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INFORMATION-TYPE DIVERGENCE

WHEN THE LIKELIHOOD RATIOS ARE BOUNDED

Abstract. The so-called φ-divergence is an important characteristic de-
scribing “dissimilarity” of two probability distributions. Many traditional
measures of separation used in mathematical statistics and information the-
ory, some of which are mentioned in the note, correspond to particular
choices of this divergence. An upper bound on a φ-divergence between two
probability distributions is derived when the likelihood ratio is bounded.
The usefulness of this sharp bound is illustrated by several examples of
familiar φ-divergences. An extension of this inequality to φ-divergences be-
tween a finite number of probability distributions with pairwise bounded
likelihood ratios is also given.

1. Information-type divergences. Let φ be a convex function de-
fined on the positive half-line, and let F and G be two different probability
distributions such that F is absolutely continuous with respect to G. The
φ-divergence between F and G is defined as

φ(F |G) =
\
φ

(

dF

dG

)

dG = EGφ

(

dF

dG

)

(see for example, Vajda, 1989). Clearly

φ(1) = φ(F |F ) ≤ φ(F |G).

This inequality and the fact that many familiar separation characteristics
used in mathematical statistics and information theory correspond to par-
ticular choices of φ justify the interest in φ-divergences.

Out of these choices perhaps the most important is

φI(u) = − log u + u − 1,
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in which case

φI(F |G) = EG log

(

dF

dG

)

= K(G,F )

is the classical information number. Another information number K(F,G)
corresponds to the function φ(u) = u log u − u + 1, and the sum of these
information numbers (the so-called J-divergence, see Cover and Thomas,
1991) is determined by φJ (u) = (u − 1) log u.

The probability of correct discrimination between F and G in the Bayes-
ian setting is another example of φ-divergence. Indeed, let λ be the prior
probability of distribution F , so that 1 − λ is the prior probability of G.
Then the probability of the correct decision is

λ
\

λdF≥(1−λ)dG

dF + (1 − λ)
\

λdF<(1−λ)dG

dG

=
\
max[λdF, (1 − λ)dG] = φC(F |G),

which is another version of φ-divergence with φC(u) = max[λu, 1 − λ].
A further classical example of φ-divergence is provided by χ2-separation

with φ(u) = (u − 1)2, or by more general functions of the form

φr(u) =

{

|1 − ur|1/r, 0 < r < 1,
|1 − u|r, r ≥ 1.

For a fixed number w, 0 < w < 1, the φ-divergence with φ(u) = −u/(wu
+ 1 − w) or, somewhat more conveniently, with

φM (u) = u

[

1 − w −
1

wu + 1 − w

]

, u > 0,

appears in the statistical estimation problems of the mixture parameter and
of the change-point parameter (Rukhin, 1996).

In this note the interest is in obtaining an upper bound on a φ-divergence
when the likelihood ratio, dF/dG, is bounded. Intuitively it is clear that the
closer the probability distributions F and G are to each other, the smaller
any φ-divergence must be. This intuition is confirmed by the inequality (2)
in the next section.

One of the motivations for the study of the bounded likelihood ratios
family is statistical inference with finite memory (see Cover, Freedman and
Hellman, 1976) or recurrent multiple decision-making (Rukhin, 1994). In
the latter problem a recursive procedure can be consistent only if the dis-
tribution of the likelihood ratio is supported by the whole positive half-line.
It is demonstrated by Rukhin (1993) that in the bounded likelihood ratio
situation the probability of the correct decision is bounded from above by
an explicitly given constant, which is strictly smaller than one. Theorem
2.1 generalizes this result.
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Another reason for interest in distributions with bounded likelihood ratio
is importance sampling in Monte-Carlo methods (see Fishman (1996), Sec.
4.1). This technique, designed to reduce the variance of an estimate of
an integral, replaces sampling from the distribution F by sampling from
a suitably chosen G under condition (1). Similar situation appears in the
rejection method of generating of non-uniform random variables (cf. Devroy
(1986), II.3). The inequality (2) gives a bound on possible gain (or loss)
obtained from such a replacement.

2. A bound for φ-divergence. Suppose that with G-probability one

(1) bmin ≤
dF

dG
≤ bmax.

Then bmin < 1 < bmax.

Notice that all functions φ considered above have minimum at u = 1 and
that they are bowl-shaped, i.e. are non-increasing in the interval (0, 1) and
are non-decreasing for u > 1. Only this condition is needed in the following
theorem.

Theorem 2.1. Assume that the function φ is bowl-shaped with the min-

imum at u = 1. Under the condition (1),

(2) φ(F |G) ≤
bmax − 1

bmax − bmin
φ(bmin) +

1 − bmin

bmax − bmin
φ(bmax).

P r o o f. Let

A1 =

{

u :
dF

dG
(u) = bmax

}

and A2 =

{

u :
dF

dG
(u) = bmin

}

.

If the set (A1 ∪ A2)
c is not empty, the value of

T
φ(dF/dG) dG, for fixed

distribution G, can get only larger by the inclusion of the points of this set
either in A1 or in A2. Thus for any F , under condition (1),

φ(F |G) ≤
\

A1

φ

(

dF

dG

)

dG +
\

A2

φ

(

dF

dG

)

dG

= φ(bmax)G(A1) + φ(bmin)G(A2).

Since

F (A1) = bmaxG(A1) and F (A2) = bminG(A2),

one obtains

G(A1) =
1 − bmin

bmax − bmin
and G(A2) =

bmax − 1

bmax − bmin
,

which proves (2).
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Let us illustrate this theorem by the particular versions of φ from Sec-
tion 1.

1. For φI(u) = − log u + u − 1, Theorem 2.1 shows that

K(G,F ) ≤ −
(1 − bmin) log bmax + (bmax − 1) log bmin

bmax − bmin
.

Similarly,

K(G,F ) + K(F,G) ≤
(bmax − 1)(1 − bmin)

bmax − bmin
log

bmax

bmin
.

2. The function φC(u) = max[λu, 1−λ] has a (non-unique) minimum at
u = 1 if λ ≤ 1/2. The inequality (2) shows that in this case

φC(F |G) ≤
(1 − bmin)max[λbmax, 1 − λ] + (bmax − 1)(1 − λ)

bmax − bmin
,

which is equivalent to the inequality (3.3) in Rukhin (1993).

3. For φ2(u) = (u − 1)2, one concludes from Theorem 2.1 that

(3) EG

(

dF

dG

)2

≤ 1 + (bmax − 1)(1 − bmin).

For two discrete distributions with probabilities p1, . . . , pn and q1, . . . , qn

such that bmin ≤ pi/qi ≤ bmax, this inequality means that

∑ p2
i

qi
≤ 2 + (bmax − 1)(1 − bmin).

For arbitrary non-negative numbers α1, . . . , αn and β1, . . . , βn put qi =
β2

i /
∑

β2
k, and pi = αiβi/

∑

k αkβk. Then
∑

α2
i

∑

β2
i

(
∑

αiβi)2
≤ 2 + (bmax − 1)(1 − bmin),

where

βmax = max
i

αi

βi
·

∑

β2
i

∑

αiβi
, βmin = min

i

αi

βi
·

∑

β2
i

∑

αiβi
.

By maximizing the right-hand side of (3) when bmax/bmin = B, one obtains

(4) EG

(

dF

dG

)2

≤
(B + 1)2

4B
.

For discrete distributions, as above, this inequality reduces to a well known
inequality

∑

α2
i

∑

β2
i

(
∑

αiβi)
2 ≤

(B + 1)2

4B

with B = maxi(αi/βi)/mini(αi/βi) (see Pólya and Szegő, 1972).
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The latter inequality has been used by Tukey (1948) and Bloch and
Moses (1988) in the problem of statistical estimation of the common mean
by weighted means statistics with measurements of different precision. Both
of these papers comment on the numerical accuracy of the bound (4) (which
is weaker than (2)).

4. For φM , Theorem 2.1 implies\ dF dG

wdF + (1 − w)dG
≥

1 − w + wbminbmax

(wbmin + 1 − w)(wbmax + 1 − w)
.

The example of two Bernoulli distributions with probabilities of success
(1−bmin)/(bmax−bmin) and bmax(1−bmin)/(bmax−bmin), respectively, shows
that the inequality (2) is sharp. Its sharpness can also be seen by the limiting
cases when w = 0 or w = 1.

As another example, let F be the exponential distribution with mean ω
and G be the exponential distribution with mean 1. Then

dF

dG
(x) = ω exp{(1 − ω)x}, x > 0,

so that for ω > 1, bmax = ω and bmin = 0. Therefore for any bowl-shaped
function φ with minimum at u = 1, for ω > 1 we have

φ(F |G) =

1\
0

φ(ωuω−1) du ≤
(ω − 1)φ(0) + φ(ω)

ω
.

When ω ↓ 1, this inequality reduces to equality.

3. Information divergence for several probability distributions.

In this section we derive an inequality similar to the one in Theorem 2.1 for
the information divergence between several probability distributions. This
divergence is defined in the following way (see Györfi and Nemetz, 1975).

Let φ(u1, . . . , um) be a non-negative convex function defined over the
positive quadrant of m-dimensional Euclidean space. Assume that φ is a
homogeneous function, i.e. for all positive u,

φ(uu1, . . . , uum) = uφ(u1, . . . , um).

Let (X ,A, µ) be a measure space, and let different probability distributions
P1, . . . , Pm defined on A be absolutely continuous with respect to µ. The
φ-divergence between P1, . . . , Pm is defined as

φ(P1, . . . , Pm) =
\
X

φ

(

dP1

dµ
, . . . ,

dPm

dµ

)

dµ.

The homogeneity property of φ guarantees independence of φ(P1, . . . , Pm)
from the dominating measure µ. When m = 2, this information divergence
reduces to the one in Section 1 with the function φ(u) there equal to φ(u, 1).
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The examples of φ-divergence include the error probability in a mul-
tiple decision problem for φC(u1, . . . , um) = maxi[λiui] with probabilities
λ1, . . . , λm; the analogues of Kullback–Leibler divergences,

φI(u1, . . . , um) =
∑

i,k

[

ui − uk − uk log
ui

uk

]

,

φJ (u1, . . . , um) =
∑

i,k

(ui − uk) log
ui

uk
;

and Hellinger-type transforms with φ(u1, . . . , um) = uα1

1 uα2

2 . . . uαm

m for α1 +
. . . + αm = 1.

Assume now that the ratios of the densities pi = dPi/dµ, i = 1, . . . ,m,
are bounded, i.e.

(5) bki ≤
pk(x)

pi(x)
≤

1

bik
µ-a.s.

Moreover, assume that bik are the largest (positive) quantities satisfying
(5). Then bkibil < bkl for i 6= k, l. In particular, bkibik < 1 for i 6= k.
The set P of all probability distributions satisfying this condition is convex
and closed under weak convergence. Since the functional φ(P1, . . . , Pm) is
convex, its maximum is attained on the set ext(P) of the extreme points
of P.

The next result gives a necessary condition for (P 0
1 , . . . , P 0

m) to belong
to ext(P).

Proposition 3.1. If (P 0
1 , . . . , P 0

m) is an extreme point of P, then for

any k,

(6) µ

{

max
i:i 6=k

bkip
0
i (x) < p0

k(x) < min
i:i 6=k

p0
i (x)

bik

}

= 0.

P r o o f. We show first of all that the conditions

pi(x)

bik
= min

l:l 6=k

pl(x)

blk

and

bkipi(x) = max
l:l 6=k

bklpl(x)

are equivalent. Indeed, according to the first condition, for any l 6= k,

bklpl(x) ≥
bklblkpi(x)

bik
,

so that

max
l:l 6=k

bklpl(x) ≥ max
l:l 6=k

bklblk
pi(x)

bik
≥ max

l:l 6=k
bklblk max

l:l 6=k

bklpl(x)

bkibik
.
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It follows that

(7) max
l:l 6=k

bklblk = bkibik

and that

max
l:l 6=k

bklpl(x) = bkipi(x).

Suppose now that for some i 6= k, (6) does not hold for (P1, . . . , Pm) ∈ P,
i.e. on a set of µ-positive measure,

(8) max
l:l 6=k

bklpl(x) = bkipi(x) < pk(x) <
pi(x)

bik
= min

l:l 6=k

pl(x)

blk
.

Then for sufficiently small positive w, the µ-measure of the set

bki + w

(

1

bik
− bki

)

≤
pk(x)

pi(x)
≤

1

bik
− w

(

1

bik
− bki

)

is positive. For any number a such that bki < a < 1/bik, this set is contained
in the region

C =

{

bki + w(a − bki) ≤
pk(x)

pi(x)
≤

1

bik
− w

(

1

bik
− a

)}

,

With a = Pk(C)/Pi(C), the set C must have µ-positive measure.
For x ∈ C put

r(x) =
pk(x) − wapi(x)

1 − w
, q(x) = api(x),

and for x 6∈ C,

r(x) = q(x) = pk(x).

Then for all x,

pk(x) = wq(x) + (1 − w)r(x),

and q and r are probability densities. We now show that (P1, . . . , Q, . . . , Pm)
∈ P and (P1, . . . , R, . . . , Pm) ∈ P. Indeed, for x ∈ C,

bki ≤
q(x)

pi(x)
a ≤

1

bik
,

and these inequalities trivially hold for x 6∈ C. Also,

bki ≤
r(x)

pi(x)
=

pk(x)
pi(x)

− wa

1 − w
≤

1

bik

for x ∈ C, by the definition of C. Because of (8), for any l 6= k,

bkl ≤
r(x) ∧ q(x)

pl(x)
≤

r(x) ∨ q(x)

pl(x)
≤

1

blk
.

Therefore (P1, . . . , Pm) 6∈ ext(P), which concludes the proof.
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According to this proposition, if (P 0
1 , . . . , P 0

m) ∈ ext(P), then for any k
there exists i, i 6= k, which can be found from (7), such that the sets

A+
k =

{

p0
k(x) =

p0
i (x)

bik
= min

l:l 6=k

p0
l (x)

blk

}

and

A−
k = {p0

k(x) = p0
i (x)bki = max

l:l 6=k
p0

l (x)bkl}

form a partition of X . Clearly

P 0
k (A+

k ) =
P 0

i (A+
k )

bik
≤ min

l:l 6=k

P 0
l (A+

k )

blk
,

P 0
k (A−

k ) = P 0
i (A−

k )bki ≥ max
l:l 6=k

P 0
l (A−

k )bkl.

As in Section 2,

P 0
k (A+

k ) =
1 − bik

1 − bikbki
, P 0

k (A−
k ) =

bki(1 − bik)

1 − bikbki
.

If φ(u1, . . . , um) attains its minimum at (1, . . . , 1) then

φ(P1, . . . , Pm) ≤ max
(P 0

1
,...,P 0

m
)∈ext(P)

φ(P 0
1 , . . . , P 0

m)(9)

= max
(P 0

1
,...,P 0

m
)∈ext(P)

\
X

φ
(

p0
1, . . . , p

0
m

)

dµ

≤ max
k

max
(P 0

1
,...,P 0

m
)∈ext(P)

[ \
A+

k

φ(p0
1, . . . , p

0
m) dµ

+
\

A−

k

φ(p0
1, . . . , p

0
m) dµ

]

≤ max
k

max
(P 0

1
,...,P 0

m
)∈ext(P)

[

φ(b1k, . . . , 1, . . . , bmk)P 0
k (A+

k )

+ φ

(

1

bk1
, . . . , 1, . . . ,

1

bkm

)

P 0
k (A−

k )

]

= max
k

[

φ(b1k, . . . , 1, . . . , bmk)
1 − bik

1 − bikbki

+ φ

(

1

bk1
, . . . , 1, . . . ,

1

bkm

)

bki(1 − bik)

1 − bikbki

]

≤ max
k 6=l

[

φ

(

b1k, . . . , 1, . . . , bmk

)

1 − blk

1 − blkbkl

+ φ

(

1

bk1
, . . . , 1, . . . ,

1

bkm

)

bkl(1 − bkl)

1 − blkbkl

]

.
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We formulate the obtained result.

Theorem 3.2. Under the boundedness condition (5), the inequality (9)
holds for any information divergence φ(P1, . . . , Pm) such that the convex

function φ(u1, . . . , um) attains its minimum at (1, . . . , 1).

It is easy to see that for convex functions φ the inequality (9) implies
that of Theorem 2.1.
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