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ON THE EXISTENCE OF A COMPACTLY SUPPORTED

Lp-SOLUTION FOR TWO-DIMENSIONAL TWO-SCALE

DILATION EQUATIONS

Abstract. Necessary and sufficient conditions for the existence of com-
pactly supported Lp-solutions for the two-dimensional two-scale dilation
equations are given.

1. Introduction. One of the fundamental problems in higher dimen-
sional wavelet theory is to study the properties of solutions of the dilation
equation

(1) f(x) =
∑

k∈Zd

ckf(αx − βk), x ∈ R
d,

where k ∈ A ⊂ Z
d, A is finite and R ∋ α > 1.

Using the Fourier method the following fundamental theorem was ob-
tained in [1]:

Theorem 1.1. Define P (ξ) = 1
αd

∑
k∈Zd ckei〈βk ,ξ〉, ξ ∈ C

d and ∆ =
P (0).

(a) If |∆| ≤ 1 and ∆ 6= 1, then the only L1-solution to (1) is trivial.

(b) If |∆| = 1 and (1) has a non-trivial L1-solution f , then f is unique

up to scale and f̂ is given by

f̂(ξ) = f(0)

∞∏

m=1

P (ξ/αm).

Moreover , f is compactly supported and

supp f ⊆
K

α − 1
, where K = conv-hull(βk).
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(c) If |∆| > 1, then a necessary condition for (1) to have a non-trivial

compactly supported L1-solution is ∆ = αk, for some k ∈ Z+. In this case

f̂(ξ) = h(ξ)
∞∏

m=1

P (ξ/αm)

∆
,

where h is a homogeneous polynomial of degree k.

The non-zero solutions of (1) are called scaling functions.

Our aim in this paper is to study the Lp-integrability properties of the
scaling functions in the case when d = 2, α = 2 and βk = k ∈ A = {(i, j) ∈
Z

2 : 0 ≤ i, j ≤ N}.

In this case the equation (1) and the condition |∆| = 1 can be rewritten
as

f(x, y) =
∑

0≤i,j≤N

c(i,j)f(2(x, y) − (i, j)),(2)

∑

0≤i,j≤N

c(i,j) = 4.(3)

Let us note a simple consequence of Theorem 1.1.

Corollary 1.2. Suppose that the condition (3) holds. If there exists

a non-trivial L1-solution f of (2), then it must be unique up to scale and

supp f ⊆ [0, N ]2.

Such a special class of scaling functions is important because of its appli-
cations in the wavelet theory on R

2, in subdivision schemes in approximation
theory, and in practical image processing.

The Lp-integrability properties of the scaling function give information
on the corresponding wavelet basis. A major problem is to determine the
Lp-integrability properties from the values of ck for k ∈ A. For solving this,
we adopt the matrix implementation of the iteration method, which in the
one-dimensional case was used in [2–4], [5–6], [7], [8–9].

2. Technical facts. The following notations are used everywhere:
‖ · ‖ for any norm in R

N × R
N , N is the same as in (2), K = [0, 1)2 and

B + x = {a + x : a ∈ B} for B ⊆ R
2, x ∈ R

2.

Let g : R
2 → R have supp g ⊆ [0, N ]2. Define a matrix-valued function

~g : K → R
N × R

N by

(~g(x, y))i,j = g((x, y) + (i, j))χK (x, y) for (x, y) ∈ R
2

where 0 ≤ i, j ≤ N − 1 and χK is the characteristic function of the set K.
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Conversely, for any matrix-valued function ~f on K we define a function
f on R

2 by

f(x, y) =

{
~fi,j(x̃, ỹ) for (x, y) = (x̃ + i, ỹ + j) and (x̃, ỹ) ∈ K,

0 for (x, y) 6∈ [0,N ]2.

For k, l ∈ {0, 1}, consider the linear operators T (k,l) : R
N × R

N →
R

N × R
N with coefficients

(4) T
(k,l)
i1,i2;j1,j2

= c(2i1−j1+k,2i2−j2+l) where 0 ≤ i1, i2, j1, j2 ≤ N − 1;

we use the convention that c(i,j) = 0 whenever (i, j) 6∈ {(k, l) ∈ Z
2 : 0 ≤

k, l ≤ N}.
The action of these operators on a matrix-valued function ~g : K →

R
N × R

N is defined by

(T (k,l) · ~g)i1,i2 =
∑

j1,j2

T
(k,l)
i1,i2;j1,j2

~gj1,j2 .

Set

(5) T = T (0,0) + T (0,1) + T (1,0) + T (1,1),

and consider the following transformations of the plane:

φ(i,j)(x, y) =

(
1

2
x +

i

2
,

1

2
y +

j

2

)
for i, j ∈ {0, 1}.

Then for any function g such that supp g ⊆ [0,N ]2 define an operator T by

(T~g)(x, y) =
∑

k,l∈{0,1}

T (k,l)~g(φ−1
(k,l)(x, y)).

It can be rewritten explicitly as

(T~g)(x, y) =





T (0,0)~g(2x, 2y), (x, y) ∈ [0, 1/2)2 ,
T (0,1)~g(2x, 2y − 1), (x, y) ∈ [0, 1/2) × [1/2, 1),
T (1,0)~g(2x − 1, 2y), (x, y) ∈ [1/2, 1) × [0, 1/2),
T (1,1)~g(2x − 1, 2y − 1), (x, y) ∈ [1/2, 1)2 ,
0, (x, y) 6∈ K.

Let A = {(0, 0), (0, 1), (1, 0), (1, 1)}, J be a finite sequence of elements
of A, |J | be the length of J (we assume that |J |=0 if J = ∅), and Λ = {J =
(j1, . . . , jk) : jl ∈ A and k ≥ 0}.

For J = (j1, . . . , jk) ∈ Λ, define φJ = φj1 ◦ . . . ◦ φjk
(if J = ∅ then

φJ := Id), KJ = φJ (K) and TJ = T j1 ◦ . . . ◦ T jk . Notice that KJ =⋃
i,j∈{0,1} K(J,(i,j)) and K(J,J1) ⊆ KJ for J, J1 ∈ Λ.

Define an operator S by

(Sg)(x, y) =
∑

0≤i,j≤N

c(i,j)g(2(x, y) − (i, j)).
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R e m a r k 2.1. (i) Let f be a function such that supp f ⊆ [0,N ]2. Then

−→
Sf = T~f.

(ii) f is a non-trivial compactly supported Lp-solution of (2) if and only

if ~f ∈ Lp(K, RN × R
N) and ~f = T~f .

P r o o f. The proof of the first part can be found in [1]. The second one
follows from (i), Corollary 1.2 and the equation (2).

Now we present several lemmas which show properties and connections
between the operator T, an eigenvector of T corresponding to the eigen-
value 4 and the solution of the dilation equation.

Lemma 2.2. If
∑

(i,j) c(i,j) = 4, then there exists an eigenvector (which

is an N × N matrix ) of T corresponding to the eigenvalue 4.

P r o o f. Let ~w ∈ R
N × R

N be such that ~wi,j = 1 for 0 ≤ i, j ≤ N − 1.
Applying (4) and (5) we get

(~wtT )k,l =
∑

0≤i,j≤N

c(i,j) = 4 whenever 0 ≤ k, l ≤ N − 1.

So ~w is a left eigenvector of T corresponding to the eigenvalue 4 and hence
we get the assertion.

For a matrix-valued function ~f such that suppf ⊆ [0,N ]2 we define its
average matrix ~v ∈ R

N × R
N on the unit square. The coordinates of ~v are

~vi,j = f[i,i+1]×[j,j+1] for 0 ≤ i, j ≤ N − 1,

where fQ = 1
m(Q)

T
Q

f(x, y) dm(x, y) for any cube Q.

Lemma 2.3. Let f be a compactly supported Lp-solution of (2) and let ~v
be its average matrix. Then ~v is an eigenvector of T corresponding to the

eigenvalue 4.

P r o o f. From Lemma 2.1 we get ~f = T~f . When we integrate separately
both of this equation over the sets [0, 1/2)2 , [0, 1/2) × [1/2, 1), [1/2, 1) ×
[0, 1/2), [1/2, 1)2 we observe that for k, l ∈ {0, 1}, and 0 ≤ i, j ≤ N − 1 we
have

(T (k,l)~v)i,j = f[k/2,(k+1)/2)×[l/2,(l+1)/2)+(i,j).

After taking into account that

4~fK+(i,j) = ~f[0,1/2)2+(i,j) + ~f[0,1/2)×[1/2,1)+(i,j)

+ ~f[1/2,1)×[0,1/2)+(i,j) + ~f[1/2,1)2+(i,j), 0 ≤ i, j ≤ N − 1,

we obtain the assertion.
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Lemma 2.4. For ~v ∈ R
N × R

N define functions

~f0(x, y) = ~v for (x, y) ∈ K, and ~fk+1 = T~fk for k ≥ 0.

Then:

(i) ~fk(x, y) = TJ~v for (x, y) ∈ KJ , |J | = k.

(ii) If f is a compactly supported Lp-solution of (2) and ~v is its average

matrix , then

(6) (~fk(x, y))i,j = fKJ+(i,j), 0 ≤ i, j ≤ N − 1, |J | = k, (x, y) ∈ KJ ,

and moreover ~fk converges to ~f in Lp.

P r o o f. (i) is proved by induction with respect to k. For k = 0, (i)

follows from the definition of ~f0. Suppose that (i) is true for |J | = k. Now
if |J | = k + 1, then one of the following holds:

J = ((0, 0), J1); J = ((0, 1), J1); J = ((1, 0), J1); J = ((1, 1), J1),

where |J1| = k. Suppose that the first case occurs (the argument for the
others is similar). The assumption (x, y) ∈ KJ implies that (2x, 2y) =
φ−1

(0,0)(x, y) ∈ KJ1
. Hence

~fk+1(x, y) = T~fk(x, y) = T (0,0) ~fk(2x, 2y) = T (0,0)TJ1
~v = T((0,0),J1)~v,

which gives (i).

For (ii) we use the formula ~f = T~f . It is clear that it can be rewritten

in the form ~f(x, y) = TJ
~f(φ−1

J (x, y)) for (x, y) ∈ KJ . Integration over KJ

gives (6).

The convergence in the Lp-norm is obtained from the Banach–Steinhaus
Theorem in the following way. Let

X = Lp(K, RN × R
N ),

D =
{
~h ∈ X : there exists n ≥ 0 such that

~hi,j =
∑

|J|=n

aJ
i,jχKJ

for 0 ≤ i, j ≤ N − 1
}

,

and for each n ≥ 1 define the operator On on X by

(On
~h)i,j = hKJ+(i,j) where |J | = n, ~h ∈ X.

Recall that D is dense in X. It is clear that for each ~h ∈ D there exists
N0 ≥ 1 such that

(7) On
~h = ~h for each n ≥ N0.
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Computing ‖~h‖p
Lp we see that

(8) ‖~h‖p
Lp =

∑

0≤i,j≤N−1

∑

|J|=n

\
KJ

|~hi,j(x, y)|p dx dy.

Analogously

(9) ‖On
~h‖p

Lp =
1

4n

∑

0≤i,j≤N−1

∑

|J|=n

|hKJ+(i,j)|
p.

For any fixed n and |J | = n using the Fubini Theorem and Jensen inequality
we obtain

1

4n
|hKJ+(i,j)|

p ≤
\

KJ

|~hi,j(x, y)|p dx dy where 0 ≤ i, j ≤ N − 1.

Then we infer from (8) and (9) that ‖On
~h‖p

Lp ≤ ‖~h‖p
Lp . Now (7) and the

Banach–Steinhaus Theorem yield the convergence of ~fn to ~f in the Lp-norm.

Lemma 2.5. Let ~w be an eigenvector of T corresponding to the eigen-

value 4. Let ~fk (for k ≥ 0) be defined as in Lemma 2.4. Then

(10)
\
K

~fk(x, y) dx dy = ~w for each k ≥ 0.

P r o o f (by induction). The first step is obvious. Suppose that the
assertion (10) holds for some k. Then\

K

~fk+1(x, y) dx dy =
\
K

T ~fk(x, y) dx dy

=
\

[0,1/2]×[0,1/2]

T (0,0) ~fk(2x, 2y) dx dy

+
\

[0,1/2]×[1/2,1]

T (0,1) ~fk(2x, 2y − 1) dx dy

+
\

[1/2,1]×[0,1/2]

T (1,0) ~fk(2x − 1, 2y) dx dy

+
\

[1/2,1]×[1/2,1]

T (1,1) ~fk(2x − 1, 2y − 1) dx dy

= 1
4 (T (0,0) + T (0,1) + T (1,0) + T (1,1))

\
K

~fk(x, y) dx dy

= 1
4 (T (0,0) + T (0,1) + T (1,0) + T (1,1))~w = ~w,

which completes the proof.

3. The main theorem. Let ~w be an eigenvector of T corresponding
to the eigenvalue 4. Then we can write

(11) (T (1,1) − I)~w = −((T (0,0) − I)~w + (T (0,1) − I)~w + (T (1,1) − I))~w.
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Using the notations ~w(i,j) = (T (i,j)−I)~w for i, j ∈ {0, 1} the expression (11)
can be rewritten in the form

~w(1,1) = −(~w(0,0) + ~w(0,1) + ~w(1,1)).

Let H be the subspace of R
N × R

N defined by

H = span{TJw(0,0), TJw(0,1), TJw(1,0) : J ∈ Λ}.

Our main result is as follows:

Theorem 3.1. Let 1 ≤ p < ∞. The following conditions are equivalent :

(i) There exists a non-zero Lp-solution of the equation (2) with support

in [0, N ]2.
(ii) There exists an eigenvector ~w of T corresponding to the eigenvalue 4

and

(12) lim
n→∞

1

4n

∑

|J|=n

‖TJ
~wi,j‖p = 0 whenever (i, j) ∈ {(0, 0), (0, 1), (1, 0)}.

(iii) There exists an eigenvector ~w of T corresponding to the eigenvalue 4
and for each c > 0 there exists an integer l ≥ 1 such that

(13)
1

4l

∑

|J|=l

‖TJ~u‖p < c for all ~u ∈ H and ‖~u‖ ≤ 1.

P r o o f. Let ~w be an eigenvector of T corresponding to the eigenvalue 4.
Define, as in Lemma 2.4, ~f0 = ~w, ~fk+1 = T~fk. Let ~gn = ~fn+1 − ~fn. Then

(14) ~fn+1 = ~f0 + ~g0 + . . . + ~gn

and

(15) ~gn(x, y) =





TJ ~w(0,0), (x, y) ∈ K(J,(0,0)),

TJ ~w(0,1), (x, y) ∈ K(J,(0,1)),

TJ ~w(1,0), (x, y) ∈ K(J,(1,0)),

TJ ~w(1,1), (x, y) ∈ K(J,(1,1)).

Note that

(16) ‖~gn‖
p
Lp =

\
K

‖~gn(x, y)‖p dx dy =
∑

|J|=n+1

\
KJ

‖~gn(x, y)‖p dx dy

=
∑

|J|=n

( \
K(J,(0,0))

+
\

K(J,(0,1))

+
\

K(J,(1,0))

+
\

K(J,(1,1))

)
‖~gn(x, y)‖p dx dy

=
1

4n

∑

|J|=n

(‖TJ ~w(0,0)‖p+ ‖TJ ~w(0,1)‖p+ ‖TJ ~w(1,0)‖p+ ‖TJ ~w(1,1)‖p).

(i)⇒(ii). Let ~w be the average matrix of ~f on unit squares, where f is

the non-trivial Lp-solution of (2). Then by Lemma 2.4, ~fn converges to ~f
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in Lp-norm (we know that ~w is an eigenvector of T corresponding to the
eigenvalue 4), which together with (14) implies that ‖~gn‖

p
Lp → 0 as n → ∞.

Hence we obtain (12).

(ii)⇒(iii). Let d be the dimension of H. For d = 0 we have the assertion
at once. Suppose that d ≥ 1. Then there exists a basis of H consisting of the
vectors of the form TJl

k
~w(i,j) where (i, j) ∈ {(0, 0), (0, 1), (1, 0)}, 1 ≤ l ≤ d,

|J l
k| = kl and J l

k ∈ Λ.

For ~u = TJl
k
~w(i,j) we obtain

1

4n

∑

|J|=n

‖TJ~u‖p ≤ 4kl 1

4n+kl

∑

|J|=n+kl

‖TJ ~w(i,j)‖p → 0 as n → ∞,

and hence for each c > 0, l, kl there exists nl such that

1

4nl

∑

|J|=nl+kl

‖TJ ~w(i,j)‖p <
c

2(d−1)(p−1)
.

Let L = max1≤l≤d{nl + kl}. Let ‖ · ‖1 be a norm in R
N ×R

N such that for

H ∋ ~u =
∑d

l=1 alTJl
k
~w(i,j) we have ‖~u‖p

1 =
∑d

l=1 |al|
p. Hence for n ≥ L and

‖~u‖1 ≤ 1 we obtain

1

4n

∑

|J|=n

‖TJ~u‖p
1 =

1

4n

∑

|J|=n

∥∥∥
d∑

l=1

alTJTJl
k
~w(i,j)

∥∥∥
p

1

≤ 2(d−1)(p−1)
d∑

l=1

|al|
p 1

4n

∑

|J|=n

‖TJTJl
k
~w(i,j)‖p

1

≤ 2(d−1)(p−1)
d∑

l=1

|al|
p 1

4n

∑

|J|=n+kl

‖TJ ~w(i,j)‖p
1

< 2(d−1)(p−1)
d∑

l=1

|al|
p c

2(d−1)(p−1)
= c‖u‖p

1 ≤ c.

(iii)⇒(i). Let ~w be an eigenvector of T corresponding to the eigenvalue 4,
and 0 < c < 1. Consider l such that

(17)
1

4l

∑

|J|=l

‖TJ~u‖p < c‖~u‖p for each ~u ∈ H.

Let i, j ∈ {0, 1}. Applying (17) we obtain

1

4l

∑

|J|=l

‖TJTJ1
~w(i,j)‖p < c‖TJ1

~w(i,j)‖p
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and consequently

1

4l+n

∑

|J|=l+n

‖TJ ~w(i,j)‖p =
1

4l+n

∑

|J|=l

∑

|J1|=n

‖TJTJ1
~w(i,j)‖p

<
c

4n

∑

|J|=n

‖TJ1
~w(i,j)‖p,

which yields ‖~gn+l‖
p
Lp < c‖~gn‖

p
Lp for each l ≥ 0 by (15), (17). This means

that for each fixed n the sequence {‖~gn+kl‖
p}∞k=0 is convergent, and so is

~fn by (14). From Lemma 2.5, ~f = limn→∞
~fn is non-trivial and ~f = T~f .

Hence from Lemma 2.1 the function f is a solution of the equation (2).

The following can be easily observed:

R e m a r k 3.2. In the condition (12) we can use any three elements of
the set {(0, 0), (0, 1), (1, 0), (1, 1)} instead of (0, 0), (0, 1), (1, 0).

The proof of Theorem 3.1 also yields

R e m a r k 3.3. The condition (13) can be replaced by

1

4l

∑

|J|=l

‖TJ ~ui‖
p < c where {u1, . . . , uk} is a basis of H.

Lemma 3.4. Let 1 ≤ p < ∞. Assume that one of the conditions of Theo-

rem 3.1 holds. Then for any eigenvector ~w of the operator T corresponding

to the eigenvalue 4 we have ~w 6∈ H and dim H < N2 − 1.

P r o o f. Suppose that (ii) of Theorem 3.1 holds and ~w ∈ H. Then by
the Jensen inequality we have

‖~w‖p =

∥∥∥∥
1

4n
(T (0,0) + T (0,1) + T (1,0) + T (1,1))n ~w

∥∥∥∥
p

=

(
1

4n

∥∥∥
∑

|J|=n

TJ ~w
∥∥∥
)p

≤

(
1

4n

∑

|J|=n

‖TJ ~w‖

)p

≤
1

4n

∑

|J|=n

‖TJ ~w‖p → 0 as n → ∞,

which finishes the proof.

4. Final remarks. In contrast to the one-dimensional case, even for
small N , Theorem 3.1 does not give simple conditions on the coefficients ck

for which the scaling function belongs to Lp. However, p can be approxi-
mated in the following way.

Let f be a non-trivial compactly supported Lp-solution of (2). Define

fx(y) =
\
R

f(x, y) dx, fy(x) =
\
R

f(x, y) dy.
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These are solutions of the one-dimensional equations

fx(y) =
N∑

j=0

cx
j fx(2y − j) where cx

j =
N∑

i=0

c(i,j),(18)

fy(x) =

N∑

i=0

cy
i fy(2x − i) where cy

i =

N∑

j=0

c(i,j).(19)

By applying Theorem 2.6 of [9] to (18), (19) one can estimate the greatest
values px, py of q for which fx, fy belong to Lq. Let p be the greatest value
of q such that the solution f of (2) belongs to Lq. Then p ≤ min(px, py).
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