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OPTIMAL STOPPING OF A RISK PROCESS

Abstract. Optimal stopping time problems for a risk process Ut = u +

ct −
∑N(t)

n=0 Xnwhere the number N(t) of losses up to time t is a general
renewal process and the sequence of Xi’s represents successive losses are
studied. N(t) and Xi’s are independent. Our goal is to maximize the
expected return before the ruin time. The main results are closely related
to those obtained by Boshuizen and Gouweleew [2].

1. Introduction. Let {N(t), t ≥ 0}be a renewal process representing
the stream of losses of an insurance company, so N(t) is the number of
losses up to the time t. If Ti denotes the time of occurrence of the ith loss,
then random variables (r.v.’s) Si = Ti − Ti−1 are independent identically
distributed (i.i.d.) with a cumulative distribution function (c.d.f.) F , T0 =
0. Let X1,X2, . . . be a sequence of i.i.d. r.v.’s with c.d.f. H, representing
the successive losses. As a capital assets model for the insurance company
we take the risk process

(1) Ut = u + ct −

N(t)∑

n=0

Xn,

where u > 0 represents the initial capital and c > 0 is a constant rate of
income from the insurance premium, X0 = 0. The return at time t will be
defined by the process {Z(t), t ≥ 0} where

(2) Z(t) =

{
g1(Ut)I{Us > 0, s ≤ t} if t ≤ t0,
0 if t > t0,

where g1 is a utility function. For simplicity define g(u, t) = g1(u)I{t ≥ 0}.
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Then

(3) Z(t) = g(Ut, t0 − t)

N(t)∏

j=1

I{UTj
> 0}.

Let

(4) F(t) = σ(Us, s ≤ t) = σ(X1, T1, . . . ,XN(t), TN(t))

be the σ-field generated by all events up to time t, t ≥ 0, and T be the set
of stopping times with respect to the family {F(t), t ≥ 0}. Moreover, for
n = 0, 1, 2, . . . , n < K, denote by Tn,K the subset of T such that

(5) τ ∈ Tn,K if and only if Tn ≤ τ ≤ TK a.s.

Set Fn
△
= F(Tn). We will be interested in finding optimal stopping times

τ∗, τ∗
n,K , τ∗

K such that

EZ(τ∗) = sup{EZ(τ) : τ ∈ T },(6)

EZ(τ∗
K) = sup{EZ(τ) : τ ∈ T0,K},(7)

E{Z(τ∗
n,K) | Fn} = ess sup{E(Z(τ) | Fn) : τ ∈ Tn,K}.(8)

The crucial role in the subsequent considerations is played by the following
representation theorem for stopping times (see for example Davis [4]):

Lemma 1. If τ ∈ Tn,K , then there exists a positive Fn-measurable r.v.

Rn such that

(9) τ ∧ Tn+1 = (Tn + Rn) ∧ Tn+1 a.s.

2. Finite horizon case. In this section we will find the form of optimal
stopping rules in the finite horizon case, i.e. optimal in the class T0,K ,
where K is finite and fixed. First, in Theorem 1, we will derive dynamic
programming equations satisfied by

(10) Γn,K = ess sup{E(Z(τ) | Fn) : τ ∈ Tn,K}, n = K,K − 1, . . . , 1.

Then, in Theorem 2, we will find optimal stopping times τ∗
n,K and τ∗

K and
corresponding optimal conditional mean rewards and optimal mean rewards,
respectively. Define

(11) µn =
n∏

j=1

I(UTj
> 0), µ0 = 1.

Note that

(12) ΓK,K = Z(TK) = g(UTK
, t0 − TK)µK .
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Theorem 1. (i) For n = K − 1,K − 2, . . . , 0,

Γn,K = ess sup{µnF (Rn)g(UTn
+ cRn, t0 − Tn − Rn)

+E(I{Rn ≥Sn+1}Γn+1,K | Fn) : Rn ≥ 0, Rn is Fn-measurable} a.s.,

where F = 1 − F denotes the survival function.

(ii) For n = K,K − 1, . . . , 0,

(13) Γn,K = µnγK−n(UTn
, Tn) a.s.,

where the sequence of functions {γj(u, t), u ∈ R, t ≥ 0} is defined recursively

as follows:

(14) γ0(u, t) = g(u, t0 − t),

(15) γj(u, t) = sup
r≥0

[
F (r)g(u + cr, t0 − t − r)

+

r\
0

dF (s)

u+cs\
0

γj−1(u + cs − x, t + s) dH(x)
]
, j = 1, 2, . . .

P r o o f. (i) Let τ ∈ Tn,K , 0 ≤ n < K < ∞. From Lemma 1 we get

An
△
= {τ < Tn+1} = {Tn + Rn < Tn+1} = {Rn < Sn+1}

and

An = {τ ≥ Tn+1} = {Rn ≥ Sn+1}.

Then, using the properties of the conditional expectation, we can obtain the
conditional expectation of the return at τ :

E(Z(τ) | Fn) = E(Z(τ)IAn
| Fn) + E(Z(τ)IĀn

| Fn)
△
= αn + βn,

where

αn = E(I{Rn < Sn+1}g(Uτ , t0 − τ)µn | Fn)

= µnE(I{Rn < Sn+1}g(UTn
+ cRn, t0 − Tn − Rn) | Fn)

= µnF (Rn)g(UTn
+ cRn, t0 − Tn − Rn).

Note that βn can be expressed as follows:

βn = E[I{Sn+1 ≤ Rn}E(Z(τ ′) | Fn+1) | Fn],

where τ ′ = τ ∨ Tn+1 ∈ Tn+1,K . Hence,

E(Z(τ) | Fn) = µnF (Rn)g(UTn
+ cRn, t0 − Tn − Rn)

+ E[I{Sn+1 ≤ Rn}E(Z(τ ′) | Fn+1) | Fn].

Now, following the standard reasoning of optimal stopping theory, we get
the dynamic programming equation for Γn,K , n = K,K − 1, . . . , 0, given in
(i), with ΓK,K = µKg(UTK

, t0 − TK).
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(ii) We will prove (ii) using the backward induction method for n =
K − 1, . . . , 1. First note that (ii) is satisfied for n = K since ΓK,K =
µKγ0(UTK

, TK).

Let n = K − 1. Then from (i) and the definition of the risk process (1)
we get

ΓK−1,K = ess sup{µK−1F (RK−1)g(UTK−1
+ cRK−1, t0 − TK−1 − RK−1)

+ E(µKI{RK−1 ≥ SK})γ0(UTK−1
+ cSK − XK , TK−1 + SK) | FK−1) :

RK−1 is FK−1-measurable, RK−1 ≥ 0}.

Now, to get ΓK−1,K = µK−1γ1(UTK−1
, TK−1) it is sufficient to note that

µK = µK−1I{UTK−1
+ cSK − XK > 0}. Moreover, the random variables

SK , XK and the σ-field FK−1 are independent; SK and XK have c.d.f. F
and H, respectively.

Let 1 ≤ n ≤ K − 1 and suppose that Γn,K = µnγK−n(UTn
, Tn). From

(i) we have

Γn−1,K = ess sup{µn−1F (Rn−1)g(UTn−1
+ cRn−1, t0 − Tn−1 − Rn−1)

+ µnE(I{Rn−1 ≥ Sn})γK−n(UTn
, Tn) | Fn−1) :

Rn−1 ≥ 0, Rn−1 is Fn−1-measurable}.

The second term under ess sup can be rewritten in the following way:

µn−1E[I{Rn−1 ≥ Sn}I{UTn−1
+ cSn − Xn > 0}

×γK−n(UTn−1
+ cSn − Xn, Tn−1 + Sn) | Fn−1].

Then we have

Γn−1,K = µn−1 ess sup
{
F (Rn−1)g(UTn−1

+ cRn−1, t0 − Tn−1 − Rn−1)

+

Rn−1\
0

dF (s)

UTn−1
+cs\

0

γK−n(UTn−1
+ cs − x, Tn + s) dH(x) :

Rn−1 ≥ 0, Rn−1 is Fn−1-measurable
}

= µn−1 · γK−(n−1)(UTn−1
, Tn−1).

To find the form of optimal stopping times τ∗
K we need to analyze prop-

erties of the sequence of functions {γn, n ≥ 0} defined in the second part of
Theorem 1.

Let B = B[(−∞,∞) × [0,∞)] be the space of all bounded continuous
functions, with the norm ‖δ‖ = supu,t |δ(u, t)|, and

(16) B0 = {δ : δ(u, t) = δ1(u, t)I{t ≤ t0} and δ1 ∈ B}.

For any δ ∈ B0 and any u ∈ R, t, r ≥ 0 define
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φδ(r, u, t)
△
= F (r)g(u + cr, t0 − t − r)(17)

+

r\
0

dF (s)
[ u+cs\

0

δ(u + cs − x, t + s) dH(x)
]
.

Note that the properties of the c.d.f. F imply that φδ(r, u, t) has an at
most countable number of points of discontinuity with respect to r and
is continuous with respect to (u, t) provided that g1(·) is continuous and
t 6= t0 − r. In what follows we will use the following

Assumption 1. The function g1(·) is bounded and continuous.

For all δ ∈ B0 define

(18) (Φδ)(u, t) = sup
r≥0

{φδ(r, u, t)}.

Lemma 2. For any δ ∈ B0 we have

(Φδ)(u, t) = max
0≤r≤t0−t

{φδ(r, u, t)} ∈ B0

and there exists a function rδ such that (Φδ)(u, t) = φδ(rδ(u, t), u, t).

P r o o f. Observe that for all δ ∈ B0 and for any r > t0 − t we have

(19) φδ(r, u, t) =

t0−t\
0

dF (s)
[ u+cs\

0

δ(u + cs − x, t + s) dH(x)
]
.

Hence, Assumption 1 and the fact that F has an at most finite number of
discontinuity points in the compact interval [0, t0] imply the form of Φ.

Observe that for i = 1, 2, . . . , u ∈ R, t ≥ 0, γi(u, t) can be rewritten as
follows:

(20) γi(u, t) =

{
(Φγi−1)(u, t) if u ≥ 0 and t ≤ t0,
0 otherwise,

and from Lemma 2 there exist functions ri
△
= rγi−1

such that

(21) γi(u, t) =
{

φγi−1
(ri(u, t), u, t) if u ≥ 0 and t ≤ t0,

0 otherwise.
To determine the form of optimal stopping times τ∗

n,K we need to define the
following r.v.’s:

(22) R∗
i

△
= rK−i(UTi

, Ti)

and

(23) σn,K = K ∧ inf{i ≥ n : R∗
i < Si+1}.

Theorem 2. Let

(24) τ∗
n,K = Tσn,K

+ R∗
σn,K

and τ∗
K = τ∗

0,k.
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Then, for any 0 ≤ n ≤ K, we have

(25) Γn,K = E(Z(τ∗
n,K) | Fn) a.s. and Γ0,K = E(Z(τ∗

K)) = γK(u, 0).

P r o o f. This is a straightforward consequence of the formulas (22)–(24)
and Theorem 1.

3. Infinite horizon case. In this section we will show that there exists
an optimal stopping rule τ∗ in the infinite horizon case, maximizing over T
the mean return (2), i.e. (6) is fulfilled. Moreover, the optimal stopping time
τ∗ can be defined as a limit of the finite horizon optimal stopping times.

Assumption 2. F (t0) < 1.

Lemma 3. The operator Φ : B0 → B0 defined by (18) is a contraction.

P r o o f. Let δ1, δ2 ∈ B0. By Lemma 2 there exist ̺i
△
= rδi

(u, t), i = 1, 2,
such that (Φδi)(u, t) = φδi

(̺i, u, t), i = 1, 2. Since φδ2
(̺2, u, t) ≥ φδ2

(̺1, u, t)
we obtain the inequalities

(Φδ1)(u, t) − (Φδ2)(u, t) ≤

̺1\
0

dF (s)

u+cs\
0

[δ1 − δ2](u + cs − x, t + s) dH(x)

≤ ‖δ1 − δ2‖

̺1\
0

dF (s)

u+cs\
0

dH(x) ≤ ̺‖δ1 − δ2‖,

where

(26) ̺ = sup
u>0

t0\
0

dF (s)

u+cs\
0

dH(x) ≤ F (t0) < 1.

Similarly, we get (Φδ2)(u, t)−(Φδ1)(u, t) ≤ ̺‖δ1−δ2‖. Hence, ‖Φδ2−Φδ1‖ ≤
̺‖δ1 − δ2‖.

Since γ0(u, t) = g(u, t0 − t) it follows that γi ∈ B0 for all i. Hence, from
the Fixed Point Theorem we get the following lemma.

Lemma 4. There exists γ ∈ B0 such that

(27) γ = Φγ and lim
K→∞

‖γK − γ‖ = 0.

R e m a r k 1. Note that all optimal stopping times are less than t0 a.s.,
which is a consequence of the definition (2) of the return.

Theorem 3. Assume that the utility function g1 is differentiable and

nondecreasing , and F has the density function f. Then

(i) for n = 0, 1, . . . , the limit τ̂n
△
= limK→∞ τ∗

n,K exists and τ̂n is an

optimal stopping rule in T ∩ {τ ≥ Tn},
(ii) E[Z(τ̂n) | Fn] = µnγ(UTn

, Tn) a.s.



Optimal stopping of a risk process 341

P r o o f. (i) Let n ≥ 0. Note that τ∗
n,K ≤ τ∗

n,K+1 a.s. Hence, the stopping
rule τ̂n = limK→∞ τ∗

n,K ≥ Tn exists.
To prove optimality of τ̂n we will apply similar arguments to those used

by Boshuizen and Goeweleew [2] in the proof of the existence of optimal
stopping times for semi-Markov processes. Let ξt = (t, Ut, Yt, Vt), Yt =
t − TN(t), Vt = µN(t), t ≥ 0. Then ξ = {ξt : t ≥ 0} is a Markov process
with the state space R

1
+ × R

1 × R
1
+ × {0, 1}. Note that the return Z(t) is a

function, say g̃, of ξt. Let A be a strong generator of ξ. Then we get

(28) (Ag̃)(t, u, y, v) =

{
cg′1(u) −

f(y)

F (y)

[
g1(u) −

u\
0

g1(u − x) dH(x)
]}

v,

where t < t0, y ≥ 0 and v ∈ {0, 1}.

Now, note that g̃(ξt)− g̃(ξ0)−
Tt
0
(Ag̃)(ξs) ds, t ≥ 0, is a martingale with

respect to σ(ξs, s ≤ t), which is the same as F(t) (see [3], p. 31). Applying
the optional sampling theorem ([3], p. 22) we get

(29) E[g̃(ξτ∗

n,K
) | ξTn

] − g̃(ξTn
) = E

[ τ∗

n,K\
Tn

(Ag̃)(ξs) ds
∣∣∣ Fn

]
a.s.

Since

(30) (Ag̃)(ξs) =

{
cg′1(Us) +

f(s − TN(s))

F (s − TN(s))

×
[ Us\

0

g1(Us − x) dH(x) − g1(Us)
]}

µN(s),

the right hand side of (29) can be expressed as the difference E(I1
n,K | Fn)−

E(I2
n,K | Fn), where

I2
n,K =

τ∗

n,K\
Tn

f(s − TN(s))

F (s − TN(s))
g1(Us)µN(s) ds.

Now, I1
n,K , I2

n,K are positive r.v.’s and I2
n,K is bounded by g1(u + ct0) ×

E(L)/F (t0), where L = inf{n ∈ N : Tn < t0, Tn+1 ≥ t0}. Note that

E(L) =
∞∑

n=1

F ∗(n)(t0) ≤
∞∑

n=1

[F (t0)]
n < ∞.

Hence, from the convergence of τ∗
n,K to τ̂n as K → ∞ and the Monotone

Convergence Theorem we see that the right hand side of (29) converges to

E
[ τ̂n\

Tn

(Ag̃)(ξs) ds
∣∣∣ Fn

]
.
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Again, applying Dynkin’s formula, since τ̂n < ∞ a.s. we get

(31) E
[ τ̂n\

Tn

(Ag̃)(ξs) ds
∣∣ Fn

]
= E[g̃(ξτ̂n

) | Fn] − g̃(ξTn
) a.s.

Hence, we have

(32) E[g̃(ξτ∗

n,K
) | Fn]−−−→

K→∞
E[g̃(ξτ̂n

) | Fn] a.s.

Now, we will prove that τ̂n is optimal in the class T ∩ {τ : τ ≥ Tn}. Let
τ be any stopping rule from T ∩ {τ : τ ≥ Tn}. Then, as τ∗

n,K is optimal in
Tn,K , we have for any K,

(33) E[g̃(ξτ∗

n,K
)Fn] ≥ E[g̃(ξτ∧TK

) | Fn] a.s.

Hence, a reasoning similar to that which led to (32) gives

(34) E[g̃(ξτ̂n
) | Fn] ≥ E[g̃(ξτ ) | Fn] a.s.,

which completes the proof of (i).
(ii) E[g̃(ξτ∗

n,K
) | Fn] = µnγK−n(UTn

, Tn) from Theorem 1(ii). Now,

Lemma 4 and (34) give

(35) E[g̃(ξτ∗

n,K
) | Fn]−−−→

K→∞
E[g̃(ξτ̂n

) | Fn] = µnγ(UTn
, Tn) a.s.
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