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1. Introduction. Let q be an arbitrary prime power and let K be a
global function field with full constant field Fq, i.e., with Fq algebraically
closed in K. We use the notation K/Fq if we want to emphasize the fact
that Fq is the full constant field of K. By a rational place of K we mean
a place of K of degree 1. We write g(K) for the genus of K and N(K) for
the number of rational places of K. For fixed g ≥ 0 and q we put

Nq(g) = maxN(K),

where the maximum is over all global function fields K/Fq with g(K) = g.
Equivalently, Nq(g) is the maximum number of Fq-rational points that a
smooth, projective, absolutely irreducible algebraic curve over Fq of genus
g can have. The calculation of Nq(g) is a very difficult problem in algebraic
geometry, so usually one has to make do with bounds for Nq(g).

Global function fields K/Fq with many rational places, that is, with
N(K) reasonably close to Nq(g(K)) or to a known upper bound for
Nq(g(K)), have received a lot of attention in the literature. Quite a number
of papers on the subject have also been written in the language of algebraic
curves over finite fields. The first systematic account of the subject was given
by Serre [15], and for recent surveys we refer to Garcia and Stichtenoth [1]
and Niederreiter and Xing [11]. The construction of global function fields
with many rational places, or equivalently of algebraic curves over Fq with
many Fq-rational points, is of great theoretical interest. Moreover, it is
also important for applications in the theory of algebraic-geometry codes
(see [16], [17]) and in the recent constructions of low-discrepancy sequences
introduced by the authors (see [5], [7], [10], [20]).

For the practical aspects of these applications it is important that the
constructions of global function fields with many rational places be as ex-
plicit as possible. In the ideal case, one would like to have descriptions of
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the global function fields in terms of generators and defining equations. The
constructions by Serre [15] use class field theory and are thus not explicit.
More attention is now devoted to the desideratum of obtaining explicit con-
structions, see e.g. the recent papers of Niederreiter and Xing [6], [8] and
the references given there.

The present paper can be viewed as a continuation of the work in [6]
and [8] which led to catalogs of global function fields with many rational
places for the cases q = 2, 3, 4, 5 and to many explicit constructions. We
concentrate here on the case q = 3 and extend the list of constructions in [8,
Section 3]. The motivation for this is the following. For the construction of s-
dimensional low-discrepancy sequences in a given base q by means of rational
places (see e.g. [5]) we need a global function field K/Fq with N(K) ≥
s + 1. In order to cover the standard range 1 ≤ s ≤ 50 of applications of
low-discrepancy sequences in an efficient manner, we need to find, for each
dimension s in this range, a global function field K/Fq of relatively small
genus with N(K) ≥ s + 1. For q = 3 the constructions in [8, Section 3]
allow us to cover only the range 1 ≤ s ≤ 27, whereas the new results in the
present paper cover the full range 1 ≤ s ≤ 50 and, in fact, a much wider
range. Similar work for q = 5 was carried out in [12].

In Section 2 we review some background and in Section 3 we establish
two general principles for the construction of global function fields with
many rational places. In Section 4 we present our new examples for the case
q = 3. Some of these examples are quite straightforward, but others require
detailed arguments to validate them. Many of the examples are based on
explicit constructions.

2. Background for the constructions. Let Fq(x) be the rational
function field over Fq. We will often use the convention that a monic irre-
ducible polynomial P over Fq is identified with the place of Fq(x) which is
the unique zero of P , and we will denote this place also by P . It will also
be convenient to write ∞ for the “infinite place” of Fq(x), that is, for the
place of Fq(x) which is the unique pole of x. For an arbitrary place Q of
a global function field K we write νQ for the normalized discrete valuation
corresponding to Q. For any z∈K∗ let (z) denote the principal divisor of z.

Several examples in Section 4 are based on Artin–Schreier extensions
and Kummer extensions. We will not review the theory of these extensions
here since an excellent account of it is available in the book of Stichtenoth
[16, Section III.7].

We recall some pertinent facts about Hilbert class fields. A convenient
reference for this topic is Rosen [14]. Let K be a global function field and
S a finite nonempty set of places of K. The Hilbert class field HS of K
with respect to S is the maximal unramified abelian extension of K (in a
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fixed separable closure of K) in which all places in S split completely. The
extension HS/K is finite with Galois group

Gal(HS/K) ' ClS ,

where ClS is the S-divisor class group of K, i.e., the quotient of the group
of all divisors of K of degree 0 with support outside S by its subgroup of
principal divisors. If S = {P} is a singleton, then we also write HP instead
of HS . If P is a rational place of K, then we also have

Gal(HP /K) ' Div0(K),

the group of divisor classes of K of degree 0. In particular, we have [HP :
K] = h(K), the divisor class number of K. The divisor class numbers
appearing in Section 4 are calculated by the standard method based on
the results in [16, Section V.1]. Furthermore, Div0(K) is isomorphic to the
fractional ideal class group Pic(A), where A is the P-integral ring of K,
i.e., A consists of the elements of K that are regular outside P . There is a
standard identification between places of K and prime ideals in A.

Finally, we collect some facts about Drinfeld modules and narrow ray
class extensions. The book of Goss [2] and the survey article of Hayes [4]
are suitable references for the theory of Drinfeld modules. Let K/Fq be a
global function field with N(K) ≥ 1 and distinguish a rational place P of
K. Let HP be the Hilbert class field of K with respect to P and let A be the
P -integral ring of K. Now let φ be a sign-normalized Drinfeld A-module of
rank 1. By [4, Section 15] we can assume that φ is defined over HP , i.e., that
for each y ∈ A the Fq-endomorphism φy is a polynomial in the Frobenius
with coefficients from HP . If HP is a fixed algebraic closure of HP and M is
a nonzero integral ideal in A, then we write ΛM for the A-submodule of HP

consisting of the M -division points. Let EM := HP (ΛM ) be the subfield of
HP generated over HP by all elements of ΛM . Then EM/K is called the
narrow ray class extension of K with modulus M .

The following facts on narrow ray class extensions can be found in [2,
Section 7.5], [4, Section 16]. First of all, ΛM ' A/M as A-modules, so in
particular ΛM is cyclic. The field EM is independent of the specific choice
of the sign-normalized Drinfeld A-module φ of rank 1. Furthermore, EM/K
is a finite abelian extension with

Gal(EM/K) ' PicM (A) := IM (A)/PM (A),

where IM (A) is the group of fractional ideals of A that are prime to M and
PM (A) is the subgroup of principal fractional ideals that are generated by
elements z ∈ K with z ≡ 1 mod M and sgn(z) = 1 (here sgn is the given
sign function). We have Gal(EM/HP ) ' (A/M)∗, the group of units of the
ring A/M .
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If M = Qn with a nonzero prime ideal Q in A and n ≥ 1, then the order
Φq(Qn) of (A/Qn)∗ is given by

Φq(Qn) = (qd − 1)qd(n−1),

where d is the degree of the place of K corresponding to Q. Again in this
situation, EM/K is unramified away from P and Q and the decomposition
group (and also the inertia group) DP of P in EM/K is the subgroup

(1) DP = {c + M : c ∈ F∗q}
of (A/M)∗, so that in particular |DP | = q− 1. Moreover, every place of HP

lying over Q is totally ramified in EM/HP . From the facts about Galois
groups noted above it follows that (A/M)∗ can be viewed as a subgroup of
PicM (A). Concretely, if we put

(2) IM = {zA : z ∈ A, sgn(z) = 1, νQ(z) = 0},
where the bar denotes the residue class mod PM (A), then IM is a subgroup
of PicM (A) isomorphic to (A/M)∗. The decomposition group DP can now
be described as a subgroup of PicM (A) by

(3) DP = {(α + y)A : α ∈ F∗q , y ∈ A, sgn(y) = 1, νQ(y) ≥ n} ⊆ IM .

In the special case where K = Fq(x), the theory of narrow ray class
extensions reduces to that of cyclotomic function fields as developed by
Hayes [3]. We note that cyclotomic function fields and narrow ray class
extensions have already been used by Niederreiter and Xing [6], [8], [9], [12],
Quebbemann [13], Xing [19], and Xing and Niederreiter [21], [22] for the
construction of global function fields with many rational places.

3. Two general construction principles. We present two general
principles for the construction of global function fields with many rational
places which will be used several times in Section 4. The first construction
principle is based on certain subfields of narrow ray class extensions (see
Section 2 for the fundamental facts about these extensions).

Let K/Fq be a global function field with N(K) ≥ 1, let P be a distin-
guished rational place of K, and let A be the P -integral ring of K. Let
M = Qn with n ≥ 1 and a nonzero prime ideal Q in A, or equivalently Q
is a place of K different from P . For m places P1, . . . , Pm of K that are
different from P and Q we define the multiplicative semigroup

S(P1, . . . , Pm) = {f ∈ A : sgn(f) = 1, νR(f) = 0 for all R 6= P, P1, . . . , Pm}
of A and the subgroup

SM (P1, . . . , Pm) = {f + M ∈ (A/M)∗ : f ∈ S(P1, . . . , Pm)}
of (A/M)∗. In the following we use the notation introduced in (1)–(3).
Furthermore, we write 〈P1, . . . , Pm〉 for the subgroup of Pic(A) generated by
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the ideal classes of P1, . . . , Pm and 〈SM (P1, . . . , Pm), DP 〉 for the subgroup
of (A/M)∗ generated by SM (P1, . . . , Pm) and DP , where we think of DP as
being given in the form (1).

Lemma 1. With the notation above, let G be the subgroup of PicM (A)
generated by P 1, . . . , Pm, and DP . Then

|G| = |〈P1, . . . , Pm〉| · |〈SM (P1, . . . , Pm), DP 〉|.

P r o o f. If IM is as in (2), then it suffices to prove the following:

G ∩ IM = 〈SM (P1, . . . , Pm), DP 〉,(4)
〈P1, . . . , Pm〉 ' G/(G ∩ IM ).(5)

We first note that G ∩ IM consists of all zA ∈ PicM (A) with z ∈ A, sgn(z)
= 1, and

zA =
m∏

i=1

Pni
i · (α + y)A · wA,

where α ∈ F∗q , y ∈ A, sgn(y) = 1, νQ(y) ≥ n, w ∈ A, sgn(w) = 1, w ≡
1 mod M , and n1, . . . , nm are nonnegative integers. Let

v =
z

(α + y)w
.

Then vA =
∏m

i=1 Pni
i with sgn(v) = 1, hence v ∈ S(P1, . . . , Pm). It follows

that

G ∩ IM = {vA · (α + y)A ∈ PicM (A) : v ∈ S(P1, . . . , Pm), (α + y)A ∈ DP }
= 〈SM (P1, . . . , Pm), DP 〉,

which is (4). To prove (5), we consider the map θ : G → Pic(A) defined by

θ : G 3 (α + y)A ·
m∏

i=1

Pni
i 7→

m∏
i=1

Pni
i ∈ Pic(A).

Note that θ is a well-defined map with image 〈P1, . . . , Pm〉. Furthermore, θ
is a group homomorphism and its kernel is easily seen to be G ∩ IM . Thus
(5) is shown.

Theorem 1. Let P, P1, . . . , Pm be m + 1 distinct rational places of the
global function field K/Fq. Let EM/K be the narrow ray class extension of
K with modulus M = Qn, where n ≥ 1 and Q is a place of K of degree d
which is different from P, P1, . . . , Pm. Put

r = |〈P1, . . . , Pm〉|, t = |〈SM (P1, . . . , Pm), DP 〉|,
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and assume that gcd(t, q) = 1. Then there exists a subfield F of EM/K with

[F : K] =
h(K)(qd − 1)qd(n−1)

rt
,

2g(F )− 2 =
h(K)(qd − 1)qd(n−1)

rt
(2g(K)− 2)

+
dh(K)

rt
(n(qd − 1)qd(n−1) − qd(n−1) − t + 1),

N(F ) ≥ (m + 1)
h(K)(qd − 1)qd(n−1)

rt
.

Furthermore, if d = 1 and the order of the ideal class of Q in Pic(A) is
prime to h(K)/r, then

N(F ) ≥ h(K)
r

+ (m + 1)
h(K)(q − 1)qn−1

rt
.

P r o o f. Let G be as in Lemma 1 and let F be the subfield of EM/K
fixed by G ⊆ PicM (A) ' Gal(EM/K). Since

[EM : K] = h(K)Φq(M) = h(K)(qd − 1)qd(n−1),

the formula for [F : K] in the theorem follows from Lemma 1. Since G con-
tains the decomposition group DP of P and the Artin symbols of P1, . . . , Pm

in EM/K, the places P, P1, . . . , Pm split completely in F/K. This yields the
lower bound for N(F ) in the theorem.

In order to calculate the genus g(F ), we first observe that the only place
of K that can be ramified in F/K is Q. If R is a place of F lying over
Q, then the inertia group of R in EM/F is Gal(EM/F ) ∩ IM , where IM =
Gal(EM/HP ) ' (A/M)∗ is the inertia group of Q in EM/K. Hence from
(4) we find that the inertia group of R in EM/F is 〈SM (P1, . . . , Pm), DP 〉.
In particular, the ramification index eR(EM/F ) of R in EM/F is t. From
the condition gcd(t, q) = 1 we see that R is tamely ramified in EM/F , and
so the different exponent dR(EM/F ) of R in EM/F is given by

dR(EM/F ) = t− 1.

Next we note that from the proof of [22, Proposition 2] we infer that the
different exponent dQ(EM/K) of Q in EM/K is given by

dQ(EM/K) = n(qd − 1)qd(n−1) − qd(n−1).

Thus, the tower formula for different exponents yields

dQ(F/K) =
dQ(EM/K)− dR(EM/F )

eR(EM/F )

=
n(qd − 1)qd(n−1) − qd(n−1) − t + 1

t
.
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Since the ramification index eQ(F/K) of Q in F/K is

eQ(F/K) =
eQ(EM/K)
eR(EM/F )

=
|(A/M)∗|

t
=

(qd − 1)qd(n−1)

t
,

the desired identity for g(F ) follows from the Hurwitz genus formula.
To prove the remaining part of the theorem, we denote by f the order

of the ideal class of Q in Pic(A) and we observe that f is the relative degree
of Q in HP /K. Now any place of HP lying over Q is totally ramified in
EM/HP , and so f is also the relative degree of Q in EM/K. The relative
degree fQ(F/K) of Q in F/K divides

[F : K]
eQ(F/K)

=
h(K)

r
.

Thus, from the condition gcd(f, h(K)/r) = 1 it follows that fQ(F/K) = 1.
In the case d = 1 this yields

N(F ) ≥ h(K)
r

+ (m + 1)
h(K)(q − 1)qn−1

rt
.

The following lemma describes a set of generators of the subgroup
SM (P1, . . . , Pm) of (A/M)∗ in case a certain condition on 〈P1, . . . , Pm〉 is
met. We again use the notation introduced at the beginning of this section.

Lemma 2. For 1 ≤ i ≤ m let the ideal class of Pi have order ri in the
group Pic(A) and let fi ∈ A be such that sgn(fi) = 1 and fiA = P ri

i . If
〈P1, . . . , Pm〉 is the direct product of 〈P1〉, . . . , 〈Pm〉, then SM (P1, . . . , Pm) is
generated by the elements f1 + M, . . . , fm + M .

P r o o f. In the language of divisors we have (fi) = riPi − riP . Let
g + M ∈ SM (P1, . . . , Pm) with g ∈ S(P1, . . . , Pm). Then the principal
divisor of g is of the form

(g) =
m∑

i=1

tiPi − tP

with nonnegative integers t1, . . . , tm, where t =
∑m

i=1 ti. By the condition
on 〈P1, . . . , Pm〉, for each 1 ≤ i ≤ m the divisor tiPi− tiP is principal, hence
ri | ti. Thus,

(g) =
( m∏

i=1

f
ti/ri

i

)
.

Since sgn(g) = 1 = sgn(fi) for 1 ≤ i ≤ m, we obtain

g =
m∏

i=1

f
ti/ri

i ,

and the result follows.
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A second general principle for the construction of global function fields
with many rational places is based on the theory of Hilbert class fields (see
Section 2). This principle was already stated in an equivalent form in [12],
but for the sake of completeness we include the short proof.

Theorem 2. Let K/Fq be a global function field and L/Fq a finite sep-
arable extension of K. Let S = {P, P1, . . . , Pm} with P a rational place of
K and P1, . . . , Pm arbitrary places of K different from P. Suppose that S
satisfies the following condition: either some place of K not in S is totally
ramified in L/K or some place in S is inert in L/K. Let T be the set of
places of L lying over those in S and assume that the number n of rational
places in T is positive. Then there exists a global function field F/Fq with

g(F ) =
h(K)

r
(g(L)− 1) + 1 and N(F ) ≥ h(K)n

r
,

where r = |〈P1, . . . , Pm〉|.
P r o o f. Let Div(K) be the group of divisor classes of K and let D be

the subgroup of Div(K) generated by the divisor classes of P, P1, . . . , Pm.
Since S contains the rational place P , the group Div(K) is generated by
Div0(K) and D. Thus, from the exact sequence

(0) → Div0(K)/(D ∩Div0(K)) → ClS → Div(K)/ Div0(K)D → (0)

in the proof of [14, Lemma 1.2] we obtain

ClS ' Div0(K)/(D ∩Div0(K)),

where ClS is the S-divisor class group of K. It follows that

c := |ClS | =
h(K)

r
.

From [14, Proposition 2.2] and the condition on S we deduce that c divides
|ClT |, where ClT is the T -divisor class group of L. Let HT be the Hilbert
class field of L with respect to T . Then Gal(HT /L) ' ClT and Fq is the
full constant field of HT since n ≥ 1 (see [14, Theorem 1.3]). Let F/Fq be
a subfield of the extension HT /L which is obtained as the fixed field of a
subgroup of ClT of order (1/c)|ClT |. Then [F : L] = c. Since HT /L is an
unramified extension, the Hurwitz genus formula yields

g(F )− 1 = c(g(L)− 1) =
h(K)

r
(g(L)− 1).

Furthermore, all places in T split completely in F/L, hence N(F ) ≥ cn.

4. Constructions for the case q = 3. In this section we construct
examples of global function fields F with full constant field F3 and many
rational places. A list of such examples for the genera 1 ≤ g ≤ 15 was
provided in [8, Section 3]. Now we consider the range 16 ≤ g ≤ 51 and also
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some larger values of the genus. Note that together with the results in [8]
this yields lower bounds for N3(g) for 1 ≤ g ≤ 51 and some larger values of
g. The notations and conventions introduced in Sections 2 and 3 are used
without further mention. We summarize the results in the following table.

Table 1

g(F ) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N(F ) 27 24 26 27 30 32 28 26 28 36 36 39 37 42 34

g(F ) 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
N(F ) 40 38 37 44 38 36 48 36 42 54 50 39 55 42 48

g(F ) 46 47 48 49 50 51 53 67 69 71 89 102 113 115
N(F ) 55 47 55 54 56 60 60 72 82 84 96 104 120 120

The entries for g = 16, 20, 46, and 48 are taken from the table in van
der Geer and van der Vlugt [18]. The entry for g = 69 is obtained from [22,
Example 4]. The remaining entries are covered by the following examples.
For some entries we list two examples, one of which provides a global func-
tion field containing additional places of relatively small degree. The latter
type of example is useful in a construction of low-discrepancy sequences (see
[20]). In some cases we list one explicit and one non-explicit example.

Example 1A. g(F ) = 17, N(F ) = 24. Consider the function field
K = F3(x, y) with

y2 = −x(x− 1)(x5 + x4 + x2 + 1).

Then g(K) = 3, N(K) = 3, K has 7 places of degree 2 and 10 places of degree
3, hence h(K) = 32. In K we have (x) = 2P1−2P∞ and (x−1) = 2P2−2P∞.
Now F is obtained from Theorem 2 with L = K and S = {P∞, P1, P2}. It is
clear that r = |〈P1, P2〉| = 2 or 4. If we had r = 2, then P1 −P2 would be a
principal divisor of K, which is impossible by the Weierstrass gap theorem;
thus r = 4.

Example 1B. g(F ) = 17, N(F ) = 24, F = F3(x, y1, y2, y3) with

y2
1 = x3 − x + 1, y2

2 = −x3 + x + 1, y2
3 = x5 − x + 1.

This is a tower of Kummer extensions and K = F3(x, y1, y2) satisfies g(K) =
4. The places x, x+1, and x− 1 split completely in the extension K/F3(x),
hence N(K) = 12. Since all rational places of K split completely in F/K,
we get N(F ) = 24. The only ramified places in F/K are those lying over
x5 − x + 1, and so g(F ) = 17.

Example 2. g(F ) = 18, N(F ) = 26, F = F3(x, y1, y2, y3) with

y2
1 = x3 − x + 1, y3

2 − y2 = u :=
(x + 1)(y1 + x + 1)

x
, y2

3 = u + 1.
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The field K = F3(x, y1, y2) is that in [8, Example 3.6] and satisfies g(K) = 6
and N(K) = 14. In K the principal divisor of u is given by

(u) =
12∑

i=1

Qi − 3Q− 9Q∞,

where Q1, . . . , Q12, Q,Q∞ are distinct rational places of K. In particular,
Q is the unique place lying over the place P1 =(0, 1) in [8, Example 3.6] and
Q∞ is the unique place lying over ∞. It is easy to check that in K we have

(u + 1) = P + R1 + R2 + R3 − 3Q− 9Q∞,

where P is the place of degree 3 lying over the place P2 = (1, 2) in [8,
Example 3.6] and R1, R2, R3 are the places of degree 3 lying over x3 −
x2 − x − 1 and satisfying y1 ≡ x − x2 mod Rj for j = 1, 2, 3. The places
P,R1, R2, R3, Q,Q∞ are totally ramified in the Kummer extension F/K,
thus g(F ) = 18. The places Q1, . . . , Q12 split completely in F/K, hence
N(F ) = 1 + 1 + 12 · 2 = 26.

Example 3. g(F ) = 19, N(F ) = 27. Consider the function field K =
F3(x, y) with

y2 = x(x + 1)(x5 + x4 + x− 1).
Then g(K) = 3, N(K) = 5, K has two places of degree 2 and six places of
degree 3, hence h(K) = 36. In K we have (x) = 2P1 − 2P∞ and (x + 1)
= 2P2 − 2P∞. Now F is obtained from Theorem 2 with L = K and S =
{P∞, P1, P2}. As in Example 1A we see that r = 4.

Example 4. g(F ) = 21, N(F ) = 32. Let K/F3 be the function field in
[8, Example 3.7] with g(K) = 7 and N(K) = 16. Recall that [K : F3(x)] = 8
and that the places∞ and x split completely in K/F3(x). Now let F = K(y)
with y2 = x2 + 1. Then all rational places of K split completely in the
Kummer extension F/K, and so N(F ) = 32. The only ramified places in
F/K are the places of K lying over x2 + 1, and these are unramified in
K/F3(x). Thus we get g(F ) = 1 + 2 · (7− 1) + 1

2 · 8 · 2 = 21.

Example 5A. g(F ) = 22, N(F ) = 28. Consider the function field
K = F3(x, y) with

y2 = x(x4 + x2 − 1).
Then g(K) = 2, N(K) = 4, and K has seven places of degree 2, hence
h(K) = 14. Let R be the place of K lying over x and Q be the place of
K lying over x + 1. Then deg(R) = 1 and deg(Q) = 2. As a distinguished
rational place of K we choose the place P lying over ∞. The narrow ray
class extension EQ/K has degree [EQ : K] = h(K)Φ3(Q) = 112. It is easy
to check by Lemma 2 that SQ(R) is the cyclic subgroup of (A/Q)∗ generated
by x + Q, and so |SQ(R)| = 2. Let H be a subgroup of (A/Q)∗ of order 4
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which contains SQ(R). Then we can find a subgroup G of PicQ(A) of order
8 which contains H and the residue class R of R mod PQ(A), since R2 = xA
and xA ∈ SQ(R) when SQ(R) is viewed as a subgroup of PicQ(A). Let F
be the subfield of EQ/K fixed by G. Then [F : K] = 14. By construction,
the places P and R split completely in F/K, and so N(F ) = 28. The only
place of K ramifying in F/K is Q and its ramification index is 2. Thus, the
Hurwitz genus formula yields 2g(F ) − 2 = 14(2g(K) − 2) + 7 · (2 − 1) · 2,
that is, g(F ) = 22.

Example 5B. g(F ) = 22, N(F ) = 28, F = F3(x, y1, y2, y3) with

y2
1 = x3 − x + 1, y3

2 − y2 =
x(x− 1)
(x + 1)2

, y2
3 = −x3 + x + 1.

The field K = F3(x, y1, y2) satisfies g(K) = 7. The places x and x− 1 split
completely in K/F3(x) and there are two rational places of K lying over
x + 1, thus N(K) = 14. All rational places of K split completely in the
Kummer extension F/K, hence N(F ) = 28. The only ramified places in
F/K are the places of K lying over x3 − x− 1, and these are unramified in
K/F3(x). Thus we get g(F ) = 1 + 2 · (7− 1) + 1

2 · 6 · 3 = 22.

Example 6. g(F ) = 23, N(F ) = 26, F = F3(x, y1, y2, y3) with

y2
1 = x3 − x + 1, y3

2 − y2 =
(x + 1)(y1 + x + 1)

x
, y2

3 = −x4 + x2 + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.6] and satisfies g(K) = 6
and N(K) = 14. There are 13 rational places of K lying over x, x + 1, or
x−1, and all these rational places split completely in the Kummer extension
F/K, hence N(F ) = 26. The only ramified places in F/K are the places of
K lying over x4 − x2 − 1, and these are unramified in K/F3(x). Thus we
get g(F ) = 1+2 · (6− 1)+ 1

2 · 6 · 4 = 23. Note that the place of F lying over
∞ has degree 2.

Example 7. g(F ) = 24, N(F ) = 28, F = F3(x, y1, y2, y3) with

y2
1 = x3 − x + 1, y3

2 − y2 =
x(x− 1)

x + 1
, y2

3 = −x3 + x + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.8] and satisfies g(K) = 8
and N(K) = 15. There are 14 rational places of K lying over x, x + 1, or
x−1, and all these rational places split completely in the Kummer extension
F/K, hence N(F ) = 28. The only ramified places in F/K are the places of
K lying over x3 − x− 1, and these are unramified in K/F3(x). Thus we get
g(F ) = 1 + 2 · (8− 1) + 1

2 · 6 · 3 = 24. Note that the place of F lying over ∞
has degree 2.



76 H. Niederreiter and C. P. Xing

Example 8A. g(F ) = 25, N(F ) = 36. Consider the function field
K = F3(x, y) with

y2 = −x(x− 1)(x5 − x + 1).
Then g(K) = 3, N(K) = 5, K has four places of degree 2 and eight places
of degree 3, hence h(K) = 48. In K we have (x) = 2P1 − 2P∞ and (x− 1)
= 2P2 − 2P∞. Now F is obtained from Theorem 2 with L = K and S =
{P∞, P1, P2}. As in Example 1A we see that r = 4.

Example 8B. g(F ) = 25, N(F ) = 36, and F has at least six places of
degree 2. Consider the function field K = F3(x, y) with

y2 = x3 − x.

Then g(K) = 1 and h(K) = 4. We distinguish the rational place P of
K lying over ∞. In K we have (x) = 2P1−2P , (x−1) = 2P2−2P , and
(x+1)=2P3−2P , where P1, P2, P3 are rational places of K. Put M =P 2

2 P 2
3

and consider the narrow ray class extension EM/K of degree

[EM : K] = h(K)Φ3(P 2
2 )Φ3(P 2

3 ) = 144.

Let H be the 2-Sylow subgroup of (A/M)∗. Then |H|=4. Let P1∈PicM (A)
be the residue class of P1 mod PM (A) and G the subgroup of PicM (A)
generated by P1 and H, where H is also viewed as a subgroup of PicM (A).
Since P 2

1 = xA and x2 ≡ 1 mod M , we have P 2
1 ∈H. Furthermore, P1 6∈H

since P1−P is not a principal divisor. Therefore |G|=8.
Now let F be the subfield of EM/K fixed by G. Then [F :K]=18. The

only possible ramified places in F/K are P2 and P3. For i=2, 3 let Ri be a
place of F lying over Pi. Then the inertia group of Ri in EM/F is G ∩ Ji,
where Ji is the inertia group of Pi in EM/K. Now Ji has order 6 and it is
a subgroup of Gal(EM/HP )'(A/M)∗ since HP /K is an unramified exten-
sion. We recall that H is the 2-Sylow subgroup of (A/M)∗, and then we can
conclude that the inertia group of Ri in EM/F has order 2. Consequently,
the ramification index of Ri in EM/F is 2 and that of Pi in F/K is 3. By the
proof of [22, Proposition 2], Pi has different exponent 9 in EM/K, and then
the tower formula for different exponents shows that the different exponent
of Pi in F/K is 4. Therefore the Hurwitz genus formula yields

2g(F )− 2 = 18(2g(K)− 2) + 4 · 6 + 4 · 6,

that is, g(F ) = 25. By the construction of F , the places P and P1 split
completely in F/K, and so N(F ) ≥ 36.

Now we consider the decomposition of Pi in F/K for i=2, 3. Let EMi/K
be the narrow ray class extension of K with modulus Mi = P 2

i . Then EM

is the composite field of EM2 and EM3 . We have P 2
3 = (x+1)A and (x+

1)2≡1 mod M2, thus the Artin symbol of P3 has order 4 in Gal(EM2/K)'
PicM2(A) and the relative degree of P3 in EM/K is 4. Since the relative
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degree of P3 in F/K is a factor of that in EM/K, it follows that the relative
degree of P3 in F/K is 2 (if this degree were 1, then N(F ) ≥ 36 + 6 =
42, a contradiction to the bound N3(25)≤ 40 obtained by Serre’s method
described in [16, Proposition V.3.4]). In the same way one shows that the
relative degree of P2 in F/K is 2. It follows that F has at least six places
of degree 2 and that N(F )=36.

Example 9A. g(F ) = 26, N(F ) = 36, F = F3(x, y1, y2, y3) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)

x + 1
, y2

3 = −x2 + x + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.9] and satisfies g(K) = 9
and N(K) = 19. There are 18 rational places of K lying over x or x − 1,
and all these rational places split completely in the Kummer extension F/K,
hence N(F ) = 36. The only ramified places in F/K are the places of K
lying over x2 − x − 1, and these are unramified in K/F3(x). Thus we get
g(F ) = 1 + 2 · (9− 1) + 1

2 · 9 · 2 = 26. Note that the place of F lying over ∞
has degree 2.

Example 9B. g(F ) = 26, N(F ) = 36, and F has a place of degree 2.
Consider the function field K = F3(x, y) with

y2 = (x3 − x)(x2 + 1).

Then g(K) = 2, N(K) = 4, and K has one place of degree 2, hence h(K) =
8. We distinguish the rational place P of K lying over ∞. In K we have

(x− i + 1) = 2Pi − 2P for i = 1, 2, 3

and (x2 + 1) = 2Q − 4P , where P1, P2, P3 are rational places of K and
deg(Q) = 2. Put M = Q2 and consider the narrow ray class extension
EM/K of degree [EM : K] = h(K)Φ3(M) = 576. Let G be the 2-Sylow
subgroup of PicM (A) and F the subfield of EM/K fixed by G. Then [F :
K] = 9. For i = 1, 2, 3 we have

P 16
i = (x− i + 1)8A and (x− i + 1)8 ≡ 1 mod M,

thus P 16
i = 1 in PicM (A), and so Pi ∈ G. It follows that the places

P, P1, P2, P3 split completely in F/K, hence N(F ) = 36. Furthermore,
Q is totally ramified in F/K, and so F has a place of degree 2. By the proof
of [22, Proposition 2], the different exponent dQ(EM/K) of Q in EM/K is
135. The different exponent dQ(F/K) of Q in F/K satisfies

8dQ(F/K) + 7 = dQ(EM/K) = 135

by the tower formula for different exponents, thus dQ(F/K) = 16. Since
Q is the only ramified place in F/K, the Hurwitz genus formula yields
2g(F )− 2 = 9(2g(K)− 2) + 16 · 2, that is, g(F ) = 26.
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Example 10. g(F ) = 27, N(F ) = 39. Consider the function field
K = F3(x, y) with

y2 = −x(x− 1)(x5 + x4 + x2 + x + 1).

Then g(K) = 3, N(K) = 5, K has 4 places of degree 2 and 12 places of
degree 3, hence h(K) = 52. In K we have (x) = 2P1 − 2P∞ and (x − 1)
= 2P2 − 2P∞. Now F is obtained from Theorem 2 with L = K and S =
{P∞, P1, P2}. As in Example 1A we see that r = 4.

Example 11. g(F ) = 28, N(F ) = 37, F = F3(x, y1, y2, y3) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)

x + 1
, y2

3 = (x + 1)(x2 + 1).

The field K = F3(x, y1, y2) is that in [8, Example 3.9] and satisfies g(K) = 9
and N(K) = 19. The 18 rational places of K lying over x or x − 1 split
completely in the Kummer extension F/K and the unique rational place of
K lying over ∞ is totally ramified in F/K, hence N(K) = 37. Besides the
latter place, the only other places of K ramifying in F/K are those lying
over x2 +1 (they are unramified in K/F3(x)) and the unique place of degree
3 lying over x+1. Thus we get g(F ) = 1 +2 · (9− 1)+ 1

2 (9 · 2+ 1+3) = 28.

Example 12. g(F ) = 29, N(F ) = 42, and F has at least 14 places of
degree 5. Consider the function field K = F3(x, y) with

y2 = −x(x− 1)(x5 + x3 + x + 1).

Then g(K) = 3, N(K) = 5, K has six places of degree 2 and six places of
degree 3, hence h(K) = 56. In K we have (x) = 2P1 − 2P∞ and (x − 1)
= 2P2 − 2P∞. Let F be obtained from Theorem 2 with L = K and S =
{P∞, P1, P2}, i.e., we can take F to be the subfield of HP∞/K fixed by
〈P1, P2〉. As in Example 1A we see that r = 4. For the principal divisor of
y in K we have (y) = P1 + P2 + Q − 7P∞, where Q is the place of K of
degree 5 lying over x5 + x3 + x + 1. Thus, the ideal class of Q is contained
in 〈P1, P2〉, and so Q splits completely in the extension F/K of degree 14.

Example 13. g(F ) = 30, N(F ) = 34. Let K/F3 be the function field
constructed in [22, Example 5] with n = 9. Then g(K) = 10, N(K) = 19,
and [K : F3(x)] = 6. The places x+1 and x−1 split completely in K/F3(x),
there are three rational places of K lying over ∞ with ramification index
2, and over x there are three rational places of K with ramification index 1
and one rational place of K with ramification index 3. Now let F = K(z)
with

z2 = x(x3 + x2 − 1).
Then the places of K lying over x + 1, x − 1, or ∞ split completely in the
Kummer extension F/K and the places of K lying over x are totally ramified
in F/K, therefore N(F ) = 34. Besides the latter places, the only other
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places of K ramifying in F/K are those lying over x3 +x2− 1, and they are
unramified in K/F3(x). Thus we get g(F ) = 1+2·(10−1)+ 1

2 (6·3+4) = 30.

Example 14. g(F ) = 31, N(F ) = 40. Consider the function field
K = F3(x, y) with

y2 = x(x2 + 1)(x2 − x− 1).
Then g(K) = 2, N(K) = 6, and K has two places of degree 2, hence
h(K) = 20. We distinguish the rational place P of K lying over ∞. In K
we have (x) = 2P1 − 2P and (x2 + 1) = 2Q − 4P , where deg(P1) = 1 and
deg(Q) = 2. Now F is obtained from Theorem 1 with m = 1 and M = Q.
It is clear that r = 2, and from x2 ≡ −1 mod M and Lemma 2 we deduce
that t = 4.

Example 15. g(F ) = 32, N(F ) = 38, F = F3(x, y1, y2, y3) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)

x + 1
, y2

3 = (x + 1)(x3 + x2 − x + 1).

The field K = F3(x, y1, y2) is that in [8, Example 3.9] and satisfies g(K) = 9
and N(K) = 19. All rational places of K lie over x, x − 1, or ∞ and they
split completely in the Kummer extension F/K, thus N(F ) = 38. The only
places of K ramifying in F/K are those lying over x3 + x2−x + 1 (they are
unramified in K/F3(x)) and the unique place of degree 3 lying over x + 1.
Hence we get g(F ) = 1 + 2 · (9− 1) + 1

2 (9 · 3 + 3) = 32.

Example 16. g(F ) = 33, N(F ) = 37. Let K/F3 be the function field
constructed in [8, Example 3.10]. Then g(K) = 10, N(K) = 19, and [K :
F3(x)] = 9. The places x + 1 and ∞ split completely in K/F3(x) and the
place x is totally ramified in K/F3(x). Now let F = K(z) with

z2 = x(x3 − x− 1).

Then the places of K lying over x+1 or ∞ split completely in the Kummer
extension F/K and the place of K lying over x is totally ramified in F/K,
therefore N(F ) = 37. Besides the latter place, the only other places of K
ramifying in F/K are those lying over x3 − x− 1, and they are unramified
in K/F3(x). Thus we get g(F ) = 1 + 2 · (10− 1) + 1

2 (9 · 3 + 1) = 33.

Example 17. g(F ) = 34, N(F ) = 44. Consider the function field
K = F3(x, y) with

y2 = x(x4 + x− 1).
Then g(K) = 2, N(K) = 6, and K has four places of degree 2, hence
h(K)=22. We distinguish the rational place P of K lying over ∞. In K we
have (x) = 2P1 − 2P . Now F is obtained from Theorem 1 with m = 1 and
M = Q, where Q is a place of K of degree 2 lying over x2+1. It is clear
that r = 2, and from x2≡−1 mod M and Lemma 2 we deduce that t = 4.
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Example 18. g(F ) = 35, N(F ) = 38, F = F3(x, y1, y2, y3) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)

x + 1
, y2

3 = x4 + x2 + x + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.9] and satisfies g(K) = 9
and N(K) = 19. All rational places of K lie over x, x − 1, or ∞ and they
split completely in the Kummer extension F/K, thus N(F ) = 38. The only
places of K ramifying in F/K are those lying over x4 +x2 +x+1, and they
are unramified in K/F3(x). Hence we get g(F ) = 1+2 ·(9−1)+ 1

2 ·9 ·4 = 35.

Example 19. g(F ) = 36, N(F ) = 36. Let K/F3 be the function field
constructed in [8, Example 3.4] with g(K) = 4 and N(K) = 12. Then F is
obtained from [9, Theorem 3] by choosing m = 11, d = 13, and l = 1.

Example 20. g(F ) = 37, N(F ) = 48. Consider the function field
K = F3(x, y1) with

y2
1 = x(x4 − x3 + x2 − x + 1).

Then g(K) = 2, N(K) = 6, and K has six places of degree 2, hence h(K) =
24. In K we have (x) = 2P1 − 2P∞. Furthermore, let L = K(y2) with

y2
2 = x + 1.

Then g(L) = 4 since the only places of K ramifying in the Kummer extension
L/K are those lying over x + 1. Now F is obtained from Theorem 2 with
S = {P∞, P1}. Note that the condition on S in Theorem 2 is satisfied since
the places of K lying over x + 1 are totally ramified in L/K. Furthermore,
we have n = 4 since both places in S split completely in L/K, and also
r = 2. Theorem 2 yields N(F ) ≥ 48, but since N3(37) ≤ 54 by Serre’s
method, we get N(F ) = 48.

Example 21. g(F ) = 38, N(F ) = 36. Let K/F3 be the function field
constructed in [8, Example 3.4] with g(K) = 4 and N(K) = 12. Then F is
obtained from [9, Theorem 3] by choosing m = 11, d = 14, and l = 1.

Example 22. g(F ) = 39, N(F ) = 42, F = F3(x, y1, y2, y3) with

y2
1 = (x2 + 1)(x4 + x3 − x + 1), y3

2 − y2 =
x3 − x

(x2 + 1)2
, y2

3 = x3 − x + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.14] and satisfies g(K) =
14 and N(K) = 24. All rational places of F3(x) split completely in K/F3(x).
All places of K lying over x, x + 1, or x− 1 split completely in the Kummer
extension F/K and the six places of K lying over ∞ are totally ramified in
F/K, hence N(F ) = 42. Besides the latter places, the only other places of
K ramifying in F/K are those lying over x3−x+1, and they are unramified
in K/F3(x). Thus we get g(F ) = 1 + 2 · (14− 1) + 1

2 (6 · 3 + 6) = 39.
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Example 23. g(F ) = 40, N(F ) ≥ 54. Put K = F3(x) and let E be the
cyclotomic function field over F3 with modulus M = (x + 1)3(x − 1)3 and
with the distinguished rational place ∞ of K. Then

[E : K] = Φ3((x + 1)3)Φ3((x− 1)3) = 324.

Since x6 ≡ 1 mod M , we can find a subgroup G of Gal(E/K) ' (F3[x]/(M))∗

with |G| = 12 such that G contains the decomposition groups of the places
x and ∞ in E/K. Let F be the subfield of E/K fixed by G. Then
[F : K] = 27. By construction, x and ∞ split completely in F/K, and
so N(F ) ≥ 54. Let E1, respectively E2, be the cyclotomic function field
over F3 with modulus (x + 1)3, respectively (x − 1)3, and with the distin-
guished rational place ∞ of K. Then

[E1 : K] = [E2 : K] = 18

and E is the composite field of E1 and E2. To calculate g(F ), we first
determine the ramification index ex+1(F/K) of the place x + 1 in F/K.
From ex+1(E1/K) = 18, ex+1(E2/K) = 1, and Abhyankar’s lemma (see [16,
Proposition III.8.9]) we deduce that ex+1(E/K) = 18, and so ex+1(F/K)
divides 9.

We claim that ex+1(F/K) = 9. If we had ex+1(F/K) = 1 or 3, then the
inertia field L of x + 1 in F/K has degree [L : K] = 27 or 9. Since x + 1
is unramified in L/K and E2 is the inertia field of x + 1 in E/K, we have
L ⊆ E2, and so [E2 : L] = 2. From the fact that x splits completely in L/K
it follows that the relative degree of x in E2/K is 1 or 2. Thus, the Artin
symbol of x in E2/K has order 1 or 2, but this is impossible since x2 6≡ 1
mod (x− 1)3; hence indeed ex+1(F/K) = 9.

By [3, Theorem 4.1] the different exponent dx+1(E1/K) of x+1 in E1/K
is given by

dx+1(E1/K) = 3Φ3((x + 1)3)− 32 = 45.

Now the tower formula for different exponents yields

2dx+1(F/K) + 1 = dx+1(E/K) = dx+1(E1/K) = 45,

that is, dx+1(F/K) = 22. In the same way one shows that ex−1(F/K) = 9
and dx−1(F/K) = 22. Since x + 1 and x− 1 are the only ramified places in
F/K, the Hurwitz genus formula yields 2g(F )− 2 = −2 · 27 + 3 · 22 + 3 · 22,
that is, g(F ) = 40.

Example 24. g(F ) = 41, N(F ) = 50. Consider the function field
K = F3(x, y) with

y2 = (x3 − x)(x4 + x3 − 1).
Then g(K)=3, N(K)=4, K has 4 places of degree 2 and 16 places of degree
3, hence h(K)=40. We distinguish the rational place P of K lying over ∞.
In K we have (x) = 2Q− 2P, (x− 1) = 2P1 − 2P , and (x + 1) = 2P2 − 2P ,
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where Q, P1, and P2 are rational places of K. Put M = Q2 and consider the
narrow ray class extension EM/K of degree [EM : K] = h(K)Φ3(M) = 240.
Let G be the 2-Sylow subgroup of PicM (A) and F the subfield of EM/K
fixed by G. Then [F : K] = 15. Since P 4

1 = (x− 1)2A, (x− 1)2 ≡ 1 mod M ,
P 2

2 = (x + 1)A, and x + 1 ≡ 1 mod M , we have P1, P2 ∈ G. It follows
that P , P1, and P2 split completely in F/K. Since Q2 = xA is a principal
ideal, we see that the relative degree of Q in HP /K is 2, and therefore the
relative degree of Q in EM/K is also 2. In view of [F : K] = 15, this shows
that the relative degree of Q in F/K is 1. Since the ramification index of
Q in F/K is 3, it follows that Q splits into five rational places in F/K.
Consequently, N(F ) = 3 · 15 + 5 = 50. From the proof of [22, Proposition
2] we see that the different exponent of Q in EM/K is 9, and so the tower
formula for different exponents shows that the different exponent of Q in
F/K is 4. Since Q is the only ramified place in F/K, the Hurwitz genus
formula yields 2g(F )− 2 = 15(2g(K)− 2) + 4 · 5, that is, g(F ) = 41.

Example 25. g(F ) = 42, N(F ) ≥ 39. Let K/F3 be the function field
constructed in [8, Example 3.6] with g(K) = 6 and N(K) = 14. Then F is
obtained from [9, Theorem 3] by choosing m = 12, d = 13, and l = 1.

Example 26. g(F ) = 43, N(F ) = 55. Let K/F3 be the function field
constructed in [8, Example 3.15] with g(K) = 15 and N(K) = 28. Then
[K : F3(x)] = 9 and the places x + 1, x − 1, and ∞ split completely in
K/F3(x), whereas x is totally ramified in K/F3(x). Now let F = K(z) with

z2 = x(x3 + x2 − 1).

Then the places of K lying over x + 1, x − 1, or ∞ split completely in the
Kummer extension F/K and the place of K lying over x is totally ramified
in F/K, hence N(F ) = 55. Besides the latter place, the only other places of
K ramifying in F/K are those lying over x3+x2−1, and they are unramified
in K/F3(x). Thus we get g(F ) = 1 + 2 · (15− 1) + 1

2 (9 · 3 + 1) = 43.
Another example with g(F ) = 43 and N(F ) = 55 is given in [22, Ex-

ample 5].

Example 27. g(F ) = 44, N(F ) = 42. Let K/F3 be the function field
constructed in [8, Example 3.6] with g(K) = 6 and N(K) = 14. Then F is
obtained from [9, Theorem 3] by choosing m = 13, d = 14, and l = 1.

Example 28. g(F ) = 45, N(F ) = 48, F = F3(x, y1, y2, y3, y4) with

y2
1 = x3 − x + 1, y2

2 = −x4 + x2 + 1,

y2
3 = −x3 + x + 1, y2

4 = −x4 + x3 + x2 − x + 1.

The field K = F3(x, y1, y2) is that in [8, Example 3.5] and satisfies g(K) = 5
and N(K) = 12. The places x, x+1, and x−1 split completely in K/F3(x).
All rational places of K split completely in F/K, which is a tower of Kummer



Global function fields with many rational places 83

extensions, thus N(F ) = 48. If L = K(y3), then the only places of K
ramifying in L/K are those lying over x3 − x − 1 and the only places of L
ramifying in F/L are those lying over x4 − x3 − x2 + x − 1. This yields
g(L) = 15 and g(F ) = 45.

Example 29. g(F ) = 47, N(F ) = 47. Let the function field K/F3 be as
in Example 26 and let F = K(z) with

z2 = x3 − x + 1.

Then the places of K lying over x, x + 1, or x − 1 split completely in
the Kummer extension F/K and the places of K lying over ∞ are to-
tally ramified in F/K, therefore N(F ) = 2 · 19 + 9 = 47. Besides the
latter places, the only other places of K ramifying in F/K are those ly-
ing over x3 − x + 1, and they are unramified in K/F3(x). Thus we get
g(F ) = 1 + 2 · (15− 1) + 1

2 (9 · 3 + 9) = 47.

Example 30. g(F ) = 49, N(F ) = 54. Consider the function field
K = F3(x, y) with

y2 = −x(x2 − x− 1).
Then g(K) = 1 and h(K) = 6. We distinguish the rational place P of K
lying over ∞. In K we have (x) = 2P1 − 2P . Now F is obtained from
Theorem 1 with m = 1 and M = Q2, where Q is the place of K of degree 2
lying over x2 − x− 1. It is clear that r = 2, and from x4 ≡ −1 mod M and
Lemma 2 we deduce that t = 8.

Example 31. g(F ) = 50, N(F ) = 56. Let the function field K/F3 be
as in Example 5A. Then g(K) = 2 and h(K) = 14. We distinguish the
rational place P of K lying over ∞. In K we have (x) = 2P1 − 2P . Now F
is obtained from Theorem 1 with m = 1 and M = Q, where Q is the place
of K of degree 2 lying over x + 1. It is clear that r = 2, and from x ≡ −1
mod M and Lemma 2 we deduce that t = 2.

Example 32. g(F ) = 51, N(F ) = 60. Consider the function field
K = F3(x, y1) with

y2
1 = (x + 1)(x− 1)(x2 + x− 1)(x3 − x + 1).

Then g(K) = 3, N(K) = 5, K has three places of degree 2 and five places
of degree 3, hence h(K) = 40. In K we have (x + 1) = 2P1 − 2P∞ and
(x− 1) = 2P2 − 2P∞. Furthermore, let L = K(y2) with

y2
2 = x(x2 + x− 1).

Then g(L) = 6 since the only places of K ramifying in the Kummer extension
L/K are those lying over x. Now F is obtained from Theorem 2 with
S = {P∞, P1, P2}. Note that the condition on S in Theorem 2 is satisfied
since the places of K lying over x are totally ramified in L/K. Furthermore,
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we have n = 6 since all places in S split completely in L/K, and we get
r = 4 by the argument in Example 1A. Theorem 2 yields N(F ) ≥ 60, but
since N3(51) ≤ 69 by Serre’s method, we get N(F ) = 60.

Example 33. g(F ) = 53, N(F ) = 60. Consider the function field
K = F3(x, y) with

y2 = x(x + 1)(x3 − x2 + x + 1).

Then g(K) = 2, N(K) = 5, and K has four places of degree 2, hence
h(K) = 16. We distinguish the rational place P of K lying over ∞. In K
we have (x) = 2P1 − 2P and (x + 1) = 2P2 − 2P . We consider the narrow
ray class extension EM/K with modulus M = Q, where Q is the place of
K of degree 4 lying over x2 + 1. Then [EM : K] = h(K)Φ3(M) = 1280. Let
B be the 2-Sylow subgroup of (A/M)∗. Then |B| = 16. From (x + 1)4 ≡
x2 ≡ −1 mod M and Lemma 2 we deduce that |〈SM (P1, P2), DP 〉| = 8, and
so 〈SM (P1, P2), DP 〉 ⊆ B. Furthermore, we note that P 2

1 , P 2
2 ∈ SM (P1, P2)

if SM (P1, P2) is viewed as a subgroup of PicM (A). Therefore, there exists
a subgroup G of PicM (A) of order 64 such that G contains P1, P2, and B.

Now let F be the subfield of EM/K fixed by G. Then [F : K] = 20. By
construction, the places P, P1, and P2 split completely in F/K, therefore
N(F ) ≥ 60. Note that the subfield L of EM/K fixed by B is an extension
of HP of degree 5, and so the ramification index of Q in L/K is 5. From
F ⊆ L it follows easily that the ramification index of Q in F/K is 5. Since
Q is the only ramified place in F/K, the Hurwitz genus formula yields
2g(F ) − 2 = 20(2g(K) − 2) + (5 − 1) · 4 · 4, that is, g(F ) = 53. Since
N3(53) ≤ 71 by Serre’s method, we get N(F ) = 60.

Example 34. g(F ) = 67, N(F ) = 72. Consider the function field
K = F3(x, y) with

y2 = x(x2 + 1).
Then g(K) = 1 and h(K) = 4. We distinguish the rational place P of K
lying over ∞. In K we have (x) = 2P1 − 2P . Now F is obtained from
Theorem 1 with m = 1 and M = Q2, where Q is the place of K of degree
2 lying over x2 + 1. It is clear that r = 2, and from x2 ≡ −1 mod M and
Lemma 2 we deduce that t = 4.

Example 35. g(F ) = 71, N(F ) = 84. Consider the function field
K = F3(x, y1) with

y2
1 = (x + 1)(x− 1)(x2 + x− 1)(x3 − x2 + 1).

Then g(K) = 3, N(K) = 5, K has 5 places of degree 2 and 11 places
of degree 3, hence h(K) = 56. In K we have (x + 1) = 2P1 − 2P∞ and
(x− 1) = 2P2 − 2P∞. Furthermore, let L = K(y2) with

y2
2 = x(x2 + x− 1).
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Now F is obtained from Theorem 2 by proceeding as in Example 32. Initially
we obtain N(F ) ≥ 84, but since N3(71) ≤ 90 by Serre’s method, we have
N(F ) = 84.

Example 36. g(F ) = 89, N(F ) = 96. Let the function field K/F3 be as
in Example 1A. Then g(K) = 3 and h(K) = 32. We distinguish the rational
place P∞ of K lying over ∞. Let the rational places P1 and P2 of K be as in
Example 1A. Now F is obtained from Theorem 1 with m = 2 and M = Q,
where Q is the place of K of degree 2 lying over x + 1. By Example 1A we
have r = 4, and from x ≡ −1 mod M and Lemma 2 we deduce that t = 2.

Example 37. g(F ) = 102, N(F ) = 104. Put K = F3(x) and let E be the
cyclotomic function field over F3 with modulus M =

∑6
i=0 xi and with the

distinguished rational place ∞ of K. Then [E : K] = Φ3(M) = 36−1. Since
x7 ≡ 1 mod M , the subgroup G of Gal(E/K) ' (F3[x]/(M))∗ generated
by the decomposition groups of the places x and ∞ in E/K satisfies |G| =
14. Let F be the subfield of E/K fixed by G. Then [F : K] = 52. By
construction, x and ∞ split completely in F/K, and so N(F ) = 104. Since
M is the only ramified place in F/K, the Hurwitz genus formula yields
2g(F )− 2 = −2 · 52 + (52− 1) · 6, that is, g(F ) = 102.

Example 38. g(F ) = 113, N(F ) = 120. Let the function field K/F3

be as in Example 33. Then g(K) = 2 and h(K) = 16. We distinguish the
rational place P of K lying over ∞. Let the rational places P1 and P2 of K
be as in Example 33. Now F is obtained from Theorem 1 with m = 2 and
M = Q, where Q is as in Example 33. We have already shown in Example
33 that t = 8, and we obtain r = 4 by the argument in Example 1A.

Example 39. g(F ) = 115, N(F ) = 120. Let the function field K/F3

be as in Example 30. Then g(K) = 1 and h(K) = 6. We distinguish the
rational place P of K lying over ∞ and let the rational place P1 of K be
as in Example 30. Now F is obtained from Theorem 1 with m = 1 and
M = R, where R is the place of K of degree 4 lying over x2 + 1. It is clear
that r = 2, and from x2 ≡ −1 mod M and Lemma 2 we deduce that t = 4.
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[17] M. A. Ts fasman and S. G. Vl ǎdut, Algebraic-Geometric Codes, Kluwer, Dor-

drecht, 1991.
[18] G. van der Geer and M. van der Vlugt, How to construct curves over finite

fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge
Univ. Press, Cambridge, 1997, 169–189.

[19] C. P. Xing, Maximal function fields and function fields with many rational places
over finite fields of characteristic 2, preprint, 1997.

[20] C. P. Xing and H. Niederre i ter, A construction of low-discrepancy sequences
using global function fields, Acta Arith. 73 (1995), 87–102.

[21] —, —, Modules de Drinfeld et courbes algébriques ayant beaucoup de points ra-
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