η′ and θ̂n(tn) = θ(n).

Lemma 3.4. For each T > 0,

lim
n→∞

sup
t∈[tn,tn+T ]

‖θ̂n(t) − θ̃n(t)‖ = 0.

This is straightforward from the Gronwall inequality. In conjunction
with the preceding lemmas, this suggests that we can study the time asymp-
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totics of our algorithm by looking at limit points of θ̂n(·) in C([0,∞); Rm)

as n → ∞. Let (µ = {µt, t ≥ 0}, ν = {νt, t ≥ 0}, θ̂(·)) be a limit point of

(µn, νn, θ̂n(tn + ·)) in U1 ×U2 ×C((0,∞); Rm), where µn = {µ′
tn+t, t ≥ 0},

νn = {ν′tn+t, t ≥ 0}, n ≥ 0 (i.e., µn
t = µ′

tn+t, ν
n
t = ν′tn+t, t ≥ 0).

Lemma 3.5. Almost surely , the following holds: For any µ as above, and

t ≥ 0, there exists a-thick Φt ∈ P0(D
d) such that µt = π̂[Φt] for the SRS

γ[Φt].

P r o o f. For i ∈ S,

M̃n =
n∑

m=1

a(m)
(
I{Xm = i} −

∑

j

I{Xm−1 = j}p(j, i, ξm−1(j), θ0)
)

is a zero mean bounded increment martingale with respect to {Gn}, with a
convergent quadratic variation process in view of

∑
a(n)2 < ∞. By Prop.

VII-2-3(c), pp. 149–150 of [20], it converges a.s. For n ≥ 0, let

n(s) = min
{
m > n

∣∣∣
m∑

j=n

a(j) ≥ s
}
, s > 0.

Then

lim
n→∞

(M̃n̄(s) − M̃n) = 0 a.s. and

n̄(s)∑

m=n

a(m) ≥ s

together imply

(3.5)

∑n̄(s)
m=n a(m)I{Xm = i}

∑n̄(s)
m=n a(m)

−

∑n̄(s)
m=n a(m)

∑
j p(j, i, ξm−1(j), θ0)I{Xm−1 = j}

∑n̄(s)
m=n a(m)

→ 0 a.s.

Define ϕn,s ∈ P(S ×D) by

ϕn,s(B ×C) =

∑n̄(s)
m=n a(m)I{Xm ∈ B, ξm(Xm) ∈ C}

∑n̄(s)
m=n a(m)

,

for B ⊂ S and C ⊂ D Borel. Our conditions on {a(m)} imply a(m+1)/a(m)
→ 0. In view of (3.5) one then has: Almost surely, any limit point ϕ of ϕn,s

in P(S ×D) as n→ ∞ must satisfy

(3.6) ϕ({i} ×D) =
∑

j

\
p(j, i, u, θ0)ϕ({j} × du), i ∈ S.

Then ϕ must be of the form π̂θ0 [Φ] for some SRS γ[Φ]. Recalling our defi-
nitions of {µn

t }, {n(s)}, etc., it follows that any limit point ϕ in P(S ×D)
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of the measures

1

s

t+s\
t

dµ′
y dy

as t→ ∞ must be as above. Since µ is a limit point of {µn}, it then follows
that for any t ≥ 0 and s > 0, there exists a Φ = Φt,s (to make the t, s
dependence explicit) in P0(D

d) such that

(3.7)
1

s

t+s\
t

\
f dµy dy =

\
f dπ̂θ0 [Φt,s], f ∈ C(S ×D).

But (3.6) completely characterizes ϕ ∈ P(S ×D) of the form π̂θ0 [Φ]. Also,
(3.6) is preserved under convergence in the compact space P(S×D). There-
fore one may let s → 0 in (3.7) to conclude that almost surely, for a.e. t,
there exists Φt ∈ P0(D

d) such that µt = π̂θ0 [Φt]. Since the dependence
Φ → π̂θ0 [Φ] is continuous (see, e.g., [3], Ch. 5), a standard measurable se-
lection argument ensures a measurable version of t→ Φt. The qualification
“a.e. t” may also be dropped by modifying µ suitably on a set of zero
Lebesgue measure without affecting anything.

We still need to show that {Φt} are a-thick. An argument analogous to
that employed at the beginning of this proof shows that for any i ∈ S and
Borel C ⊂ D,

∑n̄(s)
m=n a(m)I{Xm = i, ξm(i) ∈ C}

∑n̄(s)
m=n a(m)

−

∑n̄(s)
m=n a(m)I{Xm = i}ϕm

i (C)
∑n̄(s)

m=n a(m)
→ 0 a.s.

as n → ∞, where ϕm
i ∈ P(D) is the regular conditional law of ξm(i) given

Fm. By our choice of ξm, ϕm
i (C) ≥ aψ(C). Thus passing to the limit in the

above along an appropriate subsequence {nk} (with ϕ as in (3.6)), we get

ϕ({i} × C) ≥ lim inf
k→∞

∑nk(s)
m=nk

a(m)I{Xm = i}ϕm
i (C)

∑nk(s)
m=nL

a(m)
≥ aϕ({i} ×D)ψ(C).

It follows that the Φt,s and hence the Φt above are a-thick for a.e. t, where
the “a.e. t” may be dropped as before.

Lemma 3.6. Almost surely , θ̂(t) ∈ interior(A) ⇒ ηt(1) = 0 and θ̂(t) 6∈
A⇒ ηt(1) = 1, t ≥ 0.

P r o o f. Let f ∈ C(Rm) be nonnegative, smooth with compact support
in interior(A). Then recalling that by definition, ηn

y (1) = I{θ(tn + y) 6∈ A},
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we have
t+s\

t

f(θ(tn + y))ηn
y (1) dy = 0 ∀t, s ≥ 0.

Letting n → ∞ along an appropriate subsequence and using Lemmas 3.2
and 3.4, we have, almost surely,

t+s\
t

f(θ̂(y))ηy(1) dy = 0 ∀t, s ≥ 0.

From our choice of f , it follows that θ̂(t) ∈ interior(A) implies ηt(1) = 0 for
a.e. t, where “a.e. t” may be dropped by taking a suitable modification.
The second claim is proved similarly.

By Lemma 3.3, we have

(3.8)
˙̂
θ (t) = Ĝ(µt, θ̂(t)) − ηt(1)K∇θW (θ̂(t)).

Using Lemma 3.5, θ̂(t) ∈ A implies

(3.9) Ĝ(µt, θ̂(t)) = −∇θF (Φt, θ̂(t))

for some P0(D
d)-valued process {Φt}, t ≥ 0.

Theorem 3.1. θ(n) → θ0 a.s.

P r o o f. It suffices to prove that θ(t) → θ0 a.s. By our choice of W and

K, θ(·) does not exit a prescribed bounded neighbourhood Â of A. Thus the
initial conditions of (3.1) remain in this set. By (A2) and (A3), our choice
of K, (3.8), (3.9) and Lemma 3.6, one has

d

dt
V (θ̂(t)) < 0 when θ̂(t) 6= θ0.

By the standard Lyapunov stability argument, θ̂(t) → θ0, uniformly with

respect to {Φt} and θ̂(0) ∈ Â. In view of Lemmas 3.2 and 3.4, the claim
follows by a standard approximation argument. (See, e.g., Theorem 1, p. 339
of [13], recalled in the appendix as Theorem A.1.)

4. ε-Optimality. This section establishes the ε-optimality of the pro-
posed scheme. Before doing so, recall the dynamic programming equations
associated with the ergodic control problem [3]:

(4.1) V (i) = min
n

(
k(i, u) +

∑

j

p(i, j, u, θ0)V (j) − β
)
, i ∈ S.

These have a solution (V , β) ∈ R
d × R where β is uniquely specified as the

optimal cost

β = min
γ{ξ}

\
k dπ̂θ0{ξ}
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and V is unique up to an additive constant. Let (V ∗, β) be the unique
solution satisfying V ∗(1) = β. Then, for 1c := [1, . . . , 1]T , the solution set
is {(V , β) | V ∈ J} for

J = {V ∗ + b1c | b ∈ R}.

Define F 1 : R
d → R

d and F 2 : R
d → R

d by

F 1
i (x) = min

u

(
k(i, u) +

∑

j

p(i, j, u, θ0)xj − x1

)
,

F 2
i (x) = min

u

(
k(i, u) +

∑

j

p(i, j, u, θ0)xj − β
)
,

for x = [x1, . . . , xd] and i ∈ S. Then defining the norm ‖ · ‖∞ and the
seminorm | · |∼ by

‖x‖∞ = max |xi|, |x|∼ = max
i
xi − min

i
xi,

we have

(4.2)
‖F 2(x) − F 2(y)‖∞ ≤ ‖x− y‖∞,

|F i(x) − F i(y)|∼ ≤ |x− y|∼, i = 1, 2.

Note that |x|∼ = 0 if and only if x = b1c for some b ∈ R. Also, J = {x |
F 2(x) = x}. Consider the o.d.e.s

ẋ(t) = F 1(x(t)) − x(t),(4.3)

ẏ(t) = F 2(y(t)) − y(t).(4.4)

Lemma 4.1. If x(0) = y(0) then |x(t) − y(t)|∼ = 0 for all t ≥ 0.

P r o o f. From (4.3) and (4.4), we have (noting that F 1
i (x) = F 2

i (x) −
(x1 − β))

x(t) − y(t) =

t\
0

e−(t−s)[(F 2(x(s)) − F 2(y(s))) − (x1(s) − β)1c] ds.

Thus

max
i

(xi(t) − yi(t)) ≤
t\
0

e−(t−s)(max
i

(F 2
i (x(s)) − F 2

i (y(s))) − (x1(s) − β)) ds,

min
i

(xi(t) − yi(t)) ≥
t\
0

e−(t−s)(min
i

(F 2
i (x(s)) − F 2

i (y(s))) − (x1(s) − β)) ds.

Using (4.2), one then has

|x(t) − y(t)|∼ ≤
t\
0

e−(t−s)|x(s) − y(s)|∼ ds,

from which the claim follows by the Gronwall inequality.
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Lemma 4.2. For any x ∈ J , ‖y(t) − x‖∞ is nonincreasing and y(t) →
y ∈ J , which may depend on y(0).

This is proved in Theorem 3.1 of [6] (recalled in the appendix as Theo-
rem A.2).

Corollary 4.1. V ∗ is the globally asymptotically stable equilibrium

point of (4.3).

P r o o f. By the above lemmas, |x(t)|∼ = |y(t)|∼ ≤ 2‖y(t)‖∞ and thus
{|x(t)|∼} is bounded. To show that x(·) is, it then suffices to show that
x1(t) is bounded. Now

|F 2
1 (x(t))−x1(t)| =

∣∣∣min
u

∑

j

p(x1(t), j, u, θ0)(xj(t)−x1(t)) + k(x(t), u)−β
∣∣∣

≤ |x(t)|∼ + C

for a suitable constant C. Thus

ẋ1(t) = F 1
1 (x(t))−x1(t) = F 2

1 (x(t))− (x1(t)−β)−x1(t) = b(t)− (x1(t)−β)

for a bounded b(·). Explicitly integrating this linear o.d.e., one sees that
x1(·) is bounded. Hence x(·) is. Since |x(t)−V ∗|∼ = |y(t)−V ∗|∼ ≤ 2‖y(t)−
V ∗‖∞ and |y(t)−V ∗|∼ → 0 by Lemma 4.2, x(t) → {x | |x−V ∗|∼ = 0} = J
in a bounded fashion. In particular, since J = {x | F 2(x) = x}, we have
F 2(x(t)) − x(t) → 0. Thus

ẋ1(t) = b(t) − (x1(t) − β)

with b(t) → 0. Integrating explicitly gives

x1(t) − β = e−t(x(0) − β) +

t\
0

e−(t−s)b(s) ds.

Since b(t) → 0, l’Hospital’s rule can be used to conclude that x1(t) → β.
Since x(t) → J anyway, x(t) → V ∗. To conclude asymptotic stability,
we also need to show the stability in the sense of Lyapunov. Now, since
V ∗(1) = β, we get

‖x(t) − V ∗‖∞ ≤ |x(t) − V ∗|∼ + |x1(t) − β| = |y(t) − V ∗|∼ + |x1(t) − β|

≤ 2‖y(t)−V ∗‖∞+ |x1(t)−β| ≤ 2‖x(0)−V ∗‖∞ + |x1(t)−β|

by the preceding lemma and the fact that x(0) = y(0). Since V ∗ ∈ J , we
have

b(t) = F 2
1 (x(s)) − x1(s) − (F 2

1 (V ∗) − V ∗(1)).

It is easily verified that

(F 2
1 (x) − x1) − (F 2

1 (y) − y1) ≤ max
i

((xi − x1) − (yi − y1)) ≤ |x− y|∼,

(F 2
1 (x) − x1) − (F 2

1 (y) − y1) ≥ min
i

((xi − x1) − (yi − y1)) ≥ −|x− y|∼.
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Thus,

|b(t)| ≤ |x(t) − V ∗|∼ = |y(t) − V ∗|∼ ≤ 2‖y(t) − V ∗‖∞ ≤ 2‖x(0) − V ∗‖∞.

Since

x1(t) − β = e−t(x1(0) − β) +

t\
0

e−(t−s)b(s) ds,

it follows that

|x1(t) − β| ≤ e−t|x1(0) − β| + 2

t\
0

e−(t−s)‖x(0) − V ∗‖∞ ds

≤ 3‖x(0) − V ∗‖∞.

Hence ‖x(t) − V ∗‖∞ ≤ 5‖x(0) − V ∗‖∞, implying stability in the sense of
Lyapunov. This completes the proof.

Just as we established the convergence of {θ(n)} by linking its itera-
tions with (3.8), we shall establish the convergence of {hn} by linking (2.1)
with (4.3). To do so, we first need to establish that {hn} remains bounded.

Lemma 4.3. Sample path-wise, if the iterations (2.1) remain bounded for

one initial condition, they do so for all initial conditions.

P r o o f. Let {h′n}, {h
′′
n} be two sequences generated by (2.1) with dif-

ferent initial conditions, with {h′′n} bounded. Write (2.1) for {h′n}, {h
′′
n},

subtract and take the seminorm | · |∼ on both sides of the resulting equation
to obtain

|h′n+1 − h′′n+1|
∼ ≤ (1 − a(n))|h′n − h′′n|

∼ + a(n)|h′n − h′′n|
∼

= |h′n − h′′n|
∼ ≤ . . . ≤ |h′0 − h′′0 |

∼.

But |h′n|
∼ ≤ |h′n − h′′n|

∼ + |h′′n|
∼. Thus |h′n|

∼ remains bounded. It is then
enough to show that any one component of {h′n} remains bounded in order
to conclude that {h′n} itself is bounded. Consider {h′n(1)}. We have

∣∣∣ min
u

∑

j

p(1, j, u, [θ(n)])h′n(j) − h′n(1)
∣∣∣

=
∣∣∣min

u

∑

j

p(1, j, u, [θ(n)])(h′n(j) − h′n(1))
∣∣∣ ≤ |h′n|

∼,

which is bounded. Thus the iteration for {h′n(1)} has the form

h′n+1(1) = (1 − a(n))h′n(1) + a(n)Hn

where {Hn} is a uniformly bounded sequence. A simple induction argument
establishes the boundedness of {h′n(1)} and therefore of {h′n}.

Lemma 4.4. The sequence {hn} generated by (2.1) is a.s. bounded.
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P r o o f. Let ε > 0 and T > 0. Define {Tn} by T0 = 0 and Tn = tm(n)

where m(n) is chosen so that

tm(n+1)−1 < tm(n) + T ≤ tm(n+1), n ≥ 0.

Thus Ti+1 − Ti ∈ [T, T + 1] always. Let B be a large closed ball containing
h0 and the ε-neighbourhood of V ∗ in its interior. Consider {h′n} generated
by a modification of (2.1) as follows: Whenever h′m(n) ∈ Bc, reset it to

h0. Define z(t), t ≥ 0, by z(tn) = h′n with linear interpolation on [tn, tn+1],
n ≥ 0. For n ≥ 0, let xn(t), t ∈ [Tn, Tn+1], be the solutions of (4.3) satisfying
xn(Tn) = z(Tn). Since θ(n) → θ0 a.s., a routine approximation argument
shows that almost surely (i.e., whenever θ(n) → θ0),

lim
n→∞

sup
t∈[Tn,Tn+1]

‖z(t) − xn(t)‖ = 0.

Corollary 4.1 and the converse Lyapunov theorem (Theorem 17.5, p. 100
of [23]) imply that there exists a Lyapunov function for (4.3) that strictly
decreases along the nonconstant trajectories of (4.3). Now we can invoke
Theorem 1, p. 339 of [13] (Theorem A.1 of the appendix) to conclude that
z(t) and therefore h′n converges a.s. to the ε-neighbourhood of V ∗. This
implies in particular that h′m(n) was reset to h0 at most finitely many times,

i.e., h′n evolved as per (2.1) from some (random) n on. Now appeal to the
preceding lemma to conclude.

Theorem 4.1. hn → V ∗ a.s.

P r o o f. In the light of Lemma 4.4, exactly the same argument as in the
proof thereof ensures that hn converges a.s. to the ε-neighbourhood of V ∗

for a given ε. Since the ε > 0 was arbitrary, we are done.

Theorem 4.2. For any ε > 0, there exists an a0(ε) > 0 such that if

a < a0(ε), the proposed adaptive control policy is ε-optimal.

P r o o f. From (4.1), we have

V ∗(Xn) = min
u

(
k(Xn, u) +

∑

j

p(Xn, j, u, θ0)V
∗(j) − β

)
, n ≥ 0.

Thus

β + V ∗(Xn) −E[V ∗(Xn+1) | Gn] − k(Xn, ξn(Xn))

=
[
min

u

(
k(Xn, u) +

∑

j

p(Xn, j, u, θ0)V
∗(j)

)

− min
u

(
k(Xn, u) +

∑

j

p(Xn, j, u, [θ(n)])V ∗(j)
)]

+
[
min

u

(
k(Xn, u) +

∑

j

p(Xn, j, u, [θ(n)])V ∗(j)
)
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− min
n

(
k(Xn, u) +

∑

j

p(Xn, j, u, [θ(n)])hn(j)
)]

+
[
min

n

(
k(Xn, u) +

∑

j

p(Xn, j, u, [θ(n)])hn(j)
)

−
(
k(Xn, ξn(xn)) +

∑

j

p(Xn, j, ξn(Xn), [θ(n)])hn(j)
)]

+
[(
k(Xn, ξn(Xn)) +

∑

j

p(Xn, j, ξn(Xn), [θ(n)])hn(j)
)

−
(
k(Xn, ξn(Xn)) +

∑

j

p(Xn, j, ξn(Xn), θ0)V
∗(j)

)]
.

Let δ > 0. Since [θ(n)] → θ∗ and hn → V ∗ a.s., outside a zero probability
set (ignored henceforth), the expressions in the first, second and fourth
square brackets do not exceed δ/3 for sufficiently large n. That in the third
square bracket is bounded by K ′I{ξn(Xn) = Z ′

n} for a suitable constant
K ′. Sum both sides over n = 0, 1, . . . , N − 1, divide by N and let N → ∞.
By the strong law of large numbers for square integrable martingales ([9],
p. 244), we have

1

N

N∑

n=1

(V ∗(Xn) − E[V ∗(Xn) | Gn−1]) → 0 a.s.

Hence

lim sup
n→∞

∣∣∣β −
1

n

n−1∑

m=0

k(Xm, ξm(Xm))
∣∣∣

≤ δ +K ′ lim sup
n→∞

1

n

n−1∑

m=0

I{ξm(Xm) = Z ′
m} ≤ δ +K ′a a.s.

Since δ was arbitrary, the claim follows for a0(ε) = ε/K ′.

In conclusion, observe that if (A1) were relaxed, one could analogously
obtain convergence of {θ(n)} to the set of θ for which p(i, j, u, θ) =
p(i, j, u, θ0) for all i, j, u. The ε-optimality argument does not get affected.

Appendix. We recall here two key results from [6], [13] resp. used in
this paper. We start with Theorem 1, p. 339 of [13], which is Theorem A.1
below.

Consider the d-dimensional o.d.e.

(A.1) ẋ(t) = f(x(t), t)

which has a globally, uniformly asymptotically stable equilibrium point x0

and an associated continuously differentiable Lyapunov function V : R
d →
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R
+ satisfying supt,‖x−x0‖≥ε ∇V · f(x, t) < 0 for any ε > 0. Given T > 0

and δ > 0, we call a bounded measurable function y(·) : R
+ → R

d a (T, δ)-
perturbation of (A.1) if there exist 0 = T0 < T1 < T2 < . . . such that
Tj+1 − Tj ≥ T for all j and there exist solutions xj(t), t ∈ [Tj , Tj+1], of
(A.1) for j ≥ 0 such that

sup
t∈[Tj ,Tj+1]

‖xj(t) − y(t)‖ < δ ∀j.

Theorem A.1. Given T > 0 and ε > 0, there exists a δ0 > 0 suffi-

ciently small such that for 0 < δ < δ0, any (T, δ)-perturbation y(·) of (A.1)
converges to the ε-neighbourhood of x0.

P r o o f. Clearly V (x0) < V (x), x 6= x0. For η > 0, define B(η) =
{x | V (x) < V (x0) + η}. Then B(η) is an open neighbourhood of x0. Since
y(·) is bounded, we may suppose that y(·) and the trajectories {xj(·)} of
(A.1) as above which we shall consider below, a priori lie in a sufficiently
large closed bounded ball B. Let

K = max
x∈B

‖∇V (x)‖, ∆ = − sup
t≥0, x6∈B(η)

∇V (x) · f(x, t).

Then ∆ > 0 and for {xj(·)} as above,

V (xj(Tj+1)) ≤ V (xj(Tj)) −∆T

whenever xj(t), t ∈ [Tj , Tj+1], does not intersect B(η). If δ < ∆T/(4K), we
also have

(A.2) V (y(Tj+1)) ≤ V (y(Tj)) −∆T/2.

Call y(t), t ∈ [Ti, Ti+1], a patch of y(·). If a patch of y(·) does not intersect
B(η+ δ/K), the corresponding xj(·) cannot intersect B(η) and (A.2) holds.
Since (A.2) can hold for at most finitely many consecutive j, eventually
xj(·) must intersect B(η) whence the corresponding patch of y(·) intersects
B(η + δ/K). Now

V (xj(t)) ≤ V (xj(s)) for s, t ∈ [Tj , Tj+1], t ≥ s,

always and thus

V (y(t)) ≤ V (y(s)) + 2δK for s, t ∈ [Tj , Tj+1], t ≥ s,

for all j. Hence the patch of y(·) that intersects B(η + δ/K) remains in
B(η + δ/K + 2δK) after hitting B(η + δ/K). Since 2δK < ∆T/2, (A.2)
ensures that the subsequent patch also hits B(η+ δ/K). It follows that y(·)
remains in B(η+ δ/K +2δK) once it hits B(η+ δ/K). Pick η, δ sufficiently
small so that B(η + δ/K + 2δK) is in the ε-neighbourhood of x0. This
completes the proof.
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It should be remarked that this is a slight variant of the original result of
[13], where the o.d.e. is autonomous. In applying this result in Theorem 3.1,
one notes that for a given T > 0, θ(t + ·) is a (T, δ)-perturbation of (3.8)
for any δ > 0 for sufficiently large t, by virtue of Lemmas 3.2 and 3.4. Thus
the above applies for every ε > 0, implying the desired convergence.

We now turn to Theorem 3.1 of [6], which is Theorem A.2 below. The
proof is very lengthy, so we shall proceed through a sequence of lemmas.
Consider the d-dimensional o.d.e.

(A.3) ẋ(t) = F (x(t)) − x(t)

where F satisfies ‖F (x)−F (y)‖∞ ≤ ‖x− y‖∞ and J = {x | F (x) = x} 6= ∅.
Let x∗ ∈ J .

Lemma A.1. t → ‖x(t) − x∗‖∞ is nonincreasing.

P r o o f. For x ∈ R
d, define ‖x‖p = (d−1

∑d
i=1 |xi|

p)1/p for p ∈ (1,∞).
It is easily verified that ‖x‖p → ‖x‖∞ as p → ∞. Direct differentiation
leads to

d

dt
‖x(t) − x∗‖p = −‖x(t) − x∗‖p + ‖x(t) − x∗‖1−p

p Γ (t)

where

Γ (t) =
1

d

d∑

i=1

|xi(t) − x∗i |
p−1 sgn(xi(t) − x∗i )(Fi(x(t)) − Fi(x

∗))

≤ ‖x(t) − x∗‖p−1
p ‖F (x(t)) − F (x∗)‖p (by Hölder’s inequality)

Integrating over [s, t], t ≥ s, gives

‖x(t) − x∗‖p ≤ ‖x(s) − x∗‖p +

t\
s

(−‖x(y) − y∗‖p + ‖F (x(y)) − F (x∗)‖p) dy.

Let p→ ∞ and use ‖F (x(y)) − F (x∗)‖∞ ≤ ‖x(y) − x∗‖∞ to conclude.

Thus ‖x(t) − x∗‖∞ → b ≥ 0. If b = 0, we are done. Suppose b > 0. At
this juncture, we need some additional terminology.

For m ≤ d, an m-face is a set of the type

{x = [x1, . . . , xd] | xik
∈ [ak, bk], k ≤ m, xik

= ck, k > m}

where {i1, . . . , id} is a permutation of {1, . . . , d} and ck, bk > ak are scalars.
Let Bb = {x ∈ R

d | ‖x−x∗‖∞ = b}, which then is the union of (d− 1)-faces
of the type

{x | xi − x∗i = b or − b, |xj − x∗j | ≤ b for j 6= i}.

Then x(t) → Bb, i.e., Ω = the ω-limit set of x(·), is contained in Bb. If
Ω = {x} then x is an equilibrium point for (A.3). Thus F (x) = x and we
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are done. If not, let x̃(·) be a trajectory of (A.3) in Ω. By abuse of notation,
let {x̃(·)} = {x̃(t) | t ∈ R}.

Finally, for a (d− 1)-face A, define GA = {x ∈ A | F (x) ∈ A}. Then GA

is closed, possibly empty.

Lemma A.2. {x̃(·)} ∩A ⊂ GA.

P r o o f. If both sets are empty, there is nothing to prove. Suppose
{x̃(·)} ∩A 6= ∅. For simplicity, let A = {x | x∗1 = a, |xi − x∗i | ≤ a, i 6= 1}. By
suitable choice of x̃(0), suppose that {x̃(t) | t ∈ [0, t ]} ⊂ A for some t > 0.
Then for t ∈ [0, t ], x̃1(t) = a+ x∗1. Hence

0 =
d

dt
x̃1(t) = F1(x̃(t)) − x̃1(t), t ∈ [0, t ].

Also, |Fi(x̃(t)) − x∗i | ≤ ‖x̃(t) − x∗‖∞ = b for i ≥ 2, t ∈ [0, t ]. It follows that
x̃(t) ∈ GA for t ∈ [0, t ]. Thus all connected segments of {x̃(·)}∩A containing
more than one point are in GA. Clearly, those containing a single point must
be in the relative boundary ∂A of A, which is a union of its faces which are
(d − 2)-faces. Let x ∈ {x̃(·)} ∩ ∂A. It suffices to show that F (x) ∈ ∂A. If
not, F (x) − x would be transversal to ∂A at x, which contradicts the fact
that {x̃(·)} is a differentiable trajectory confined to Bb. (It cannot make
“sharp turns”.) This completes the proof.

Fix a (d− 1)-face A for the time being.

Lemma A.3. If GA 6= ∅, then F : GA → A can be extended to a map

F̃ : A → A satisfying ‖F̃ (x) − F̃ (y)‖∞ ≤ ‖x − y‖∞ for x, y ∈ A. Further ,

F̃ has a fixed point x̃ in A.

P r o o f. The second claim follows from the first by the Brouwer fixed
point theorem. To prove the first, suppose for simplicity that A = {x | x1 =
x∗1 + b, |xj − x∗j | ≤ b for j > 1}. Fix i, 1 < i ≤ d. Define

gi(x) = inf
y∈GA

(Fi(y) + ‖x− y‖∞), x ∈ A.

Then gi(x) ≤ Fi(x) for x ∈ GA. For x, y ∈ GA,

|Fi(x) − Fi(y)| ≤ ‖x− y‖∞

leads to

Fi(y) + ‖x− y‖∞ ≥ Fi(x).

Thus gi(x) ≥ Fi(x), implying Fi = gi on GA. For x, z ∈ A,

gi(x) ≤ inf
y∈GA

(Fi(y) + ‖y − z‖∞ + ‖z − x‖∞) ≤ gi(z) + ‖z − x‖∞.

Similarly, gi(z) ≤ gi(x) + ‖z − x‖∞. Hence

|gi(x) − gi(z)| ≤ ‖z − x‖∞.
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Let F̃i(x) = (gi(x) ∧ (x∗i + b)) ∨ (x∗i − a). Then

|F̃i(x) − F̃i(y)| ≤ ‖x− y‖∞.

Let F̃1(x) = x∗1 + b for x ∈ A. Then F̃ (·) = [F̃1(·), . . . , F̃d(·)] has the desired
properties.

The same argument can be used once again to extend F̃ to a map F̂ :
R

d → R
d that restricts to F̃ on A and to F on

⋃
A′ GA′ (the union is over all

(d− 1)-faces of Bb) and satisfies ‖F̂ (x)− F̂ (y)‖∞ ≤ ‖x− y‖∞ for x, y ∈ R
d.

Now repeat the earlier argument with F̂ , x̃ replacing F, x∗ to conclude that
‖x̃(t) − x̃‖∞ is nonincreasing and thus converges to a c ≥ 0. If c = 0, we
are done. If not, x̃(t) → Bc. Also, it is clear that no (d − 1)-face of Bc is
coplanar with A. This argument can be repeated for each (d − 1)-face of
Bb that intersects {x̃(·)}, leading to possibly more ‖ · ‖∞-spheres Bq, Br, . . .
defined analogously to Bc such that x̃(t) → Bc ∩ Bq ∩ Br ∩ . . . The above
remarks also imply that this intersection is a union of m-faces with m at
most d− 2. Now consider a trajectory x(·) of (A.3) in the ω-limit set of x̃(·)
and repeat the above argument to conclude that x(t) converges to a union
of m-faces with m at most d − 3. Iterating this argument at most d times,
we are left with a union of finitely many points to one of which x̃(·), x(·), . . .
and therefore x(·) must converge and which then must be a fixed point of F .
Thus we have:

Theorem A.2. Any solution x(·) of (A.3) converges to a point in J that

may depend on x(0). Also, for any x∗ ∈ J , ‖x(t) − x∗‖∞ is nonincreasing.
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