J. KOTOWICZ (Białystok)

ON THE EXISTENCE OF A COMPACTLY SUPPORTED L^{p}-SOLUTION FOR TWO-DIMENSIONAL TWO-SCALE DILATION EQUATIONS

Abstract. Necessary and sufficient conditions for the existence of compactly supported L^{p}-solutions for the two-dimensional two-scale dilation equations are given.

1. Introduction. One of the fundamental problems in higher dimensional wavelet theory is to study the properties of solutions of the dilation equation

$$
\begin{equation*}
f(\mathbf{x})=\sum_{k \in \mathbb{Z}^{d}} c_{k} f\left(\alpha \mathbf{x}-\beta_{k}\right), \quad \mathbf{x} \in \mathbb{R}^{d}, \tag{1}
\end{equation*}
$$

where $k \in A \subset \mathbb{Z}^{d}, A$ is finite and $\mathbb{R} \ni \alpha>1$.
Using the Fourier method the following fundamental theorem was obtained in [1]:

Theorem 1.1. Define $P(\xi)=\frac{1}{\alpha^{d}} \sum_{k \in \mathbb{Z}^{d}} c_{k} e^{i\left\langle\beta_{k}, \xi\right\rangle}, \xi \in \mathbb{C}^{d}$ and $\Delta=$ $P(0)$.
(a) If $|\Delta| \leq 1$ and $\Delta \neq 1$, then the only L^{1}-solution to (1) is trivial.
(b) If $|\Delta|=1$ and (1) has a non-trivial L^{1}-solution f, then f is unique up to scale and \widehat{f} is given by

$$
\widehat{f}(\xi)=f(0) \prod_{m=1}^{\infty} P\left(\xi / \alpha^{m}\right)
$$

Moreover, f is compactly supported and

$$
\operatorname{supp} f \subseteq \frac{K}{\alpha-1}, \quad \text { where } \quad K=\operatorname{conv-hull}\left(\beta_{k}\right) .
$$

[^0](c) If $|\Delta|>1$, then a necessary condition for (1) to have a non-trivial compactly supported L^{1}-solution is $\Delta=\alpha^{k}$, for some $k \in \mathbb{Z}_{+}$. In this case
$$
\widehat{f}(\xi)=h(\xi) \prod_{m=1}^{\infty} \frac{P\left(\xi / \alpha^{m}\right)}{\Delta}
$$
where h is a homogeneous polynomial of degree k.
The non-zero solutions of (1) are called scaling functions.
Our aim in this paper is to study the L^{p}-integrability properties of the scaling functions in the case when $d=2, \alpha=2$ and $\beta_{k}=k \in A=\{(i, j) \in$ $\left.\mathbb{Z}^{2}: 0 \leq i, j \leq N\right\}$.

In this case the equation (1) and the condition $|\Delta|=1$ can be rewritten as

$$
\begin{align*}
f(x, y)= & \sum_{0 \leq i, j \leq N} c_{(i, j)} f(2(x, y)-(i, j)), \tag{2}\\
& \sum_{0 \leq i, j \leq N} c_{(i, j)}=4 . \tag{3}
\end{align*}
$$

Let us note a simple consequence of Theorem 1.1.
Corollary 1.2. Suppose that the condition (3) holds. If there exists a non-trivial L^{1}-solution f of (2), then it must be unique up to scale and $\operatorname{supp} f \subseteq[0, N]^{2}$.

Such a special class of scaling functions is important because of its applications in the wavelet theory on \mathbb{R}^{2}, in subdivision schemes in approximation theory, and in practical image processing.

The L^{p}-integrability properties of the scaling function give information on the corresponding wavelet basis. A major problem is to determine the L^{p}-integrability properties from the values of c_{k} for $k \in A$. For solving this, we adopt the matrix implementation of the iteration method, which in the one-dimensional case was used in $[2-4],[5-6],[7],[8-9]$.
2. Technical facts. The following notations are used everywhere: $\|\cdot\|$ for any norm in $\mathbb{R}^{N} \times \mathbb{R}^{N}, N$ is the same as in (2), $K=[0,1)^{2}$ and $B+x=\{a+x: a \in B\}$ for $B \subseteq \mathbb{R}^{2}, x \in \mathbb{R}^{2}$.

Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ have $\operatorname{supp} g \subseteq[0, N]^{2}$. Define a matrix-valued function $\vec{g}: K \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N}$ by

$$
(\vec{g}(x, y))_{i, j}=g((x, y)+(i, j)) \chi_{K}(x, y) \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

where $0 \leq i, j \leq N-1$ and χ_{K} is the characteristic function of the set K.

Conversely, for any matrix-valued function \vec{f} on K we define a function f on \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\vec{f}_{i, j}(\widetilde{x}, \widetilde{y}) & \text { for }(x, y)=(\widetilde{x}+i, \widetilde{y}+j) \text { and }(\widetilde{x}, \widetilde{y}) \in K, \\ 0 & \text { for }(x, y) \notin[0, N]^{2}\end{cases}
$$

For $k, l \in\{0,1\}$, consider the linear operators $T^{(k, l)}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow$ $\mathbb{R}^{N} \times \mathbb{R}^{N}$ with coefficients

$$
\begin{equation*}
T_{i_{1}, i_{2} ; j_{1}, j_{2}}^{(k, l)}=c_{\left(2 i_{1}-j_{1}+k, 2 i_{2}-j_{2}+l\right)} \quad \text { where } 0 \leq i_{1}, i_{2}, j_{1}, j_{2} \leq N-1 \tag{4}
\end{equation*}
$$

we use the convention that $c_{(i, j)}=0$ whenever $(i, j) \notin\left\{(k, l) \in \mathbb{Z}^{2}: 0 \leq\right.$ $k, l \leq N\}$.

The action of these operators on a matrix-valued function $\vec{g}: K \rightarrow$ $\mathbb{R}^{N} \times \mathbb{R}^{N}$ is defined by

$$
\left(T^{(k, l)} \cdot \vec{g}\right)_{i_{1}, i_{2}}=\sum_{j_{1}, j_{2}} T_{i_{1}, i_{2} ; j_{1}, j_{2}}^{(k, l)} \vec{g}_{j_{1}, j_{2}} .
$$

Set

$$
\begin{equation*}
T=T^{(0,0)}+T^{(0,1)}+T^{(1,0)}+T^{(1,1)} \tag{5}
\end{equation*}
$$

and consider the following transformations of the plane:

$$
\phi_{(i, j)}(x, y)=\left(\frac{1}{2} x+\frac{i}{2}, \frac{1}{2} y+\frac{j}{2}\right) \quad \text { for } i, j \in\{0,1\} .
$$

Then for any function g such that $\operatorname{supp} g \subseteq[0, N]^{2}$ define an operator \mathbf{T} by

$$
(\mathbf{T} \vec{g})(x, y)=\sum_{k, l \in\{0,1\}} T^{(k, l)} \vec{g}\left(\phi_{(k, l)}^{-1}(x, y)\right) .
$$

It can be rewritten explicitly as

$$
(\mathbf{T} \vec{g})(x, y)= \begin{cases}T^{(0,0)} \vec{g}(2 x, 2 y), & (x, y) \in[0,1 / 2)^{2}, \\ T^{(0,1)} \vec{g}(2 x, 2 y-1), & (x, y) \in[0,1 / 2) \times[1 / 2,1), \\ T^{(1,0)} \vec{g}(2 x-1,2 y), & (x, y) \in[1 / 2,1) \times[0,1 / 2), \\ T^{(1,1)} \vec{g}(2 x-1,2 y-1), & (x, y) \in[1 / 2,1)^{2}, \\ 0, & (x, y) \notin K .\end{cases}
$$

Let $A=\{(0,0),(0,1),(1,0),(1,1)\}, J$ be a finite sequence of elements of $A,|J|$ be the length of J (we assume that $|J|=0$ if $J=\emptyset$), and $\Lambda=\{J=$ $\left(j_{1}, \ldots, j_{k}\right): j_{l} \in A$ and $\left.k \geq 0\right\}$.

For $J=\left(j_{1}, \ldots, j_{k}\right) \in \Lambda$, define $\phi_{J}=\phi_{j_{1}} \circ \ldots \circ \phi_{j_{k}}$ (if $J=\emptyset$ then $\left.\phi_{J}:=\mathrm{Id}\right), K_{J}=\phi_{J}(K)$ and $T_{J}=T^{j_{1}} \circ \ldots \circ T^{j_{k}}$. Notice that $K_{J}=$ $\bigcup_{i, j \in\{0,1\}} K_{(J,(i, j))}$ and $K_{\left(J, J_{1}\right)} \subseteq K_{J}$ for $J, J_{1} \in \Lambda$.

Define an operator \mathbf{S} by

$$
(\mathbf{S} g)(x, y)=\sum_{0 \leq i, j \leq N} c_{(i, j)} g(2(x, y)-(i, j)) .
$$

Remark 2.1. (i) Let f be a function such that $\operatorname{supp} f \subseteq[0, N]^{2}$. Then

$$
\overrightarrow{\mathbf{S} f}=\mathbf{T} \vec{f}
$$

(ii) f is a non-trivial compactly supported L^{p}-solution of (2) if and only if $\vec{f} \in L^{p}\left(K, \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ and $\vec{f}=\mathbf{T} \vec{f}$.

Proof. The proof of the first part can be found in [1]. The second one follows from (i), Corollary 1.2 and the equation (2).

Now we present several lemmas which show properties and connections between the operator \mathbf{T}, an eigenvector of T corresponding to the eigenvalue 4 and the solution of the dilation equation.

Lemma 2.2. If $\sum_{(i, j)} c_{(i, j)}=4$, then there exists an eigenvector (which is an $N \times N$ matrix) of T corresponding to the eigenvalue 4 .

Proof. Let $\vec{w} \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ be such that $\vec{w}_{i, j}=1$ for $0 \leq i, j \leq N-1$. Applying (4) and (5) we get

$$
\left(\vec{w}^{t} T\right)_{k, l}=\sum_{0 \leq i, j \leq N} c_{(i, j)}=4 \quad \text { whenever } 0 \leq k, l \leq N-1 .
$$

So \vec{w} is a left eigenvector of T corresponding to the eigenvalue 4 and hence we get the assertion.

For a matrix-valued function \vec{f} such that $\operatorname{supp} f \subseteq[0, N]^{2}$ we define its average matrix $\vec{v} \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ on the unit square. The coordinates of \vec{v} are

$$
\vec{v}_{i, j}=f_{[i, i+1] \times[j, j+1]} \quad \text { for } 0 \leq i, j \leq N-1,
$$

where $f_{Q}=\frac{1}{m(Q)} \int_{Q} f(x, y) d m(x, y)$ for any cube Q.
Lemma 2.3. Let f be a compactly supported L^{p}-solution of (2) and let \vec{v} be its average matrix. Then \vec{v} is an eigenvector of T corresponding to the eigenvalue 4.

Proof. From Lemma 2.1 we get $\vec{f}=\mathbf{T} \vec{f}$. When we integrate separately both of this equation over the sets $[0,1 / 2)^{2},[0,1 / 2) \times[1 / 2,1),[1 / 2,1) \times$ $[0,1 / 2),[1 / 2,1)^{2}$ we observe that for $k, l \in\{0,1\}$, and $0 \leq i, j \leq N-1$ we have

$$
\left(T^{(k, l)} \vec{v}_{i, j}=f_{[k / 2,(k+1) / 2) \times[l / 2,(l+1) / 2)+(i, j)} .\right.
$$

After taking into account that

$$
\begin{aligned}
4 \vec{f}_{K+(i, j)}= & \vec{f}_{[0,1 / 2)^{2}+(i, j)}+\vec{f}_{[0,1 / 2) \times[1 / 2,1)+(i, j)} \\
& +\vec{f}_{[1 / 2,1) \times[0,1 / 2)+(i, j)}+\vec{f}_{[1 / 2,1)^{2}+(i, j)}, \quad 0 \leq i, j \leq N-1,
\end{aligned}
$$

we obtain the assertion.

Lemma 2.4. For $\vec{v} \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ define functions

$$
\overrightarrow{f_{0}}(x, y)=\vec{v} \quad \text { for }(x, y) \in K, \quad \text { and } \quad \vec{f}_{k+1}=\mathbf{T} \vec{f}_{k} \quad \text { for } k \geq 0 .
$$

Then:
(i) $\vec{f}_{k}(x, y)=T_{J} \vec{v}$ for $(x, y) \in K_{J},|J|=k$.
(ii) If f is a compactly supported L^{p}-solution of (2) and \vec{v} is its average matrix, then

$$
\begin{equation*}
\left(\vec{f}_{k}(x, y)\right)_{i, j}=f_{K_{J}+(i, j)}, \quad 0 \leq i, j \leq N-1,|J|=k,(x, y) \in K_{J}, \tag{6}
\end{equation*}
$$

and moreover $\overrightarrow{f_{k}}$ converges to \vec{f} in L^{p}.
Proof. (i) is proved by induction with respect to k. For $k=0$, (i) follows from the definition of \vec{f}_{0}. Suppose that (i) is true for $|J|=k$. Now if $|J|=k+1$, then one of the following holds:

$$
J=\left((0,0), J_{1}\right) ; \quad J=\left((0,1), J_{1}\right) ; \quad J=\left((1,0), J_{1}\right) ; \quad J=\left((1,1), J_{1}\right),
$$

where $\left|J_{1}\right|=k$. Suppose that the first case occurs (the argument for the others is similar). The assumption $(x, y) \in K_{J}$ implies that $(2 x, 2 y)=$ $\phi_{(0,0)}^{-1}(x, y) \in K_{J_{1}}$. Hence

$$
\vec{f}_{k+1}(x, y)=\mathbf{T} \vec{f}_{k}(x, y)=T^{(0,0)} \vec{f}_{k}(2 x, 2 y)=T^{(0,0)} T_{J_{1}} \vec{v}=T_{\left((0,0), J_{1}\right)} \vec{v},
$$

which gives (i).
For (ii) we use the formula $\vec{f}=\mathbf{T} \vec{f}$. It is clear that it can be rewritten in the form $\vec{f}(x, y)=T_{J} \vec{f}\left(\phi_{J}^{-1}(x, y)\right)$ for $(x, y) \in K_{J}$. Integration over K_{J} gives (6).

The convergence in the L^{p}-norm is obtained from the Banach-Steinhaus Theorem in the following way. Let

$$
X=L^{p}\left(K, \mathbb{R}^{N} \times \mathbb{R}^{N}\right)
$$

$D=\{\vec{h} \in X:$ there exists $n \geq 0$ such that

$$
\left.\vec{h}_{i, j}=\sum_{|J|=n} a_{i, j}^{J} \chi_{K_{J}} \text { for } 0 \leq i, j \leq N-1\right\},
$$

and for each $n \geq 1$ define the operator O_{n} on X by

$$
\left(O_{n} \vec{h}\right)_{i, j}=h_{K_{J}+(i, j)} \quad \text { where }|J|=n, \vec{h} \in X
$$

Recall that D is dense in X. It is clear that for each $\vec{h} \in D$ there exists $N_{0} \geq 1$ such that

$$
\begin{equation*}
O_{n} \vec{h}=\vec{h} \quad \text { for each } n \geq N_{0} . \tag{7}
\end{equation*}
$$

Computing $\|\vec{h}\|_{L^{p}}^{p}$ we see that

$$
\begin{equation*}
\|\vec{h}\|_{L^{p}}^{p}=\sum_{0 \leq i, j \leq N-1} \sum_{|J|=n} \int_{K_{J}}\left|\vec{h}_{i, j}(x, y)\right|^{p} d x d y \tag{8}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
\left\|O_{n} \vec{h}\right\|_{L^{p}}^{p}=\frac{1}{4^{n}} \sum_{0 \leq i, j \leq N-1} \sum_{|J|=n}\left|h_{K_{J}+(i, j)}\right|^{p} \tag{9}
\end{equation*}
$$

For any fixed n and $|J|=n$ using the Fubini Theorem and Jensen inequality we obtain

$$
\frac{1}{4^{n}}\left|h_{K_{J}+(i, j)}\right|^{p} \leq \int_{K_{J}}\left|\vec{h}_{i, j}(x, y)\right|^{p} d x d y \quad \text { where } 0 \leq i, j \leq N-1
$$

Then we infer from (8) and (9) that $\left\|O_{n} \vec{h}\right\|_{L^{p}}^{p} \leq\|\vec{h}\|_{L^{p}}^{p}$. Now (7) and the Banach-Steinhaus Theorem yield the convergence of \vec{f}_{n} to \vec{f} in the L^{p}-norm.

LEMMA 2.5. Let \vec{w} be an eigenvector of T corresponding to the eigenvalue 4. Let $\overrightarrow{f_{k}}$ (for $\left.k \geq 0\right)$ be defined as in Lemma 2.4. Then

$$
\begin{equation*}
\int_{K} \vec{f}_{k}(x, y) d x d y=\vec{w} \quad \text { for each } k \geq 0 \tag{10}
\end{equation*}
$$

Proof (by induction). The first step is obvious. Suppose that the assertion (10) holds for some k. Then

$$
\begin{aligned}
\int_{K} \vec{f}_{k+1}(x, y) d x d y= & \int_{K} T \vec{f}_{k}(x, y) d x d y \\
= & \int_{[0,1 / 2] \times[0,1 / 2]} T^{(0,0)} \vec{f}_{k}(2 x, 2 y) d x d y \\
& +\int_{[0,1 / 2] \times[1 / 2,1]} T^{(0,1)} \vec{f}_{k}(2 x, 2 y-1) d x d y \\
& +\int_{[1 / 2,1] \times[0,1 / 2]} T^{(1,0)} \vec{f}_{k}(2 x-1,2 y) d x d y \\
& +\int_{[1 / 2,1] \times[1 / 2,1]} T^{(1,1)} \vec{f}_{k}(2 x-1,2 y-1) d x d y \\
= & \frac{1}{4}\left(T^{(0,0)}+T^{(0,1)}+T^{(1,0)}+T^{(1,1)}\right) \int_{K} \overrightarrow{f_{k}}(x, y) d x d y \\
= & \frac{1}{4}\left(T^{(0,0)}+T^{(0,1)}+T^{(1,0)}+T^{(1,1)}\right) \vec{w}=\vec{w}
\end{aligned}
$$

which completes the proof.
3. The main theorem. Let \vec{w} be an eigenvector of T corresponding to the eigenvalue 4 . Then we can write

$$
\begin{equation*}
\left(T^{(1,1)}-I\right) \vec{w}=-\left(\left(T^{(0,0)}-I\right) \vec{w}+\left(T^{(0,1)}-I\right) \vec{w}+\left(T^{(1,1)}-I\right)\right) \vec{w} \tag{11}
\end{equation*}
$$

Using the notations $\vec{w}^{(i, j)}=\left(T^{(i, j)}-I\right) \vec{w}$ for $i, j \in\{0,1\}$ the expression (11) can be rewritten in the form

$$
\vec{w}^{(1,1)}=-\left(\vec{w}^{(0,0)}+\vec{w}^{(0,1)}+\vec{w}^{(1,1)}\right) .
$$

Let H be the subspace of $\mathbb{R}^{N} \times \mathbb{R}^{N}$ defined by

$$
H=\operatorname{span}\left\{T_{J} w^{(0,0)}, T_{J} w^{(0,1)}, T_{J} w^{(1,0)}: J \in \Lambda\right\} .
$$

Our main result is as follows:
Theorem 3.1. Let $1 \leq p<\infty$. The following conditions are equivalent:
(i) There exists a non-zero L^{p}-solution of the equation (2) with support in $[0, N]^{2}$.
(ii) There exists an eigenvector \vec{w} of T corresponding to the eigenvalue 4 and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} w^{\vec{i}, j}\right\|^{p}=0 \quad \text { whenever }(i, j) \in\{(0,0),(0,1),(1,0)\} \tag{12}
\end{equation*}
$$

(iii) There exists an eigenvector \vec{w} of T corresponding to the eigenvalue 4 and for each $c>0$ there exists an integer $l \geq 1$ such that

$$
\begin{equation*}
\frac{1}{4^{l}} \sum_{|J|=l}\left\|T_{J} \vec{u}\right\|^{p}<c \quad \text { for all } \vec{u} \in H \text { and }\|\vec{u}\| \leq 1 \text {. } \tag{13}
\end{equation*}
$$

Proof. Let \vec{w} be an eigenvector of T corresponding to the eigenvalue 4 . Define, as in Lemma 2.4, $\vec{f}_{0}=\vec{w}, \vec{f}_{k+1}=\mathbf{T} \overrightarrow{f_{k}}$. Let $\vec{g}_{n}=\vec{f}_{n+1}-\vec{f}_{n}$. Then

$$
\begin{equation*}
\vec{f}_{n+1}=\vec{f}_{0}+\vec{g}_{0}+\ldots+\vec{g}_{n} \tag{14}
\end{equation*}
$$

and

$$
\vec{g}_{n}(x, y)= \begin{cases}T_{J} \vec{w}^{(0,0)}, & (x, y) \in K_{(J,(0,0))}, \tag{15}\\ T_{J} \vec{w}^{(0,1)}, & (x, y) \in K_{(J,(0,1))}, \\ T_{J} \vec{w}^{(1,0)}, & (x, y) \in K_{(J,(1,0))}, \\ T_{J} \vec{w}^{(1,1)}, & (x, y) \in K_{(J,(1,1))} .\end{cases}
$$

Note that

$$
\begin{align*}
& \left\|\vec{g}_{n}\right\|_{L^{p}}^{p}=\int_{K}\left\|\vec{g}_{n}(x, y)\right\|^{p} d x d y=\sum_{|J|=n+1} \int_{K_{J}}\left\|\vec{g}_{n}(x, y)\right\|^{p} d x d y \tag{16}\\
& =\sum_{|J|=n}\left(\int_{K_{(J,(0,0))}}+\int_{K_{(J,(0,1))}}+\int_{K_{(J,(1,0))}}+\int_{K_{(J,(1,1))}}\right)\left\|\vec{g}_{n}(x, y)\right\|^{p} d x d y \\
& =\frac{1}{4^{n}} \sum_{|J|=n}\left(\left\|T_{J} \vec{w}^{(0,0)}\right\|^{p}+\left\|T_{J} \vec{w}^{(0,1)}\right\|^{p}+\left\|T_{J} \vec{w}^{(1,0)}\right\|^{p}+\left\|T_{J} \vec{w}^{(1,1)}\right\|^{p}\right) .
\end{align*}
$$

(i) \Rightarrow (ii). Let \vec{w} be the average matrix of \vec{f} on unit squares, where f is the non-trivial L^{p}-solution of (2). Then by Lemma 2.4, \vec{f}_{n} converges to \vec{f}
in L^{p}-norm (we know that \vec{w} is an eigenvector of T corresponding to the eigenvalue 4), which together with (14) implies that $\left\|\vec{g}_{n}\right\|_{L^{p}}^{p} \rightarrow 0$ as $n \rightarrow \infty$. Hence we obtain (12).
(ii) \Rightarrow (iii). Let d be the dimension of H. For $d=0$ we have the assertion at once. Suppose that $d \geq 1$. Then there exists a basis of H consisting of the vectors of the form $T_{J_{k}^{l}} \vec{w}^{(i, j)}$ where $(i, j) \in\{(0,0),(0,1),(1,0)\}, 1 \leq l \leq d$, $\left|J_{k}^{l}\right|=k^{l}$ and $J_{k}^{l} \in \Lambda$.

For $\vec{u}=T_{J_{k}^{l}} \vec{w}^{(i, j)}$ we obtain

$$
\frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} \vec{u}\right\|^{p} \leq 4^{k^{l}} \frac{1}{4^{n+k^{l}}} \sum_{|J|=n+k^{l}}\left\|T_{J} \vec{w}^{(i, j)}\right\|^{p} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

and hence for each $c>0, l, k^{l}$ there exists n_{l} such that

$$
\frac{1}{4^{n_{l}}} \sum_{|J|=n_{l}+k^{l}}\left\|T_{J} \vec{w}^{(i, j)}\right\|^{p}<\frac{c}{2^{(d-1)(p-1)}} .
$$

Let $L=\max _{1 \leq l \leq d}\left\{n_{l}+k^{l}\right\}$. Let $\|\cdot\|_{1}$ be a norm in $\mathbb{R}^{N} \times \mathbb{R}^{N}$ such that for $H \ni \vec{u}=\sum_{l=1}^{d} a_{l} T_{J_{k}^{l}} \vec{w}^{(i, j)}$ we have $\|\vec{u}\|_{1}^{p}=\sum_{l=1}^{d}\left|a_{l}\right|^{p}$. Hence for $n \geq L$ and $\|\vec{u}\|_{1} \leq 1$ we obtain

$$
\begin{aligned}
\frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} \vec{u}\right\|_{1}^{p} & =\frac{1}{4^{n}} \sum_{|J|=n}\left\|\sum_{l=1}^{d} a_{l} T_{J} T_{J_{k}^{l}} \vec{w}^{(i, j)}\right\|_{1}^{p} \\
& \leq 2^{(d-1)(p-1)} \sum_{l=1}^{d}\left|a_{l}\right|^{p} \frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} T_{J_{k}^{l}} \vec{w}^{(i, j)}\right\|_{1}^{p} \\
& \leq 2^{(d-1)(p-1)} \sum_{l=1}^{d}\left|a_{l}\right|^{p} \frac{1}{4^{n}} \sum_{|J|=n+k^{l}}\left\|T_{J} \vec{w}^{(i, j)}\right\|_{1}^{p} \\
& <2^{(d-1)(p-1)} \sum_{l=1}^{d}\left|a_{l}\right|^{p} \frac{c}{2^{(d-1)(p-1)}}=c\|u\|_{1}^{p} \leq c .
\end{aligned}
$$

(iii) \Rightarrow (i). Let \vec{w} be an eigenvector of T corresponding to the eigenvalue 4 , and $0<c<1$. Consider l such that

$$
\begin{equation*}
\frac{1}{4^{l}} \sum_{|J|=l}\left\|T_{J} \vec{u}\right\|^{p}<c\|\vec{u}\|^{p} \quad \text { for each } \vec{u} \in H \tag{17}
\end{equation*}
$$

Let $i, j \in\{0,1\}$. Applying (17) we obtain

$$
\frac{1}{4^{l}} \sum_{|J|=l}\left\|T_{J} T_{J_{1}} \vec{w}^{(i, j)}\right\|^{p}<c\left\|T_{J_{1}} \vec{w}^{(i, j)}\right\|^{p}
$$

and consequently

$$
\begin{aligned}
\frac{1}{4^{l+n}} \sum_{|J|=l+n}\left\|T_{J} \vec{w}^{(i, j)}\right\|^{p} & =\frac{1}{4^{l+n}} \sum_{|J|=l} \sum_{\left|J_{1}\right|=n}\left\|T_{J} T_{J_{1}} \vec{w}^{(i, j)}\right\|^{p} \\
& <\frac{c}{4^{n}} \sum_{|J|=n}\left\|T_{J_{1}} \vec{w}^{(i, j)}\right\|^{p},
\end{aligned}
$$

which yields $\left\|\vec{g}_{n+l}\right\|_{L^{p}}^{p}<c\left\|\vec{g}_{n}\right\|_{L^{p}}^{p}$ for each $l \geq 0$ by (15), (17). This means that for each fixed n the sequence $\left\{\left\|\vec{g}_{n+k l}\right\|^{p}\right\}_{k=0}^{\infty}$ is convergent, and so is \vec{f}_{n} by (14). From Lemma 2.5, $\vec{f}=\lim _{n \rightarrow \infty} \vec{f}_{n}$ is non-trivial and $\vec{f}=\mathbf{T} \vec{f}$. Hence from Lemma 2.1 the function f is a solution of the equation (2).

The following can be easily observed:
Remark 3.2. In the condition (12) we can use any three elements of the set $\{(0,0),(0,1),(1,0),(1,1)\}$ instead of $(0,0),(0,1),(1,0)$.

The proof of Theorem 3.1 also yields
Remark 3.3. The condition (13) can be replaced by

$$
\frac{1}{4^{l}} \sum_{|J|=l}\left\|T_{J} \overrightarrow{u_{i}}\right\|^{p}<c \quad \text { where }\left\{u_{1}, \ldots, u_{k}\right\} \text { is a basis of } H \text {. }
$$

Lemma 3.4. Let $1 \leq p<\infty$. Assume that one of the conditions of Theorem 3.1 holds. Then for any eigenvector \vec{w} of the operator T corresponding to the eigenvalue 4 we have $\vec{w} \notin H$ and $\operatorname{dim} H<N^{2}-1$.

Proof. Suppose that (ii) of Theorem 3.1 holds and $\vec{w} \in H$. Then by the Jensen inequality we have

$$
\begin{aligned}
\|\vec{w}\|^{p} & =\left\|\frac{1}{4^{n}}\left(T^{(0,0)}+T^{(0,1)}+T^{(1,0)}+T^{(1,1)}\right)^{n} \vec{w}\right\|^{p}=\left(\frac{1}{4^{n}}\left\|\sum_{|J|=n} T_{J} \vec{w}\right\|\right)^{p} \\
& \leq\left(\frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} \vec{w}\right\|\right)^{p} \leq \frac{1}{4^{n}} \sum_{|J|=n}\left\|T_{J} \vec{w}\right\|^{p} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which finishes the proof.
4. Final remarks. In contrast to the one-dimensional case, even for small N, Theorem 3.1 does not give simple conditions on the coefficients c_{k} for which the scaling function belongs to L^{p}. However, p can be approximated in the following way.

Let f be a non-trivial compactly supported L^{p}-solution of (2). Define

$$
f^{x}(y)=\int_{\mathbb{R}} f(x, y) d x, \quad f^{y}(x)=\int_{\mathbb{R}} f(x, y) d y .
$$

These are solutions of the one－dimensional equations

$$
\begin{array}{ll}
f^{x}(y)=\sum_{j=0}^{N} c_{j}^{x} f^{x}(2 y-j) \quad \text { where } \quad c_{j}^{x}=\sum_{i=0}^{N} c_{(i, j)} \\
f^{y}(x)=\sum_{i=0}^{N} c_{i}^{y} f^{y}(2 x-i) \quad \text { where } \quad c_{i}^{y}=\sum_{j=0}^{N} c_{(i, j)} \tag{19}
\end{array}
$$

By applying Theorem 2.6 of［9］to（18），（19）one can estimate the greatest values p_{x}, p_{y} of q for which f^{x}, f^{y} belong to L^{q} ．Let p be the greatest value of q such that the solution f of (2) belongs to L^{q} ．Then $p \leq \min \left(p^{x}, p^{y}\right)$ ．

Acknowledgements．The author is grateful to Professor Andrzej Łada for many valuable comments．

References

［1］M．A．Berger and Y．Wang，Multidimensional two－scale dilation equations，in： Wavelets－A Tutorial in Theory and Applications，C．K．Chui（ed．），Wavelets 3， Academic Press，1992，295－323．
［2］D．Colella and C．Heil，The characterization of continuous，four－coefficient scaling functions and wavelets，IEEE Trans．Inform．Theory 30 （1992），876－881．
［3］—，一，Characterization of scaling functions，I．Continuous solutions，J．Math． Anal．Appl． 15 （1994），496－518．
［4］—，一，Dilation eqautions and the smoothness of compactly supported wavelets，in： Wavelets：Mathematics and Applications，J．J．Benedetto，M．W．Frazier（eds．）， Stud．Adv．Math．，CRC Press．，1994，163－201．
［5］I．Daubechies and J．Lagarias，Two－scale difference equation I．Existence and global regularity of solutions，SIAM J．Math．Anal． 22 （1991），1388－1410．
［6］－，一，Two－scale difference equation II．Local regularity，infinite products of matri－ ces，and fractals，ibid． 23 （1992），1031－1079．
［7］T．Eirola，Sobolev characterization of solution of dilation equations，ibid． 23 （1992），1015－1030．
［8］K．S．Lau and M．F．Ma，The regularity of L^{p}－scaling functions，preprint．
［9］K．S．Lau and J．Wang，Characterization of L^{p}－solutions for the two－scale dilation equations，SIAM J．Math．Anal． 26 （1995），1018－1048．

Jarosław Kotowicz
Institute of Mathematics
Warsaw University，Białystok Branch
Akademicka 2
15－267 Biatystok，Poland
E－mail：kotowicz＠math．uw．bialystok．pl

[^0]: 1991 Mathematics Subject Classification: 39A10, 42A05.
 Key words and phrases: compactly supported L^{p} scaling function, dilation equation.

