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EFFECTIVE COMPUTATION

OF THE FIRST LYAPUNOV QUANTITIES

FOR A PLANAR DIFFERENTIAL EQUATION

Abstract. We take advantage of the complex structure to compute in a
short way and without using any computer algebra system the Lyapunov
quantities V3 and V5 for a general smooth planar system.

1. Introduction. Consider the differential equation (ẋ, ẏ) = (f(x, y),
g(x, y)), (x, y) ∈ R

2, in the plane where f and g are analytic functions
satisfying f(0, 0) = g(0, 0) = 0. It is well known that when the origin
is a non-hyperbolic critical point of focus type the study of its stability
can be reduced to the computation of the so called Lyapunov quantities,
V2k+1, k = 1, 2, . . . ; see [ALGM] for more details. By making a linear change
of coordinates and a rescaling of the time variable if necessary, the planar
differential equation can be written as

(1) ż = F (z, z) = iz +
∞∑

k=2

Fk(z, z),

where z = x + iy = Re(z) + i Im(z), and Fk is a complex homogeneous
polynomial of degree k.

In this paper we make some modifications in the standard techniques ex-
plained in [ALGM] to obtain the Lyapunov quantities. These modifications
simplify their effective computation. The main idea is to keep the complex
structure of (1) during all the process.

In Section 2 we give some preliminary results and in Section 3 we prove:
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Theorem A. Consider the differential equation (1). Set

F2(z, z) = Az2 +Bzz + Cz2,

F3(z, z) = Dz3 + Ez2z + Fzz2 +Gz3,

F4(z, z) = Hz4 + Iz3z + Jz2z2 +Kzz3 + Lz4,

F5(z, z) = Mz5 +Nz4z +Oz3z2 + Pz2z3 +Qzz4 +Rz5.

Then the first Lyapunov quantities of (1) are:

V3 = 2π[Re(E) − Im(AB)],(i)

V5 =
π

3
[6Re(O) + Im(3E2 − 6DF + 6AI(ii)

− 12BI − 6BJ − 8CH − 2CK)

+ Re(−8CCE + 4ACF + 6ABF + 6BCF − 12B2D − 4ACD

− 6ABD + 10BCD + 4ACG+ 2BCG)

+ Im(6AB2C + 3A2B2 − 4A2BC + 4B3C)].

The above result already appears in [CGMM, FLLL, G, GW, HW], but
the proof that we present is shorter and does not use any computer algebra
system.

2. Preliminary results. We briefly recall the definition of the Lya-
punov constants.

In the (r, θ)-polar coordinates zz = r2, θ = arctan Im(z)
Re(z)

, (1) is converted
into

dr

dθ
=

Re[zF (z, z)]/r

Im[zF (z, z)]/r2

∣∣∣∣
z=reiθ

,

or equivalently, for r small enough,

(2)
dr

dθ
=

∑
∞

k=2 r
k Re(Sk(θ))

1 +
∑

∞

k=2 r
k−1 Im(Sk(θ))

=

∞∑

k=2

Rk(θ)r
k,

where Sk(θ) = zFk(z, z)|z=eiθ = e−iθFk(e
iθ, e−iθ), R2(θ) = Re(S2(θ)) and

(3) Rk(θ) = Re(Sk(θ)) −

k−2∑

j=1

Rk−j(θ) Im(Sj+1(θ)) for k ≥ 3.

Denote by r(θ, s) the solution of (2) which takes the value s at θ = 0.
Consider

(4) r(θ, s) − s =

∞∑

k=2

uk(θ)s
k, where uk(0) = 0 for k ≥ 2.

Then the stability of the origin of (1) is given by the sign of the first non-zero
value uk(2π). It is well known that the corresponding k is odd (see [ALGM,
p. 243]).
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Assume that uk(2π) = 0 for k = 1, . . . , 2m and u2m+1(2π) 6= 0. Then
the mth Lyapunov quantity is defined by V2m+1 = u2m+1(2π).

The next result is inspired by [AL] and it allows us to compute the first

values uk(2π). In the sequel, we use the notation f̃ = f̃(θ) = (f)∼(θ) =Tθ
0
f(s) ds.

Proposition 1. Given (2), the functions ui(θ), i = 2, 3, 4, 5, involved in

its solution (4) are

u2(θ) = R̃2,

u3(θ) = (R̃2)
2 + R̃3,

u4(θ) = (R̃2)
3 + 2R̃2R̃3 +

˜̃
R2R3 + R̃4,

u5(θ) = (R̃2)
4 + 3(R̃2)

2R̃3 +
˜

(R̃2)2R3 + 2R̃2
˜̃
R2R3

+ 3
2 (R̃3)

2 + 2R̃2R̃4 + 2R̃4R̃2 + R̃5.

P r o o f. Direct substitution gives
∞∑

k=2

Rk(θ)[r(θ, s)]
k =

∞∑

k=2

u′k(θ)s
k.

By using the expression for a power series raised to some power (see [GR],
for instance), whenever k ≥ 2, we have

u′k(θ) =
k∑

m=2

Rm(θ)

[∑

M

((
m

a1 . . . ak−1

))
ua2

2 (θ)ua3

3 (θ) . . . u
ak−1

k−1 (θ)

]
,

where M = {(a1, . . . , ak−1) ∈ N
k−1 : a1 + . . . + ak−1 = m, a1 + . . . + (k −

1)ak−1 = k}. Then the proof follows from judicious integration. As an
example we prove the expression for u4(θ). By using the previous formula
we have

u4(θ) =

θ\
0

(R2(Ψ)(2u3(Ψ) + u2
2(Ψ)) +R3(Ψ)3u2(Ψ) +R4(Ψ)) dΨ.

We obtain the desired result from the last expression, by substituting the
values of u2(Ψ) and u3(Ψ) and integrating, as follows:

u4(θ) =

θ\
0

[R2(Ψ)(2R̃3(Ψ) + 3(R̃2(Ψ))2) +R3(Ψ)3R̃2(Ψ) +R4(Ψ)] dΨ

= (R̃2(θ))
3 + 2

θ\
0

[R̃3(Ψ)R2(Ψ) + R̃2(Ψ)R3(Ψ)] dΨ

+

θ\
0

R̃2(Ψ)R3(Ψ) dΨ + R̃4(θ)

= (R̃2)
3 + 2R̃2R̃3 +

˜̃
R2R3 + R̃4.
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Corollary 2. The first Lyapunov quantities of (1) are

V3 = R̃3(2π),

V5 = (
˜

R3(R̃2)2 + 2R̃4R̃2 + R̃5)(2π),

where the functions Ri(θ) are defined by

R2 = ReS2,

R3 = ReS3 − ReS2 ImS2,

R4 = ReS4 − ReS3 ImS2 + ReS2(ImS2)
2 − ReS2 ImS3,

R5 = ReS5 − ReS4 ImS2 − ReS2 ImS4 + 2ReS2 ImS2 ImS3

− ReS3 ImS3 + ReS3(ImS2)
2 − ReS2(ImS2)

3,

and Sk(θ) = e−iθFk(e
iθ, e−iθ).

P r o o f. From the fact that u2(2π) = 0 and using Proposition 1, we

have R̃2(2π) = 0. Hence, the result on V3 follows by using Proposition 1.
Assuming that V3 = 0, we get u4(2π) = 0 and from Proposition 1, again,
we get the desired result on V5. On the other hand, the expression of Rk
when k = 2, 3, 4 and 5 follows directly from (3). As an example we prove
the expression for R4. From (3) we have

R4 = ReS4 −
2∑

j=1

R4−j(θ) ImSj+1(θ)

= ReS4 − (ReS3 − ReS2 ImS2) ImS2 − ReS2 ImS3,

which gives the expected value of R4.

We now recall the following formulas that will be frequently used in the
sequel:

(5)

2ReαReβ = Re[αβ + αβ],

2 Imα Imβ = Re[−αβ + αβ],

2Reα Imβ = Im[αβ + αβ], α, β ∈ C.

3. Proof of Theorem A. Firstly we will express the Lyapunov quan-
tities of (1) in terms of the trigonometric polynomials Sk.

Proposition 3. The first two Lyapunov quantities of system (1) are

V3 = Re

2π\
0

S3(Ψ) dΨ − 1
2 Im

2π\
0

S2
2(Ψ) dΨ,

V5 = Re

2π\
0

S5(Ψ) dΨ



Effective computation of Lyapunov quantities 247

− Im

2π\
0

[
T2(Ψ)(S4(Ψ) + S4(Ψ)) + S2(Ψ)S4(Ψ) + 1

2S
2
3(Ψ)

]
dΨ

+ 1
4 Re

2π\
0

S3(Ψ)[(S2(Ψ) + S2(Ψ))2 − (T2(Ψ) − T 2(Ψ) + 2S2(Ψ))2] dΨ

+ 1
8 Im

2π\
0

S2
2(Ψ)[T2(Ψ) − T 2(Ψ) + S2(Ψ) − S2(Ψ)]2dΨ,

where Sk(ψ) = e−iψFk(e
iψ, e−iψ) and T2(Ψ) = −i[S̃2(Ψ) − 1

2π

T2π
0
S̃2(θ)dθ]

P r o o f. By using Corollary 2 and formulas (5) we get the expression
for V3.

To obtain V5 we recall that by Corollary 2,

V5 = (R3(R̃2)
2 + 2R4R̃2 +R5)

∼(2π).

In order to simplify the calculations of V5 we define, for any real number v,

V5(v) = (R3(R̃2 + v)2 + 2R4(R̃2 + v) +R5)
∼(2π).

By using the fact that V3 = 0 (R̃3(2π) = 0) and also that u4(2π) = 0

((R̃4 +
˜̃
R2R3)(2π) = 0), it turns out that V5(v) ≡ V5. Therefore we can

choose any v for computing V5. We choose it such that

R̃2 + v = Re(S̃2 + v) = Re(iT2) = − Im(T2).

Hence

V5 =

2π\
0

(R3(θ)(Im(T2(θ)))
2 − 2R4(θ) Im(T2(θ)) +R5(θ)) dθ.

To get a more suitable expression for the integrated function we again
use Corollary 2, obtaining

(ReS3 − ReS2 ImS2)(Im T2)
2

− 2(ReS4 − ReS3 ImS2 + ReS2(ImS2)
2 − ReS2 ImS3) Im T2

+ ReS5 − ReS4 ImS2 − ReS2 ImS4 + 2ReS2 ImS2 ImS3

− ReS3 ImS3 + ReS3(ImS2)
2 − ReS2(ImS2)

3.

Collecting terms taking into account the number of factors they have, we
get

ReS5 − 2ReS4 ImT2 − ReS4 ImS2 − ReS2 ImS4 − ReS3 ImS3

+ ReS3(ImT2)
2 + 2ReS3 ImS2 ImT2 + 2ReS2 ImS3 ImT2

+ 2ReS2 ImS2 ImS3 + ReS3(ImS2)
2

− ReS2 ImS2(ImT2)
2 − 2ReS2(ImS2)

2 ImT2 − ReS2(ImS2)
3.
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Afterwards we will apply iteratively the formulas (5) to arrive at the
final expression of V5.

Firstly we consider the terms with one, two and three factors. The
unique term with exactly one factor is ReS5, and its integral appears in the
expression of V5. With exactly two factors we have

−2ReS4 ImT2 − ReS4 ImS2 − ReS2 ImS4 − ReS3 ImS3.

The use of formulas (5) gives

− Im
[
T2(S4 + S4) + S2S4 + 1

2
S2

3

]
,

which is the result that appears in the expression of V5.

We have the following terms with exactly three factors:

ReS3(ImT2)
2 + 2ReS3 ImS2 ImT2 + 2ReS2 ImS3 ImT2

+ 2ReS2 ImS2 ImS3 + ReS3(ImS2)
2.

Transforming this expression term after term by applying formulas (5), we
have

ReS3(Im T2)
2 = − 1

4 Re(S3(T2 − T 2)
2),

2ReS3 ImS2 ImT2 + 2ReS2 ImS3 ImT2 = −Re(S2S3(T2 − T 2)),

2ReS2 ImS2 ImS3 + ReS3(ImS2)
2 = 1

4 Re(S3[(S2 + S2)
2 − 4S2

2 ]).

Integrating the sum of the last three expressions we obtain the corresponding
term that appears in V5.

The computations involving the terms with four factors are tedious but
straightforward and we omit them.

As a consequence of the previous proposition we can prove our main
result.

P r o o f o f T h e o r e m A. If we express S2(θ), S3(θ), S4(θ), S5(θ) and
T2(θ) in terms of the coefficients of the differential equation we get

S2(θ) = Aeiθ +Be−iθ + Ce−3iθ,

S3(θ) = De2iθ + E + Fe−2iθ +Ge−4iθ,

S4(θ) = He3iθ + Ieiθ + Je−iθ +Ke−3iθ + Le−5iθ,

S5(θ) = Me4iθ +Ne2iθ +O + Pe−2iθ +Qe−4iθ +Re−6iθ,

T2(θ) = −Aeiθ +Be−iθ +
C

3
e−3iθ.

To compute V3, from Proposition 3, we need to calculate
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Re

2π\
0

(De2iθ + E + Fe−2iθ +Ge−4iθ) dθ

− 1
2 Im

2π\
0

(A2e2iθ + 2AB + (B2 + 2AC)e−2iθ + 2BCe−4iθ + C2e−6iθ) dθ.

Hence, it suffices to obtain the terms with no exponential factors. This is
because the other terms have 2π-periodic primitives and consequently, when
we integrate between 0 and 2π, they vanish. Therefore, we have V3.

To obtain V5, first we obtain the trigonometric polynomial expressions
of the integrands in V5 of Proposition 3, and then we utilize the argument
used in the calculus of V3. That is, we are only interested in the terms of
the resulting trigonometric polynomials without exponential factors. This
argument allows computing V5 by hand. Anyway, observe that by changing
eiθ and e−iθ to x and 1/x respectively, the problem is reduced to the study
of a product of polynomials in x and 1/x, which is done extremely fast by
computer. In any case, we get the following expression for V5:

V5 = 2π
[
Re(O) − Im

(
1
2E

2 +DF −AI + 2BI +BJ + 4
3CH + 1

3CK
)

(6)

+ 1
4

Re
(

32
9
CCE + 8

3
ACF + 4ABF + 4BCF

− 8B2D − 8
3ACD − 4ABD + 20

3 BCD

+ 8
3ACG+ 4

3BCG+ 4EAB + 8BBE − 4ABE
)

+ 1
8

Im
(
8AB2C + 4A2B2 − 16

3
A2BC

+ 16
3 B

3C − 16AB2B − 160
9 ABCC

)]
,

but this expression can be reduced by using the fact that V3 = 0. We note
that this fact has already been partially used.

To simplify the expression for V5 we proceed as follows. Take the terms

(7) 2π
{
−Im

(
1
2
E2

)
+ 1

4
Re

(
32
9
CCE + 4EAB + 8BBE − 4ABE

)

+ 1
8 Im

(
−16AB2B − 160

9 ABCC
)}
.

Using (5) and the fact that Re(E) = Im(AB) (i.e. that V3 = 0), we have
1
4 Re(8BBE) + 1

8 Im(−16AB2B) = 0,

2π
{

1
4 Re

(
32
9 CCE

)
− 1

8 Im
(

160
9 ABCC

)}
= −8

3 πCC Re(E),

and

2π
{
−Im

(
1
2E

2
)

+ 1
4 Re(4EAB − 4ABE)

}
= π Im(E2).

Hence, (7) is equal to

2π
{

1
2 Im(E2) − 4

3 Re(CCE)
}
.

Therefore, by substituting this last expression in (6) we get the final formula
for V5.
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