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BAYES OPTIMAL STOPPING
OF A HOMOGENEOUS POISSON PROCESS

UNDER LINEX LOSS FUNCTION AND
VARIATION IN THE PRIOR

Abstract. A homogeneous Poisson process (N(t), t ≥ 0) with the in-
tensity function m(t) = θ is observed on the interval [0, T ]. The problem
consists in estimating θ with balancing the LINEX loss due to an error of es-
timation and the cost of sampling which depends linearly on T . The optimal
T is given when the prior distribution of θ is not uniquely specified.

1. Introduction. The homogeneous Poisson process with the intensity
function m(t) = θ, θ > 0, is widely used in many different fields of applied
probability and statistics.

Suppose that the process is observed on the interval [0, T ] and the prob-
lem consists in optimal stopping of observation (optimal choice of T ) and
optimal estimation of θ under the following circumstances:

1. The loss in estimating θ by an estimator θ̂ is measured by the LINEX
function (see Zellner (1986))

(1.1) L(θ̂, θ) = b[exp{a(θ̂ − θ)} − a(θ̂ − θ)− 1], a < 0.

2. Costs of observations are assumed to grow linearly in T , and the total
cost of observation and estimation is defined as

(1.2) LT (θ̂, θ) = kL(θ̂, θ) + (1− k)(c1T + c2), 0 < k < 1, c1, c2 > 0.

3. The prior knowledge about θ is that θ has a gamma G(α, β) distribu-
tion

(1.3) g(θ) =
βα

Γ (α)
θα−1 exp{−βθ}, θ > 0, α, β > 0.
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Under these conditions Ebrahimi (1992) gave the full solution of the
problem in the more general case of the power law process. We agree with
the choice of the prior for θ but we believe that a strict specification of the
parameters (α, β) of that distribution is not easy. Hence we are interested
in solving the problem under the following additional condition.

4. The prior knowledge about θ is that the distribution of θ belongs to
the family

(1.4) Γ = {G(α, β) : 0 < αL ≤ α ≤ αU, 0 < βL ≤ β ≤ βU}

for some fixed lower bounds αL, βL, and upper bounds αU, βU.
Considerable attention has been paid to the issue of optimal decisions

if the prior is not uniquely determined and it is known to belong to a suit-
able family of priors; see for example Berger (1994) and references therein.
Typical Bayesian approach under condition 4 (conditional Γ -minimaxity)
is however not applicable to our case because the optimal decision depends
on observations while we have to decide on T before the observations are
collected. The situation is exactly as that in the case of experimental design.
An approach which consists in averaging future observations under a given
prior has been presented in DasGupta and Studden (1991). Another ap-
proach in the context of Bayesian robustness, consisting in analysing a pos-
terior quantity as a function on the sample space of future observations has
been developed in Mȩczarski and Zieliński (1997). Below we present an ap-
proach which is a combination of the principle of conditional Γ -minimaxity
and averaging future observations with respect to plausible posterior distri-
butions, i.e. the Γ -minimaxity. The approach enables us to uniquely choose
an optimal stopping time T despite the nonuniqueness of the prior distribu-
tion. An alternative to our approach presented below is a pure sequential
procedure which will be treated elsewhere.

2. General solution. Given T > 0, the number N of events in the
interval [0, T ] is a Poisson random variable with mean equal to θT so that
the likelihood function, given N = n, is

(2.1) ln(θ) = θn exp{−θT}, n = 0, 1, 2, . . .

For a gamma G(α, β) prior for θ, the posterior distribution is gamma G(n +
α, T + β). Integrating (1.1) with respect to the posterior distribution (con-
ditioned on the time of observation T and N = n) we obtain the posterior
risk of the estimator θ̂,

(2.2) rT,n(θ̂, (α, β)) = b

(
T + β

T + β + a

)n+α

exp{aθ̂}+ ab
n + α

T + β
− b(aθ̂ − 1)
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and the condition

(2.3) T + β + a > 0

(otherwise the risk is infinite). For the Bayes solution, similarly to Ebrahimi
(1992), we obtain

(2.4) θ̂Bay = θ̂Bay(n, T, (α, β)) = −n + α

a
log

T + β

T + β + a

which is a simple application of a general formula given in Zellner (1986).
The risk function of the Bayes estimator (2.4) is

(2.5) R(θ̂Bay(·, T, (α, β)), θ) =
∞∑

n=0

L(θ̂Bay, θ)PT,θ{N = n}

where

(2.6) PT,θ{N = n} =
(θT )n

n!
e−θT , n = 0, 1, . . . ,

gives the distribution of the observation N under a fixed θ. We obtain

R(θ̂Bay(·, T, (α, β)), θ) = b

(
aθ + (θT + α) log

T + β

T + β + a
(2.7)

+
(

T + β + a

T + β

)α

exp
{
− aθβ

T + β

}
− 1

)
.

The Bayes risk, denoted by r(θ̂Bay(·, T, (α, β))), of the Bayes estimator un-
der the prior Γ (α, β) is then obtained as the result of integration of (2.7)
with respect to θ:

(2.8) r(θ̂Bay(·, T, (α, β))) = b

{
a
α

β
+ α

(
T + β

β

)
log

T + β

T + β + a

}
.

Now take (α∗, β∗) (i.e. the prior Γ (α∗, β∗)) such that

(2.9) r(θ̂Bay(·, T, (α∗, β∗))) = sup
(α,β)∈[αL,αU]×[βL,βU]

r(θ̂Bay(·, T, (α, β))).

The supremum on the right-hand side is of course the supremum over the
set Γ of plausible prior distributions for θ. The supremum of the total loss
(supremum with respect to plausible priors) is equal to

(2.10) λ(T ) = kr(θ̂Bay(·, T, (α∗, β∗))) + (1− k)(c1T + c2),

which depends on T only. The optimal T is T ∗ for which
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(2.11) λ(T ∗) ≤ λ(T ), T > 0.

As a conclusion we obtain the following algorithm for finding the Γ -minimax
stopping time T ∗ and the optimal estimator of θ:

1) maximize (2.8) with respect to (α, β) for a fixed T . The minimizer
(α∗, β∗) might depend on T ;

2) find a minimizer T ∗ of λ(T );
3) given T ∗, observe the process (N(t), t ≥ 0) on the interval [0, T ∗];
4) having observed N = n, calculate the Bayes estimator (2.4) under the

prior (α∗, β∗):

(2.12) θ̂Bay(·, T ∗, (α∗, β∗)) = −n + α∗

a
log

T ∗ + β∗

T ∗ + β∗ + a
.

3. Algorithm. Maximization of (2.8) with respect to (α, β) is easy: it
is a linear function of α of the form

(3.1) b
1
β

[
a + (T + β) log

T + β

T + β + a

]
α

and hence it is enough to find β∗ which maximizes

(3.2)
1
β

[
a + (T + β) log

T + β

T + β + a

]
.

Since the function (3.2) is positive and decreasing, we obtain

(3.3) α∗ = αU, β∗ = βL.

Given (α∗, β∗), the optimal T ∗ is that minimizing (2.10), which now takes
on the following form:

(3.4) λ(T ) = kb
α∗

β∗

[
a + (T + β∗) log

T + β∗

T + β∗ + a

]
+ (1− k)(c1T + c2).

Numerical minimization of (3.4) is not difficult. It reduces to finding the
unique root T ∗ of the equation

(3.5) − a

T + βL + a
− log

(
1− a

T + βL + a

)
=

1− k

k
· βL

αU
· c1

b
.

The optimal T ∗ for some choices of αU, βL, a, b, c1 and k are presented
below. Observe that αL, βU and c2 have no influence here, so that the
optimal solution is absolutely robust to diminishing the shape parameter
and/or increasing the scale parameter of the prior distribution.

The oscillation (the range)
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(3.6) sup
(α,β)∈[αL,αU]×[βL,βU]

r(θ̂Bay(·, T, (α, β)))

− inf
(α,β)∈[αL,αU]×[βL,βU]

r(θ̂Bay(·, T, (α, β)))

of the Bayes risk (2.8) may be considered as a natural indicator of the robust-
ness (see e.g. Sivaganesan and Berger (1989) and Mȩczarski and Zieliński
(1991)). It is interesting to observe that (3.6) is decreasing in T and tends
to 0 as T →∞.

4. Numerical examples. To get a perspicuous intuitive interpretation
of numerical examples observe the following:

1) The total loss (1.2) in the case under consideration has the following
form:

(4.1) LT (θ̂, θ)

= kb[exp{a(θ̂ − θ)} − a(θ̂ − θ)− 1] + (1− k)(c1T + c2)

= kb

[
(exp{a(θ̂ − θ)} − a(θ̂ − θ)− 1) +

1− k

k
· c1

b
T +

1− k

k
· c2

b

]
.

Now, kb (“scale” of the loss) and 1−k
k · c2

b (an additive constant) are fixed, so
that when looking for an optimal stopping time T and an optimal estimator
θ̂ we may confine ourselves to considering the loss of the form

(4.2) (exp{a(θ̂ − θ)} − a(θ̂ − θ)− 1) + κT,

where κ = 1−k
k · c1

b .
2) The parameter a < 0 in the LINEX term of (4.2) has a fixed value,

hence we may confine ourselves to finding an optimal T ∗/(−a) instead of
T ∗ itself.

3) If the prior distribution belongs to Γ (cf. (1.4)), then the maxi-
mum value of the prior expectation of θ, denoted by Emaxθ, is equal to
αU/βL.

Taking all this into account, the equation (3.5) may be written in the
form

(4.3) x− log(1 + x) =
κ

Emaxθ
,

where

(4.4) x =
1

T
−a + βL

−a − 1
.

The values of T/(−a) are presented in Table 1 (together with the values of
x in the last row).
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TABLE 1

κ/Emaxθ

βL/(−a) 0 0.001 0.006 0.018 0.095 0.307 0.901 7.602 95.385 993.09 +∞

1 +∞ 19 9 5 2 1 0.5 0.1 0.01 0.001 0
1.001 +∞ 18.999 8.999 4.999 1.999 0.999 0.499 0.099 0.009 0
1.01 +∞ 18.99 8.99 4.99 1.99 0.99 0.49 0.09 0
1.1 +∞ 18.9 8.9 4.9 1.9 0.9 0.4 0
1.5 +∞ 18.5 8.5 4.5 1.5 0.5 0
2 +∞ 18 8 4 1 0
3 +∞ 17 7 3 0
6 +∞ 14 4 0
10 +∞ 10 0
20 +∞ 0

x 0 0.053 0.111 0.2 0.5 1 2 10 100 1000 +∞

The strange looking values of κ/Emaxθ are the values for which, under the
values of βL/(−a) in the first column of the table, the optimal stopping
time T ∗ is equal to 0. Of course, the optimal T ∗ under any greater value of
κ/Emaxθ is also 0. Optimal T ∗ = 0 means that θ should be estimated on
the base of the prior distribution only.

5. Conclusions. The influence of the uncertainty in the prior has a
particular form: only αU and βL influence T ∗. Consequently, only the un-
certainty in the upper bound for α and in the lower bound for β is essential.
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