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A bound for the discrepancy of digital nets and its
application to the analysis of certain
pseudo-random number generators

by

GERHARD LARCHER (Salzburg)

1. Introduction. The concept of digital nets is at the moment the
most effective method for the construction of low-discrepancy point sets
in the s-dimensional unit cube. Furthermore, by recent work it turned
out that digital nets also play an important role in the analysis of certain
pseudo-random number generators.

Until now the discrepancy of digital nets essentially was estimated by
using discrepancy bounds valid for arbitrary nets. In this paper we give
a more sensible—in some sense—discrepancy bound, especially for digital
nets generated over a finite field of prime order, and we apply this bound for
improving some results concerning the serial test of certain pseudo-random
number generators.

The serial test is a test for the statistical independence of successive
pseudo-random numbers. For a pseudo-random number sequence xg, z1, . . .
...,xy—1 in [0,1) and a fixed dimension s > 2 let the serial set (x,)n>0
of dimension s be defined by x, := (Tpn,Tpt1,---Tnts—1) € [0,1)° for
n=0,1,...,N — 1. (Here we consider the sequence (z,),>0 to be periodic
with period N.) We then consider the usual star-discrepancy D73 of this
sequence in [0,1)*. D% is defined by

Dy =sup
B

where the supremum is over all subintervals B in [0,1)® with one vertex at
the origin, Ax(B) denotes the number of elements of the sequence belonging
to B, and \(B) is the s-dimensional volume of B.

Small discrepancy guarantees good statistical independence properties
of the successive elements of the pseudo-random sequence.
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2 G. Larcher

K. F. Roth [11] has shown that for every dimension s > 2 there exists a
constant ¢s > 0 such that for every N > 2 and each sequence yo, y1,- .., YnN—1
in [0, 1)*, for the corresponding star-discrepancy D3 of the sequence we have

(log N)(s—1)/2
— N

It is a famous conjecture that this still holds if the exponent (s — 1)/2 of
the logarithm is replaced by s — 1. Until now this was only proved for the
dimensions s = 1 and s = 2 (see [12]). So by “small discrepancy” we mean
a discrepancy of an order (log N)4/N with A not much larger than s — 1.

In this paper we consider three widely used pseudo-random number gen-
eration methods: the recursive matrix method (combined with the p-adic
digit method), the digital multistep method, and the generalized feedback
shift-register method. These methods have the property that their serial
sets show in some sense a “net property” and even a “digital net property”.
For the theory of nets and for more details and a discussion concerning the
serial test see the excellent monograph [4] of Niederreiter, and the various
references given there.

For all these generation methods we show the existence of parameters
which provide pseudo-random number sequences with large period and with
an extremely small discrepancy for its serial sets. We thereby improve results
which are given in, or can be deduced from, [6], [3] and [2].

Note that it is not the intention of this paper to discuss or to evaluate
different pseudo-random number generation methods or to give comments
on advantages and disadvantages of various pseudo-random number tests.

Dy > ¢

2. A discrepancy bound for digital nets. The concept of digital
nets over a certain ring is at the moment the most effective method for the
construction of low-discrepancy sequences in an s-dimensional unit cube.
We just mention the powerful construction methods given by Niederreiter
and Xing for example in [8]-[10] which are based on the digital construction
concept over a finite field. In this section we recall the notion of digital nets
and we give the new discrepancy bound in Proposition 1.

Let p be a prime, let F}, be the finite field of order p and use the natural
identification between the elements of the field and the digits between 0 and

p— 1.

For integers s > 2, m > 2 and N = p™ the sequence xg,...,Xny_1 €
[0,1)% with x,, := (z,(1),...,2,(s)) is called a digital net over F, if there
exist s m x m matrices Aq,..., As over F), such that foralln =0,...,N—1
andi=1,...,s we have
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A bound for the discrepancy of digital nets 3

Here we denote by 7 the following bijection between " and {0,...,p™ —1}:

7((ag,- .. am-1)) =ao + a1p+ ...+ am_1p™ "

The quality of the distribution of a digital net of course essentially de-
pends on the properties of the defining matrices A; (see for example Theo-
rem 4.28 of [4]).

Let Aq,..., A be given and denote by ay) € F" with j =1,...,m the
rows of the matrix A; fori =1,...,s. For 0 <w < s, a w-tuple (dy,...,dy)
of non-negative integers is called admissible with respect to Aq,...,As if
the system {ay) = 1,...,d;, i = 1,...,w} is linearly independent
over F,. For w = 0 we define the “zero-tuple” () to be admissible. For
w<s—1and (dy,...,dy,) admissible we set h(dy,...,dy) := max{h > 0|
(di,...,dy,h) is admissible}.

Then we have:

PROPOSITION 1. Let D* denote the star-discrepancy of the digital net
X0, ..., Xpm_1 over F, defined by Ay,..., As. Then

s—1
S Z(p _ 1)w Z p_(d1+ +dw+h(dla 'u))).
w=0

(d1,...,dw) admissible
d;>0

Proof. By the definitions, if (dy,...,d,) is admissible and we let

BC[0,1]° with B= H[ > [0,1)°

with integers 0 < a; < b; < p% (we call such an interval an admissible
interval), then B contains exactly

w
pm (it tdu) H(bi —a;)
i=1
of the net points.
Let M = [[;_,[0, ) C [0,1)° with o := 3772, ozg.z)/pj fori=1,...,s
be taken arbitrarily. (If the representation of some «; is not unique then we
use an infinite representation.) Then on the one hand we have

_ 1o d gl
Ve U I[ES Y )eu
(d1,...,ds) admissible :=1 = j=1 j=1

d;>0

The intervals in the above union are pairwise disjoint and admissible. On
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the other hand, we will show by induction on s that

os—l w rdi—1 (1) d; a i
wemv U ([zwz;)

w=0 (dy,...,dy ) admissible “i=1 - j=1 Jj=1

d; >0
h(dlv 'w (w+1) h(d17 w (’UJ+1) 1
x[ YU e S )
’ h(dy,..., dyy
= pJ = p] p(l )

x [0, 1)S—w—1).

(Again all intervals in the second union above are admissible.) For s = 1
the right hand side above is

di—1 (1) da (1) h() (1) h() (1) 1
U [ 2% )% %)
j=1 j=1 j=1 j=1

dq, admissible

h() (1)
as 1
=02f+)
) h )
{ = P
which contains M = [0, a1). Assume the assertion is true up to dimension
s — 1 and consider

By induction,

s—1 s—1 pd;—1 a(z) d; (z)
i=1 (d1,...,ds—1) admissible P’ p
di>0

s—2 w ordi=1 @) di (i)
Uy (H[, )

I
—
.
I
—

w=0 (dy,...,dy ) admissible “i=1 - j=1 j=1
d; >0
h(d1,...,dw) (w+1) h(d1,...,dw) a(w-i-l) 1
X [ E %N J +
J ’ J h(dy,..., dw)
=1 p =1 p p

x [0, 1)5—“’—2).

We extend each of the (s —1)-dimensional intervals J on the right hand side
above to an s-dimensional interval J’ such that M is contained in the union
of these extensions.
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If J is part of the first big union above, that is, if it is of the form
s—1 i ( ) d;
i=1 |: j=1 j=1 >
for some admissible (dy,...,ds_1), then we take
H |: Z (1) d; (Z)>
i=1 "~ j=1 j=1
R(dy,...,ds_1)

X( U5 s)

h(dy,....ds—1) _(s) h(di,...ds—1) _(s)
U |: aL’ Z aj, N 1 >>
D = pJ phldi,de1)

(s)

If J is part of the second big union then we just extend by [0, 1).
By inserting we obtain

s—1 rd;—1 (Z) d; (1)
MC U % %
Lt pi 4 < p

(d1,...,ds—1) admissible ~i=1 - j=1 j=
d; >0
h(dy,...,ds—1) (s) k a(s)
U [ET )
k=1 j=1 j=1
s=1rdi=1 (1) d; _(3)
J J
(di,...,ds_1) admissible ~i=1 " j=1 j=1

d; >0

h(dq,..., ds—1) O[(s) h(d1,..., ds—1) a(s) 1

[ )
s—2 w
U U (H]x

w=0 (dq,..., dw ) admissible
d;>0

h(didw) (1) h(didw)  (wtl)

: 1
J J
x [ > o P +ph(d1,‘..,dw)>

j=1 j=1
% [0’ 1)s—w—1> 7

and the induction is finished.
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So we obtain

AN]&[M) B )\(M)) <Y -1 Y prtetdethdda)
w=0 (d1:~~7d’w)
admissible
d; >0

and the result follows. m

3. The recursive matrix method. The recursive matrix method was
introduced in full generality by Niederreiter in [5], and it was studied in
detail for example in [6] and [7]. Here we only consider the case of recursive
matrix methods of order one. This is a combination of the classical matrix
method for the generation of pseudo-random vectors (see [4]), combined
with a p-adic digit method.

The method is the following. Let p be a prime and let F}, be again the
finite field of order p. Let m be a positive integer and let A be a non-singular
m X m matrix over Fj,. A sequence zo,Zi, ... of row vectors from FJ" is
generated by choosing an initial vector z different from 0 and by

Zpt1 =2, A forn=0,1,...

e now derive pseudo-random numbers z, in [0, rom z, :=
W deri d d b in [0,1) f
(27(11), cel zflm)) € I} in the following way. We identify the elements 2 € F,

in the natural way with digits z € {0,...,p — 1}. Then
m . .
Ty 1= Zzﬁf)p*] forn=0,1,...
j=1

The sequence (z,),>0 and therefore (z,),>0 is purely periodic because of
the non-singularity of the matrix A, with (least) period at most p”* —1. This
maximal (least) period is attained if and only if the polynomial det(x-I,,,— A)
of degree m is a primitive polynomial over F},. (Here I,,, is the m xm identity
matrix.) This is shown for example in Theorem 10.2 of [4]. In the following
we restrict ourselves to this, for practical purposes most important, case of
maximal period.

Let in the following ¢ := p™. In Theorem 2 of [6] it was shown that

a sequence (zp)n>0 with z, := (zﬁll), Cee zr(Lm)) € I} is a recursive vector
sequence of the above form of period T := p™ — 1 if and only if there is a
primitive element o of F, and a basis 3i,..., B, of F, over F, such that

z%j) = Tr(B;o™) for 1 < j < m and n > 0. Here Tr is the trace function
from Fy to F.

Concerning the star-discrepancy D;(s) of the serial sets of dimension s
of these sequences, the following was shown in [6].
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Let 2 < s < m and let o be a fixed primitive element of F,. Then for
D;(S) we have on the average

*(s logT)?®
Dy < ofs) 1D

with an implied constant depending only on s, where the average is taken
over all ordered bases of Fj, over F},.

From this we at once deduce the following. Let 2 < s < m, let o be a
fixed primitive element of F;, and let B be the set of ordered bases of F,
over F},. Let 0 < v < 1 be given. Then the number of bases B € B for
which for the discrepancy D;(S)(B) of the s-dimensional serial set of the
corresponding sequence we have

1 (logT)*
)7

D;¥(B) <

is at least v|B].

We improve this result (at least for small p) by almost one logarithmic
factor in the following way:

THEOREM 1. Let 2 < s <m, let o be a primitive element of Fy and let
B be the set of ordered bases of F, over F,. Let 0 <~ <1 be given. Then

the number of bases B € B for which for the discrepancy D;(s)(B) of the
s-dimensional serial set Xg,...,xp_1 of the corresponding sequence we have

s—1
1 1 m
Dy*(B) < o+ — - 1)
0w < g4 o= (")

is at least y|B|. (Here we denote by ,log the logarithm to base p.)

Remark 1. Note that the constant in the O-result of Theorem 1 does
also depend on p.

Remark 2. For example, in the case p = 2 for at least half the bases
B in B, we have

-1

s s—1
*(s) < 1 m _ glogm m
Dy (B) <685, Y (w)—i—16(s D=2 )

w=0




8 G. Larcher

Remark 3. The above discrepancy estimates coincide up to the
loglog T factors with the conjectured general lower bound for the discrep-
ancy of point sets in [0, 1)°.

Proof of Theorem 1. Let the recursive matrix sequence xg,...
...,x7—1 be defined by the primitive element o of I, and by the ordered
basis B = {f1,...,0m} of F, over F,,. The §; are viewed as vectors of F,
over F,. By Theorem 5 of [6], the set 0,xg,X1,...,xr_1 forms a digital
net over Fj,, which is generated by certain matrices, say Ci,...,C,s. Let
c;l) EF;”forlngmberowsofCi forl1<i<s.

It is shown in the proof of that Theorem 5 that these C1,...,Cs have
the following property: for any non-negative integers d; < m, i = 1,...,s,
the system of vectors {cy) :1 < j<d; 1<i< s} is linearly dependent
over F, if and only if the system {3;0'"! :1 < j < d;, 1 <i < s} is.
In the following we consider admissible w-tuples of integers with respect to
the matrices A;(B) with rows B;0'"%, j = 1,...,m, for i = 1,...,s and
we call them (for fixed o) admissible for B. Then by Proposition 1 for the

star-discrepancy D;(s)(B) of the set 0,xq,X1,...,X7_1 we have
s—1
D;(S)(B) < Z(p _ 1)w Z p—(d1+..A+dw+h(d1,...,dw)).
w=0 (dly“-ydw)
admissi.b>lc for B

For a non-negative integer c¢ let M(c) be the set of B € B such that
there exist positive integers di,...,ds with dy + ...+ ds = m — ¢ and with
Bjo=t, j=1,...,d;, i =1,...,s, linearly dependent over F,. We have

Ml % S M)

d:=(dy,...,ds) A=(A1, ;A m—c)€E
di+...+ds=m—c F™m—c\ {0
250 » \{0}

with
M()\,d) = {B eB | )\1ﬂ10’0 + ...+ )\dlﬂdlo'o + ...
ot Adyetde 418105 L+ A oBa, 0" =0}

We estimate the number of elements of M(A,d). There is an
i€ {l,...,m —c} with \; # 0. Without loss of generality assume \; # 0.
Since s < m and since o is primitive, we have A\;o%+. . .+)\d1+.,,+d571+105_1
# 0. So for arbitrarily chosen linearly independent (s, ..., 3., (there are
(p™ —1)...(p™ — p™2) such choices) there is at most one f3; such that
(B1,--.,Bm) € B. Consequently,

1

M) <" =D —p)... (0" —p"?) = |B|W



A bound for the discrepancy of digital nets

and therefore

D m—c—1
Ml <8l P (M),
Let M(c) := B\ M(c). Then

(M(e)| = [BI(1 = R(c)) with R(c) :=plc-pfl<m;f1_1>-

For a positive integer ¢ we now consider

Z e Z D*()

/\7
BeM(c)
- Z Z . 1 Z p—(d1+‘..+dw+h(d1,...,dw))
< W 0,
admissible for B
d; >0
s—1
< 1 Z Z p (i)
|M(C)| ’LUIO BGM(C) dl .....
adm1551b1e for B
d; >0

(2 s ) )

=m—(d1+...4+dw)—c+1 A
* .
Here )\ means summation over all

A= ()\1, ey Ad1+.__+dw+i) € F;)i1+...+d“,+i \ {O}

for which

MBL+ A, Bay F oA Ayt dy 1 B10 T Ayt vay, Ba, 0T
+ Ay +otdy 1510 + oo Xyt 4dy +iBi0” = 0.

The summand 1/p™~(41++dw) comes from the case where h(dy, ..., dy,) =
—(d1+...+dy) and the factor p/(p—1) comes from the fact that whenever
for given w, B, (di,...,d,) and i there is a possible summand A then there

are at least p — 1 such A.
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Therefore
1 s—1 m
S e ()
"= w
1 D s—1
4+ R (p—1)" p—(d1+...+dw)
|M(C)’ p=1 wz:O dlv-%:w>0

d1++dw§m
m—(di+...4+dw)

x > Ly M),

i=max(0,m—(d1+...4+dw)—c+1) p A6F51+"'+dw +i\{0}

where M(A, d, w) is defined like M (), d) above but with w instead of s — 1.
Estimating |[M(\,d,w)| in the same way as |[M(A,d)| above, we obtain
‘M()‘7d>w)’ < |B’/(pm - pm—l)’ and

d < ;n S(p—l)w@%)

w=0
1 P [ —— <m)
_|_ — . - C- — 1 w
M) p—1  pm—pm U)Z%(P "\
s—1

- $§<p—1>w<$) {” <pfl>zc|MB<|c>J = Al

Therefore for I" > 1 the number of B € B with D;(S)(B) < I'A(c) is at least
(1 —1/1)(1 = R(c))|B]-
Let now I' = (14)/(1—7) and choose ¢ > 1 such that R(c) < (1—7)/2,

that is,
i. p [(m—c—1 <1—77
p¢ p—1 s—1 -2

which is satisfied for

o2 o (g )|

(here [z] means the smallest integer larger than or equal to z). By inserting
the choices for ¢ and I" and by noting that the discrepancies of the point
sets Xq,...,xp—1 and 0,Xg,...,xp_ differ by at most 1/T', we obtain the
result. m

4. Shift-register sequences. In this section we consider both the
digital multistep method and the generalized feedback shift-register (GFSR)
method. For details see again [4], especially Chapter 9.
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(a) The digital multistep method. This method was introduced by Taus-
worthe in [13]. Let p be a prime, let £ > 2 be an integer and generate a kth

order linear recurring sequence yo, y1, ... € I}, by
k—1
Ynik = Z a1Yn+; (mod p) forn=0,1,...
1=0
where 1, ..., yr_1 are initial values not all zero, and where the coefficients
ag, . ..,ak—1 € F), are chosen in such a way that the characteristic polynomial

flx) = aF — Zf:_()l ajz! € F,[x] is a primitive polynomial over F,. We then
have a maximal possible period of length p¥ — 1 for the sequence (Yn)n>0-

In the digital multistep method we construct a pseudo-random number
sequence xg,Z1,...in [0,1) by choosing an integer m with 2 < m < k and
by putting

m
Ty 1= E:ymnﬂ-]fJ forn=0,1,...
j=1

This sequence has a period (p* — 1)/(m,p* — 1). (See [4], Lemma 9.1.)
For various reasons it is most convenient to choose m = k and to choose
k such that (k,p* — 1) = 1. For given k and m the sequences (z,,)n>0 are
uniquely determined by the primitive polynomial f and by the initial values
Y0, - - -, Yk—1. Concerning the star-discrepancy D;(S) (f) of the s-dimensional
serial set x,, := (Tpn,...,Tpnyst+1), n=0,...,T —1, it was shown in [3] that
for m = k and (k,p* — 1) = 1 (and therefore T' = p¥ — 1), and initial values
Y0, - - - » Yk—1 not all zero, we have, on the average,

logT)*Tloglog T

T
with an implied constant depending only on p and s, where the average is
taken over all primitive polynomials f over F), of degree k. From this for
arbitrary v, 0 < v < 1, we again immediately get the following. Let Q be
the set of primitive polynomials f over F), of degree k. Then the number of

DEO(F) < efs,p)

f € Q for which the discrepancy D;(S)( f) of the s-dimensional serial set of
the corresponding sequence satisfies
(s 1 (log T)**1 loglog T
D (f) < g=els) 7

is at least v|Q)|.
We improve this result in the following:

THEOREM 2. For a prime p let s > 2, m = k and T := p* — 1 with
,T)=1 and yo,...,yx—_1 in F,, not all zero, be given. For fized v, 0 <
k,T 1 and n F), ll be gi F d v, 0

v < 1, the number of f € Q for which the star-discrepancy D;(S)(f) of the
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s-dimensional serial set of the corresponding digital multistep shift-register

sequence defined by f and the initial values yg, . ..,yr_1 satisfies
#(s k
DI <+ Z( ve(F)
9 k < pk >
X [s(s—1) k plog | k
[ = 1oy ¢<T> S\

2 pF ( 2(5—1)> 1+’y]

+ (s — k 1+ ,lo +
D 71 1—~"¢(T) I 1—x

(
< log T)* loglogT) >

is at least v|Q|. (Here ¢ is Euler’s totient function.)

Proof. The proof runs along the same lines as the proof of Theorem 1.
So it suffices to give the following details.

By Theorem 9.5 of [4], the p* points 0,xq,...,x7_1 form a digital net
over I, defined by s matrices C1,...,Cs with rows cé € F]f with 1 <j <k
for 1 < ¢ < s with the following property: for non-negative integers d; <
k,i=1,...,s, the system of vectors {c; 1 <j<dy, 1 << s}is
linearly dependent over F}, if and only if the system {al=Dkti=1. ] < j <
di, 1 <i < s}is. Here a is a root of f in Fjk, viewed as an element of the
vector space Fx over Fj,. In the following we consider admissible w-tuples
of integers with respect to the matrices A;(f) with rows al~Dk+i 5 —
0,...,k—1,for i = 1,...,s. For a non-negative integer ¢, for an s-tuple
of non-negative integers d := (dy,...,ds) with dy + ... +ds = k — ¢ and
A= (A1, Ak—e) € Fe\{0} let M(c, A, d) be the set of f € Q satisfying

Alao +.o.F )\dladl_l + )‘d1+1ak +...+ )\d1+d2ak+d2_1 + ...

(s—1)k (s—=1)k+ds—1 _ 0.

..+>\d1+m+dsil+1o¢ + ..—f—>\d1+m+dsoz

Then
-Dk+k—-1
Mien ) < |CZDRERZL oy
This follows from the fact that the equation in the definition of M(c, A, d)
has at most (s — 1)k +ds — 1 solutions «, and that for every such solution «,
all k simple roots of the defining primitive polynomial f of « satisfy the
equation.

Therefore, by proceeding quite analogously to the proof of Theorem 1,
and since |Q| = ¢(p*—1)/k, letting M(c) be the set of f € Q such that there
exist dq,...,ds > 0withd;+...+ds = k—cand with o°,...,a® "1 o, ...

cyaktde=l Dk (s=DkFda =1 Qinearly dependent over F,, we
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have

p’f _ofk—c—1 . .
M@ < 10l E k- v (* ST = iR
Let M(c) :== Q\ M(c). Then |M(c)| > |Q|(1 — R(c)). Proceeding as in the

proof of Theorem 1 we get

feM(c)

ii ( >{|M§)’c(s—1)_1+1] = A(0).

We then easily ﬁmsh the proof like the proof of Theorem 1. The Q-result
comes from the fact that z/¢(z) = O(loglogz). m

(b) The GFSR method. This method is due to Lewis and Payne [1]. Let
p be a prime, and let £ > 2 be an integer. For a primitive characteristic
polynomial f of degree k over F), we define the sequence (yy)n=o,..7—1 of
period T = p* — 1 as in the digital multistep method. For m > 2 we then
choose integers hq, ..., h, > 0 and we put

Ty 1= Zymrhjp_j forn=0,1,...

This GFSR sequence has period T'. In the following we again consider the
case m = k.

It was shown in [2] (see also Theorem 9.17 of [4]) that for given f of
degree k > s > 2 and given initial values yo,...,yr—1 not all zero (and for
m = k), for the star-discrepancy D;(s) (h1,...,hg) of the s-dimensional serial
set X, := (Tn, Tnt1y---yTnys—1), » = 0,...,T — 1, of the corresponding
GFSR sequence (zy,)n=0,..., 7—1 We have on the average
(log T)*

T
with an implied constant depending only on p and s, where the average is
taken over all H = (hy,...,hy) with0 < h; <T—1for1 <j <k. Let H be
the system of all such k-tuples H. Then again for every v with 0 < v < 1,
the number of H for which D;(s)(H ) satisfies

1 (logT)*®
—= 1 _’yc(s7p) T

is at least vy|H|. The following Theorem 3 is an improvement of this result:

Dy (hy,. .. hy) < c(p, s)

D} (H)

THEOREM 3. For a prime p let s > 2, m =k > s, a primitive polynomial
f of degree k over F,, and initial values yo, ..., yr—1, not all zero, be given.
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Let T := p¥ — 1. For fized v, 0 < v < 1, the number of H € H for which
the star-discrepancy D;(S)(H) of the s-dimensional serial set of the GFSR
sequence defined by f, H and the initial values satisfies

DB < 1+ Y- 07(})

2
D 9 ( 4 > 1+7]
+{—— 1+ ,log +
p— > 1—+ PP 1—v) 1-—4v

1
_ 0 ( (log T)*~!loglog T)

is at least y|H]|.

Proof. Again (see Theorem 9.14 of [4]), 0, %o, ...,xr_1 form a digital
net over F, with the matrices A;(h) with rows o'~ 14k ,j=1,...,k i=
1,...,s (acaroot of fin F,x), playing the role of A;(B ) and A;(f) in the
proofs of Theorems 1 and 2, respectively.

For a non-negative ¢ we define the sets M(\,d) and M(c) as in the
proofs of the above theorems. The equation in the definition of M(A,d) is
then equivalent to

k s—1

h; ; — j
Y gaMh =0 with &= Mgt ja4s0.
j=1 =0

Since s < k and since « is a primitive element in Fx, we see that for A # 0
not all &; are zero and therefore (again since o generates Fjx and since
0 < hj < pk —2 for all j) we have |[M(A,d)| < T*~!. Consequently,

k — C — 1 k}*C 1 .
i) < ("7 )k = i
and with M(c) := H \ M(c) we get
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=: A(c).
We finish the proof like the proofs of Theorems 1 and 2. =




[1]
2]
3]
[4]
[5]
[6]
[7]
8]
[9]
(10]
(11]

(12]
(13]

A bound for the discrepancy of digital nets 15

References

T. G. Lewis and W. H. Payne, Generalized feedback shift register pseudorandom
number algorithm, J. Assoc. Comput. Mach. 20 (1973), 456-468.
H.Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math.
104 (1987), 273-337.

—, The serial test for digital k-step pseudorandom mumbers, Math. J. Okayama
Univ. 30 (1988), 93-119.

—, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Re-
gional Conf. Ser. in Appl. Math. 63, STAM, Philadelphia, 1992.

—, Factorization of polynomials and some linear-algebra problems over finite fields,
Linear Algebra Appl. 192 (1993), 301-328.

—, The multiple recursive matriz method for pseudorandom number generation,
Finite Fields Appl. 1 (1995), 3-30.

—, Improved bounds in the multiple-recursive matrix method for pseudorandom
number and vector generation, ibid. 2 (1996), 225-240.

H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from alge-
braic function fields over finite fields, Acta Arith. 72 (1995), 281-298.

—, —, Low-discrepancy sequences and global function fields with many rational
places, Finite Fields Appl. 2 (1996), 241-273.

—, —, Quasirandom points and global function fields, in: S. Cohen and H. Nieder-
reiter (eds.), Finite Fields and Applications (Glasgow, 1995), London Math. Soc.
Lecture Note Ser. 233, Cambridge Univ. Press, Cambridge, 1996, 269-296.

K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79.

W. M. Schmidt, Irreqularities of distribution, VII, Acta Arith. 21 (1972), 45-50.
R. C. Tausworthe, Random numbers generated by linear recurrence modulo two,
Math. Comp. 19 (1965), 201-209.

Institut fiir Mathematik

Universitéat Salzburg

Hellbrunnerstr. 34

A-5020 Salzburg, Austria

E-mail: Gerhard.Larcher@sbg.ac.at

Web: http://www.mat.sbg.ac.at/people/larcher.html

Received on 8.10.1996
and in revised form on 4.4.1997 (3056)



