
ACTA ARITHMETICALXXXIII.1 (1998)
On ubi Thue inequalities and a result of MahlerbyJeffrey Lin Thunder (DeKalb, Ill.)Introdution. Let F (X;Y ) 2 Z[X;Y ℄ be a form of degree d � 3 withintegral oeÆients whih is irreduible over the rational numbers Q . It iswell known that the number of integral solutions (x; y) 2 Z2 to the Thueinequality jF (x; y)j � m is �nite. Moreover, one an estimate the numberNF (m) of suh solutions.Let A(F ) denote the area of the region f(x; y) 2 R2 : jF (x; y)j � 1g:Mahler in [M℄ approximates NF (m) by m2=dA(F ), getting(1) jNF (m)�m2=dA(F )j = O(m1=(d�1))as m ! 1, where the onstant impliit in the O notation depends on F .More reently, W. Shmidt showed that NF (m) � m2=d(d + logm); wherethe implied onstant is absolute ([S℄, Chap. 3, Th. 1C), and later the authorin [T2℄ proved essentially that NF (m)� dm2=d. See also [MS1℄, [MS2℄.Now on the one hand, Mahler's result (1) is better in that m2=dA(F )really should approximate NF (m). But on the other hand, NF (m) should bebounded above by some funtion of m and d independent of the oeÆientsof F , as it is in the latter two results mentioned above. While it is knownthat A(F ) is bounded above (see [B2℄), the impliit onstant in the errorterm of (1) atually grows polynomially with the height of F (see [B1℄). Theobvious onjeture is that NF (m) and m2=dA(F ) should di�er by a funtiondepending only on m and d.The author in [T1℄ proved just suh a result in the ase of ubi forms,i.e., when the degree d = 3:(2) jNF (m)�m2=3A(F )j = O(1 +m29=44 logm)as m ! 1, where the onstant impliit in the O notation is absolute.Besides the fat that the error term here, as a funtion of m, is larger thanthat in (1), this result is laking in another way whih we now desribe.1991 Mathematis Subjet Classi�ation: 11D75, 11J25.Researh partially supported by NSA grant MDA904-95-1-1087.[31℄



32 J. L. ThunderSuppose G(X;Y ) 2 R[X;Y ℄ is a form of degree d � 3 with disriminantD(G) 6= 0: For T 2 GL2(R) we get a form GT (X;Y ) = G(T (X;Y )): Twoimportant observations here are �rst that the produt A(G)jD(G)j1=(d(d�1))is invariant under suh ations, i.e.,A(GT )jD(GT )j1=(d(d�1)) = A(G)jD(G)j1=(d(d�1))(see [B2℄), and seond that NF (m) is invariant under the ation by T 2GL2(Z).Now suppose F (X;Y ) 2 Z[X;Y ℄ is a ubi form with a non-zero dis-riminant. Suh a form is equivalent under the ation of GL2(R) to ei-ther XY (X � Y ) or X(X2 + Y 2), depending on whether it fators over Ror not. In partiular, there are only two possible values for the produtA(F )jD(F )j1=6 (namely 3B(1=3; 1=3) and p3B(1=3; 1=3); where B is thestandard beta funtion). Thus, for suh forms F , the main term A(F )m2=3in (1) and (2) above essentially dereases as a funtion of the absolute valueof the disriminant jD(F )j, yet neither of the error terms does. In fat, asis well known (see [S℄, for example), the height of F is bounded below by apositive power of jD(F )j, so that the error term in Mahler's result atuallyinreases as a funtion of jD(F )j.What we are able to prove here is the following estimate for ubi formswhere we not only ahieve the m1=2 in the error term as in (1) with anabsolute onstant as in (2), but this part of the error term dereases as afuntion of jD(F )j.Theorem. Let F (X;Y ) 2 Z[X;Y ℄ be a ubi form of disriminant D(F )whih is irreduible over Q and let m � 1. Let NF (m) and A(F ) be as above.Then jNF (m)�m2=3A(F )j < 9 + 2008m1=2jD(F )j1=12 + 3156m1=3:There is nothing speial about the onstants 9, 2008 and 3156 appearingabove; they are ertainly not optimal. We have inluded them rather thanuse the � notation to show that the onstants we get are not egregiouslylarge. Note that the main term in our theorem is smaller than the error termif jD(F )j�m2, at whih point the error term is ��m1=3. This is not sobad sine NF (m)�m1=3 for any form with the oeÆient of X3 or Y 3 � 1.In other words, the main term in the theorem is larger than the error termexatly when one would reasonably expet it to approximate NF (m).The proof of the theorem follows the typial approah of onsidering\small", \medium" and \large" solutions. The major improvement here onpast e�orts is the fairly large lower bound obtained for ertain derivativesarising from the related Diophantine approximation problem. This is dealtwith in the following setion. Our treatment of \medium" solutions seemsto be new, as well.



Cubi Thue inequalities 33Derivatives, disriminants and heights. In this setion we deriverelations and bounds for ertain derivatives and heights arising from a ubiform F in terms of the disriminant. We �rst �x some notation.Let F (X;Y ) 2 Z[X;Y ℄ be a ubi form whih is irreduible over Q .WriteF (X;Y ) = 3Yi=1(ÆiX + iY ) = a 3Yi=1(X � �iY ) = b 3Yi=1(Y � �iX);where a = Æ1Æ2Æ3; b = 123; �i = �iÆi and �i = ��1i :Writef(X) = a 3Yi=1(X � �i) = F (X; 1) and g(Y ) = b 3Yi=1(Y � �i) = F (1; Y ):The Æi's and i's are not uniquely determined by F , of ourse, but the �i's,�i's, a, b, f and g are.Let �i = det� Æj Ælj l� ; j < l; j; l 6= i;and � = 3Yi=1�i:Then jD(F )j = �2 6= 0 (sine F is irreduible over Q). Also, the height ofF , H(F ), satis�esH(F ) = H(�i) = H(�i) = Q3i=1pjÆij2 + jij2ont(F ) :(See [S℄, Chap. 3, Lemma 2A.) Note that the j�ij's are invariant under theation of GL2(Z), but H(F ) ertainly is not.Lemma 1. Let F be a ubi form as above. After possibly applying aT 2 GL2(Z), we havemin1�i�3fjf 0(�i)j; jg0(�i)jg � jD(F )j1=63 � 21=3 :If all the �i's are real , thenont(F )H(F ) � 1301=221=3jD(F )j1=3;otherwise ont(F )H(F ) � 23=2jD(F )j1=2:



34 J. L. ThunderP r o o f. Let Li(X;Y ) = ÆiX + iY for i = 1; 2 and 3. We have0 = det0� Æ1 Æ2 Æ3Æ1 Æ2 Æ31 2 31A = Æ1�1 � Æ2�2 + Æ3�3;and similarly 0 = 1�1 � 2�2 + 3�3;so that(3) L3(X;Y )�3 = L2(X;Y )�2 � L1(X;Y )�1:Also,(4) jf 0(�i)j = ja(�i � �j)(�i � �l)j = j�jja(�j � �l)j = j�jjLi(1; 0)�ijfor all i, where j; l 6= i, and similarly(5) jg0(�i)j = j�jjLi(0; 1)�ij :We �rst treat the ase where all the �i's are real. Let P be the parallel-ogram de�ned byP = f(x; y) 2 R2 : j�iLi(x; y)j � 1 for i = 1; 2g:Let �1 � �2 be the suessive minima of P with respet to the integer lattieZ2. We then get a basis fa1;a2g of Z2 that satis�esmaxi=1;2fj�iLi(a1)jg = �1; maxi=1;2fj�iLi(a2)jg = �2:Let a = a1 and suppose without loss of generality that j�1L1(a)j = �1. Letb be the greatest integer part of �1L1(a2)=(�1L1(a)) and let b = a2 � ba.Then fa;bg is a basis for Z2, j�1L1(b)j � �1 and j�2L2(b)j � 2�2. Finally,after applying a suitable T 2 GL2(Z) to F (T is given by a and b), we mayassume that a = (1; 0) and b = (0; 1).We onlude from this and (3) that, after applying some T 2 GL2(Z)and possibly reindexing, we havej�1L1(1; 0)j; j�2L2(1; 0)j; j�1L1(0; 1)j � �1;j�3L3(1; 0)j � 2�1;(6) j�iLi(0; 1)j � i�2 for i = 2 and 3.We need an upper bound for �2. By Minkowski's theorem, we have�1�2 � 4vol(P ) = j�j:



Cubi Thue inequalities 35Also, sine F is irreduible over Q ,j�j � jF (1; 0)�j = 3Yi=1 jLi(1; 0)�ij � 2�31by (6). Thus(7) �2 � 21=3j�j2=3:The �rst part of Lemma 1 follows from (4){(7). As for the height, wehave by (6),j�jont(F )H(F ) � p2�1p5�2p13�2 = p130(�1�2)�2 � p130j�j�2;so that the upper bound for the height follows from (7).We now onsider the ase when the �i's are not all real. We may assumewithout loss of generality that Æ3; 3 2 R and that Æ1 = Æ2 and 1 = 2.Note that this implies �3L3(X;Y ) = �2 Im(�1L1(X;Y )) by (3). We let Pbe the parallelogram given byP = f(x; y) 2 R2 : jRe(�1L1(x; y))j; jIm(�1L1(x; y))j � 1gand let �1 � �2 be the suessive minima of P . We onlude similarly toabove that, after applying a suitable T 2 GL2(Z), we have(8) j�1L1(1; 0)j = j�2L2(1; 0)j � p2�1; j�3L3(1; 0)j � 2�1;j�1L1(0; 1)j = j�2L2(0; 1)j � p2�2; j�3L3(0; 1)j � 2�2:Similarly to above, we get 4�31 � j�j. Also,4(vol(P ))�1 = ����det�Re(�1Æ1) Im(�1Æ1)Re(�11) Im(�11)����� = jIm(�1Æ1�11)j= 12 ����det��1Æ1 �1Æ1�11 �11����� = 12 ����det��1Æ1 �2Æ2�11 �22����� = j�j2 :Thus, �2 � 4�1vol(P ) � j�j2=321=3 :The remainder of the lemma follows from this and (8).Approximations and a gap argument. In this setion we prove twoauxiliary results. They are routine Diophantine approximation fare, butwe have inluded them for ompleteness. We ontinue with the notationestablished above.Lemma 2. Let F be a ubi form as in the Theorem and suppose (x; y) 2R2 satis�es jF (x; y)j � m. If y 6= 0, then



36 J. L. Thunder�����i � xy ���� � 4mjy3f 0(�i)jfor some 1 � i � 3: Similarly , if x 6= 0; then for some i,�����i � yx ���� � 4mjx3g0(�i)j :P r o o f. Suppose y 6= 0 and hoose i so that j�i� (x=y)j is smallest. Forj 6= i we have 2�����j � xy ���� � �����j � xy ����+ �����i � xy ���� � j�j � �ij:Thus,mjy3j � ����F (x; y)y3 ���� = jf(x=y)j = jaj 3Yj=1 �����j � xy ���� � �����i � xy ���� jf 0(�i)j4by (4). The proof for x 6= 0 is the same with the obvious hanges.From now on, when we write x=y 2 Q it is assumed that x and y arerelatively prime integers with y > 0.Lemma 3. Let � 2 C and let A;B;C 2 R with C � B > A > 0. Thenumber of x=y 2 Q with j�� (x=y)j � A=(2y3) and B � y � C is no greaterthan 1 + log2� logC � logAlogB � logA�:P r o o f. Let x0=y0; x1=y1; : : : be the distint rational numbers satisfyingthe hypotheses of the lemma, arranged so that y0 � y1 � : : : We laim thatyn � A(B=A)2n . This is trivially true for n = 0. We proeed by indutionon n. We have 1ynyn+1 � ����xnyn � xn+1yn+1 ���� � ����xnyn � �����+ ����xn+1yn+1 � ������ A2y3n + A2y3n+1 � Ay3n ;so that yn+1 � A�1y2n: The laim follows from this and the indution hy-pothesis.By the laim, if yn � C, then C � A(B=A)2n . This implies thatlog2� logC � logAlogB � logA� � n;proving the lemma.Small solutions. Sine A(F ), jD(F )j and NF (m) are all invariantunder the ation of GL2(Z), we may assume without loss of generality that



Cubi Thue inequalities 37our form satis�es the onlusions of Lemma 1. Spei�ally, we assume fromnow on that(9) jf 0(�i)j; jg0(�i)j � jD(F )j1=621=33 = 1jD(F )j1=6and that(10) H(�i) = H(�i) = H(F ) � 1301=221=3jD(F )j1=2 = 2jD(F )j1=2for i = 1; 2 and 3.Lemma 4. Let N 0F (m) denote the number of solutions to jF (x; y)j � mwith maxfjxj; jyjg � m1=2=jD(F )j1=12. ThenjN 0F (m)�m2=3A(F )j < 9 + 375m1=2jD(F )j1=12 :P r o o f. For the time being, let M = m1=2=jD(F )j1=12. By [D℄ we havejN 0F (m)�BF (m)j � 9 + 12M;where BF (m) denotes the area of the regionf(x; y) 2 R2 : jF (x; y)j � m; maxfjxj; jyjg �Mg:Let B0F (m) denote the area of the regionf(x; y) 2 R2 : jF (x; y)j � m; maxfjxj; jyjg > Mg;so that BF (m) +B0F (m) = m2=3A(F ).By (9),\jyj>M \jx��iyj<4m=(y2jf 0(�i)j) dx dy = 8mjf 0(�i)j \jyj>M 1y2 dy= 16mM jf 0(�i)j � 16m1=21jD(F )j1=12and similarly \jxj>M \jy��ixj<4m=(x2jg0(�i)j) dy dx � 16m1=21jD(F )j1=12for any i. Thus, by Lemma 2,B0F (m) � 6 � 16m1=21jD(F )j1=12 < 363m1=2jD(F )j1=12 :In onlusion, we havejN 0F (m)�m2=3AF (m)j � jN 0F (m)�BF (m)j+ jBF (m)�m2=3AF (m)j� 9 + 12m1=2jD(F )j1=12 +B0F (m) < 9 + 375m1=2jD(F )j1=12 :



38 J. L. ThunderMedium solutions. For the time being, �x an � amongst �1; �2 and�3. We will say an (x; y) 2 Z2 with y 6= 0 is losest to � if j� � (x=y)j isminimal, i.e., no greater than j�i � (x=y)j for any i. While this does notrule out (x; y) being losest to two �i's, it is losest to at least one of them.Lemma 5. Let B > 0 and let (x0; y0) be a solution to jF (x; y)j � mlosest to � with B � y0 < 2B. The number of solutions (x; y) 2 Z2 tojF (x; y)j � m losest to � with B � y < 2B and (x; y) not a salar multipleof (x0; y0) is less than 18m=(B1jD(F )j1=6). The number of suh solutionsthat are a salar multiple of (x0; y0) is no greater than g = gd(x0; y0).P r o o f. Write g(x0; y0) = (x0; y0), where g is the greatest ommon divi-sor of x0 and y0. Note that jF (x0; y0)j � mg�3 and (x0; y0) is losest to �.Let a0; b0 2 Z satisfy a0y0 � b0x0 = 1.Given any solution (x; y) satisfying the hypotheses, we get a unique paira; b 2 Z withx = aa0 + bx0; y = ab0 + by0; and a = y0x� x0y:Lemma 2 givesjgaj = jx0y � y0xj = yy0����x0y0 � xy ����� yy0� 4my30 jf 0(�)j + 4my3jf 0(�)j� < 9mBjf 0(�)j :Further, for a given a we haveB � ab0y0 � y � ab0y0 = b < 2B � ab0y0 ;giving no more than B=y0 = gB=y0 � g possible values of b. Note that (x; y)is a salar multiple of (x0; y0) if and only if a = 0. Lemma 5 now followsfrom (9).Lemma 6. The number of solutions (x; y) to jF (x; y)j � m losest to �with m1=2jD(F )j1=12 � y < 16m=(1jD(F )j1=6) is no greater than36m1=21jD(F )j1=12 + 144m1=3:P r o o f. Let B0 = m1=2=jD(F )j1=12 and let N be least suh that 2NB0 �16m=(1jD(F )j1=6). We will use Lemma 5, ounting those solutions with2iB0 � y < 2i+1B0 for i = 0; : : : ; N � 1. For some, possibly not all,i = 0; : : : ; N � 1, we have positive integers gi and xi=yi 2 Q with 2iB0 �giyi < 2i+1B0, jF (xi; yi)j � mg�3i and (xi; yi) losest to �. Setting gi = 0



Cubi Thue inequalities 39for all other i, we get less thanN�1Xi=0 18m2iB01jD(F )j1=6+gi < 36mB01jD(F )j1=6+N�1Xi=0 gi = 36m1=21jD(F )j1=12+N�1Xi=0 gipossible solutions.Now 2NB0 < 32B20=1, so thatN < 5� log2 1 + log2B0 < 5� log2 1 + (21=(2 log 2))m1=21:Thus, Xgi�4�1=31 m2=7 gi < (5� log2 1 + (21=(2 log 2))m1=21)4�1=31 m2=7� (5� log2 1 + (21=(2 log 2)))4�1=31 m1=3 < 138m1=3:It remains to estimate the sum over those gi greater than 4�1=31 m2=7.If gi > 4�1=31 m2=7; then we have������ xiyi ���� � 4m(giyi)31jD(F )j1=6 < m1=716y3i jD(F )j1=6 :Also, sine g�3i m � jF (xi; yi)j � 1, we have gi � m1=3 and yi � B0m�1=3 =m1=6=jD(F )j1=12: We now use Lemma 3, with A = m1=7=(8jD(F )j1=6), B =m1=6=jD(F )j1=12 and C = 16m=(1jD(F )j1=6). Aording to Lemma 3, wehave no greater than1 + log2� log2 C � log2Alog2B � log2A� � 1 + log2�7 + (6=7) log2m� log2 13 + (1=42) log2m �< 1 + log2((7=3) + 36� (1=3) log2 1) < 7possible xi=yi with gi > 4�1=31 m2=7. Thus,Xgi>4�1=31 m2=7 gi � 6m1=3:All told, we have less than36m1=21jD(F )j1=12 + N�1Xi=0 gi < 36m1=21jD(F )j1=12 + 144m1=3possible solutions.Lemma 7. Let N 00F (m) denote the number of solutions (x; y) 2 Z2 tojF (x; y)j � m with m1=2jD(F )j1=12 < maxfjxj; jyjg < 16m1jD(F )j1=6 :



40 J. L. ThunderThenN 00F (m) < 12� 36m1=21jD(F )j1=12 + 144m1=3� < 1633m1=2jD(F )j1=12 + 1728m1=3:P r o o f. Multiplying by two the estimate in Lemma 6 above ounts allthose solutions withm1=2jD(F )j1=12 � jyj < 16m=(1jD(F )j1=6)that are losest to �. Multiplying by 3 takes are of the di�erent possibilitiesfor �. Finally, the arguments above are entirely symmetri with respet to xand y, i.e., the same estimates hold for ounting solutions (x; y) with x 6= 0and y=x losest to � = �i for some i.Large solutionsLemma 8. Fix an i between 1 and 3 and suppose (x; y) 2 Z2 is a solutionto jF (x; y)j � m losest to �i with y � 16m=(1jD(F )j1=6). Then there is anx0=y0 2 Q with (x; y) = g(x0; y0), where g = gd(x; y) and (x0; y0) is losestto �i. Further ,�����i � x0y0 ���� � 4m(gy0)31jD(F )j1=6 ; y0 � 16m1gjD(F )j1=6and g � m1=3:P r o o f. The �rst statement is lear given our onventions mentionedabove about writing elements of Q . Certainly x0=y0 is losest to �i, sothat the seond statement follows from Lemma 1 and (9). Finally, we haveg3 � g3jF (x0; y0)j = jF (x; y)j � m.For the next two lemmas, �x an � as in the last setion and a positiveinteger g � m1=3.Lemma 9. LetC = maxf(8m=(g31jD(F )j1=6))4; (83H(�))2�543g:The number of x=y 2 Q with 16m=(1gjD(F )j1=6) � y � C satisfying������ xy ���� � 4my3g31jD(F )j1=6is less than 25:6 + log2�4� log2 1 + log2m1 + 2 log2 g�:P r o o f. LetA = 8mg31jD(F )j1=6 and B = maxf2g2A; 1g:



Cubi Thue inequalities 41Note that by (10),(11) C � maxfA4; (2286jD(F )j)543g:We are then ounting the number of x=y 2 Q with B � y � C satisfyingj��(x=y)j � A=(2y3). We estimate the number of suh x=y using Lemma 3.First suppose B > 1, so that log2B � log2A = 1 + 2 log2 g and 16m >1gjD(F )j1=6. If C = A4, thenlog2 C � log2Alog2B � log2A = 3 log2A1 + 2 log2 g � 9� 3 log2 1 + 3 log2m1 + 2 log2 g ;sine A � 8m=1. If C > A4, then by (11),log2 C � 543(2 log2 2 + 18 + log2 jD(F )j)� 543(2 log2 2 + 18 + 6(4� log2 1 + log2m)):Thus,log2 C � log2Alog2B � log2A � 1 + log2 C1 + 2 log2 g� 543�2 log2 2 � 6 log2 1 + 43 + 6 log2m1 + 2 log2 g�:Now suppose B = 1. Then A � 1=(2g2) andlog2 C � 543(2 log2 2 + 18 + log2 jD(F )j)by (11). We also have jD(F )j � 16; sine jD(F )j 2 Z and1 � 16m=(g1 jD(F )j1=6) � 16=jD(F )j:We get log2Clog2 jD(F )j < 543(2 log2 2 + 19)and log2 jD(F )j�6 log2A = log2(8m=(1g3))� log2A� log2A � 1 + 3 + log2m� log2 1� log2A� 4� log2 1 + log2m1 + 2 log2 g :Thus,log2 C � log2Alog2B � log2A = 1 + log2 C� log2A< 6 � 543(2 log2 2 + 19)�4� log2 1 + log2m1 + 2 log2 g�:



42 J. L. ThunderIn all ases we havelog2 C � log2Alog2B � log2A < 6 � 543(2 log2 2 + 19)�4� log2 1 + log2m1 + 2 log2 g�;so that1 + log2� log2 C � log2Alog2B � log2A� < 25:6 + log2�4� log2 1 + log2m1 + 2 log2 g�:Lemma 9 follows from this and Lemma 3.Lemma 10. Let C be as in Lemma 9: The number of x=y 2 Q with y > Cand y � jxj satisfying ������ xy ���� � 4my3g31jD(F )j1=6is no greater than 25.P r o o f. For x=y 2 Q , set H(x=y) = px2 + y2 (reall our onventionsabout x=y 2 Q). In partiular, for the x=y 2 Q onsidered in Lemma 10,y � H(x; y) < 2y.By Theorem 6A of [S℄, Chapter 2 (using m = 2 and � = 1=9), there issome B > 0 suh that all x=y 2 Q satisfying������ xy ���� < 1H(x=y)10p6=9have either H(x=y) < (83H(�))2�543 or B � H(x=y) < B4�543 . Note that allx=y 2 Q satisfying the hypotheses of Lemma 10 have������ xy ���� � 4m(yg)31jD(F )j1=6 < 4my11=4C1=4g31jD(F )j1=6� 12y11=4 < 1H(x=y)10p6=9and H(x=y) > (83H(�))2�543 .A standard gap argument (Lemma 8B of [S℄, Chapter 2, for example)shows that the number of x=y 2 Q with������ xy ���� < 12y11=4and B � y < B4�543 is no greater than1 + log(log(B4�543)= logB)log(7=4) < 25and the number with B=2 � y < B is at most 1. This proves Lemma 10.



Cubi Thue inequalities 43Lemma 11. Let N 000F (m) denote the number of solutions (x; y) 2 Z2 tojF (x; y)j � m with maxfjxj; jyjg � 16m1jD(F )j1=6 :Then N 000F (m) < 1428m1=3:P r o o f. Fix an i between 1 and 3. By Lemmas 8{10, the number ofsolutions losest to �i withmaxfjxj; jyjg = y � 16m1jD(F )j1=6is less than Xg�m1=3 50:6 + log2�4� log2 1 + log2m1 + 2 log2 g�:NowXg�m1=6 50:6 + log2�4� log2 1 + log2m1 + 2 log2 g�� m1=6(50:6 + log2(4� log2 1 + log2m))< m1=6(50:6 + log2(8� 2 log2 1) + log2m)< m1=6(54:4 + 8:7m1=6) < 64m1=3and Xm1=6<g�m1=3 50:6 + log2�4� log2 1 + log2m1 + 2 log2 g�< m1=3(50:6 + log2(4� log2 1 + 3)) < 55m1=3:Thus, the number of solutions losest to �i withmaxfjxj; jyjg = y > 16m1jD(F )j1=6is less than 119m1=3. Moreover, the exat same estimates hold by the sym-metry of our argument for the number of solutions losest to �i withmaxfjxj; jyjg = x > 16m1jD(F )j1=6 :Arguing exatly as in the proof of Lemma 7, we getN 000F (m) < 12 � 119m1=3 = 1428m1=3:P r o o f o f T h e o r em. By Lemmas 7 and 11 we haveNF (m)�N 0F (m) = N 00F (m) +N 000F (m) < 1633m1=2jD(F )j1=12 + 3156m1=3:



44 J. L. ThunderAlso,jNF (m)�m2=3A(F )j � jNF (m)�N 0F (m)j+ jN 0F (m)�m2=3A(F )j� jNF (m)�N 0F (m)j+ 9 + 375m1=2jD(F )j1=12by Lemma 4. The Theorem follows.Referenes[B1℄ M. Bean, Bounds for the number of solutions of the Thue equation, M. thesis,Univ. of Waterloo, 1988.[B2℄ |, An isoparametri inequality for the area of plane regions de�ned by binaryforms, Compositio Math. 92 (1994), 115{131.[D℄ H. Davenport, On a priniple of Lipshitz , J. London Math. So. 26 (1951),179{183.[M℄ K. Mahler, Zur Approximation algebraisher Zahlen III , Ata Math. 62 (1934),91{166.[MS1℄ J. Muel l e r and W. M. Shmidt, Trinomial Thue equations and inequalities,J. Reine Angew. Math. 379 (1987), 76{99.[MS2℄ |, |, The generalized Thue inequality , Compositio Math. 96 (1995), 331{344.[S℄ W. Shmidt, Diophantine Approximation, Leture Notes in Math. 1467, Sprin-ger, New York, 1991.[T1℄ J. L. Thunder, The number of solutions to ubi Thue inequalities, Ata Arith.66 (1994), 237{243.[T2℄ |, On Thue inequalities and a onjeture of Shmidt , J. Number Theory 52(1995), 319{328.Mathematial Sienes DepartmentNorthern Illinois UniversityDeKalb, Illinois 60115U.S.A.E-mail: jthunder�math.niu.edu Reeived on 7.4.1997 (3162)


