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On the structure of sets with small doubling property
on the plane (I)
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Yonutz Stanchescu (Tel-Aviv)

Let K be a finite set of lattice points in a plane. We prove that if |K| is
sufficiently large and |K +K| < (4−2/s)|K|−(2s−1), then there exist s−1
parallel lines which cover K. We also obtain some more precise structure
theorems for the cases s = 3 and s = 4.

1. Introduction, notation and results. Let Rn be the n-dimen-
sional Euclidean space and Zn the additive group of integral vectors in Rn.
Given a finite set M ⊆ Rn, the number of its elements will be denoted by
|M | = m. We denote by M + N the algebraic sum of two finite sets and
2M = M + M is called the sum set of M. Let M2 be the set {2x : x ∈ M}.
The convex hull of M is denoted by conv(M). Vectors will be written in the
form (κ1, . . . , κn), where κi, 1 ≤ i ≤ n, are the coordinates of the vector.

Let G1 and G2 be commutative groups, A1 ⊆ G1, A2 ⊆ G2. We say
that a mapping φ : A1 → A2 is a homomorphism of order 2 in the sense
of Freiman, or an F2-homomorphism for short, if for all x1, x2, y1, y2 ∈ A1

(not necessarily distinct) the equation

(i) x1 + x2 = y1 + y2

implies
(ii) φ(x1) + φ(x2) = φ(y1) + φ(y2).

We call φ an F2-isomorphism if it is one-to-one and its inverse is also a
homomorphism, that is, (ii) holds if and only if (i) does.

Let M1 and M2 be finite subsets of Rn. We say that M1 is isomorphic to
M2 if there is an affine isomorphism L : Rn → Rn such that L(M1) = M2.
Obviously, M1 is then F2-isomorphic to M2.

A direct problem in set addition theory asks what can be said about
|M + M | for a given set M . Clearly
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(1.1) 2|M | − 1 ≤ |M + M | ≤ 1
2 |M |(|M |+ 1)

and if M is an arithmetic progression, then |M + M | = 2|M | − 1. The
inverse problem determines the structure of M if |M + M | is given or if
|M + M | < c0|M | with c0 a positive number.

We can easily see that if |M + M | = 2|M | − 1, then M is an arithmetic
progression. If we choose larger values for |M + M | the problem ceases to
be trivial. The fundamental theorem of G. A. Freiman [F1], p. 54, gives
the structure of finite sets M for the case |M + M | < c|M |, where c is any
given positive number. The theorem was proved using analytical methods
of number theory and a modification of the method of trigonometric sums.
An improved version of the proof is presented in [F3], and Yuri Bilu [B]
studied the case when c is a slowly growing function of |M |. I. Z. Ruzsa [R]
recently gave a new and shorter proof of the main theorem together with an
important generalization to the case of different summands K + M.

However, when the values of the constant are small, elementary methods
yield sharper results. Two cases have been studied by G. A. Freiman [F1],
pp. 11, 28.

Theorem 1.1. Let K ⊆ Z be a finite set of integers. If |K + K| =
2|K| − 1 + b where 0 ≤ b ≤ k − 3, then K is contained in an arithmetic
progression of length k + b = |K + K| − k + 1, where k = |K|.

Theorem 1.2. Let K ⊆ Z2 be a finite set which is not a subset of any
straight line. Suppose |K + K| < 10

3 |K| − 5 and k = |K| ≥ 11. Then K
is contained in a set which is isomorphic to K0 = {(0, 0), (1, 0), . . . , (l1 −
1, 0); (0, 1), . . . , (l2− 1, 1)} where l1, l2 ≥ 1 and l1 + l2 = |K +K| − 2k +3.

Using the same ideas we will prove in Section 2:

Theorem A. Let K be a finite subset of Z2. If k = |K| ≥ k0(s) is
sufficiently large and if

(1.2) |K + K| < (4− 2/s)|K| − (2s− 1) (s > 1)

then there exist s− 1 parallel lines which cover the set K.

The above constant k0(s) is effective and an examination of the proof
will show that it is of order O(s3). Example A, which ends Section 2,
shows that Theorem A cannot be improved by increasing the upper bound
(4− 2/s)k − (2s− 1) of |2K|.

In Section 3 we formulate and prove a sharpened version of Theo-
rem 1.2. We assume that K lies on two parallel lines and prove that
Theorem 1.2 is true even if we replace |2K| < 10

3 k − 5 by |2K| < 4k − 6.
This is the maximum possible value for the upper bound of |2K|.

Theorem B. Let K be a finite subset of Z2 which lies on two parallel
lines, but is not contained in a single line. Suppose |K + K| < 4|K| − 6.
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Then K is contained in a set which is isomorphic to

(1.3) K0 = {(0, 0), (1, 0), . . . , (l1 − 1, 0); (0, 1), (1, 1), . . . , (l2 − 1, 1)},

where l1, l2 ≥ 1 and l1 + l2 = |K + K| − 2k + 3.

As usual, the solution of an inverse problem allows us to obtain nontrivial
lower bounds for |K + K|, thus solving at the same time a direct additive
problem (see Theorem B∗ in Section 3). We also provide two Examples B.1
and B.2 showing that Theorem B cannot be sharpened by increasing the
upper bound for |K + K| or by reducing the quantity l1 + l2.

Moreover, as in the cases s = 2 (Theorem 1.1) and s = 3 (Theorem 1.2),
we prove in Section 4 a more precise structure theorem for s = 4:

Theorem C. Let K be a finite subset of Z2, not contained in any two
parallel lines. Suppose |K + K| < 3.5|K| − 7 and k = |K| ≥ k0. Then K is
contained in a set isomorphic to

K0 = {(0, 0), (1, 0), . . . , (l1 − 1, 0); (0, 1), (1, 1), . . . , (l2 − 1, 1);
(0, 2), (1, 2), . . . , (l3 − 1, 2)},

where l1, l2, l3 ≥ 1 and max(l1, l2, l3) ≤ 1
2 (|K + K| − 2k + 3).

The last inequality shows that if |K + K| < 3.5|K| − 7 and k ≥ k0, then

(1.4) |K + K| ≥ (2|K| − 1) + 2(max(l1, l2, l3)− 1).

As can be easily seen by considering Example C, Section 4, the lower bound
in (1.4) is best possible. Moreover, we will show that k0 = k0(4) = 1344.

2. On the structure of K ⊆ Z2 with |K+K| < (4−2/s)|K|−(2s−1).
In this section, we prove Theorem A. We need the following lemma:

Lemma 2.1. Let s > 1 be a natural number. There exists a positive
constant δ = δ(s) such that if K ⊆ Z2 is a finite set of lattice points with

|K + K| < (4− 2/s)|K| − (2s− 1),

then there exists a line ` in R2 such that

|` ∩K| ≥ δ|K|.

Lemma 2.1 is a particular case of Lemma 2.12 of [F1], p. 57, and we will
give here an independent proof which improves the value of δ(s). For a proof
of the general case, see also [B], pp. 11–17.

Before the proof of the lemma, let us notice the following three inequal-
ities. Suppose that K is decomposable into r subsets K1, . . . ,Kr which lie
on r parallel lines properly ordered (there exist real numbers t1 < . . . < tr
such that, after a coordinate change, the line containing Ki is defined by
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the equation x2 = ti). If ki = |Ki| ≥ 1 for every i = 1, . . . , r, then we can
easily prove that (see [F1], p. 25)

(2.1)
(α) |K + K| ≥ 4k − (k1 + kr)− (2r − 1),
(β) |K + K| ≥ 2k + (k1 + kr − 2)(r − 1)− 1.

Multiplying inequality (α) by r − 1 and adding it to (β) we get

(2.2) |K + K| ≥ (4− 2/r)k − (2r − 1).

Lemma 2.1 is an easy consequence of Lemma 2.2 below.

Lemma 2.2. Suppose that K ⊆ Z2 satisfies the assumption of Lemma
2.1 and let δ0(s) = 1/(4s− 4). Then either

(a) there exists a line ` such that |` ∩K| ≥ δ0(s)|K|, or
(b) there exists a proper subset K0 ⊆ K such that

0 < |K| − |K0| ≤ 2s− 2, |K0 + K0| ≤ |K + K| − 4(|K| − |K0|).

P r o o f. Let D = conv(K) be the convex hull of K. Then D is a polygon
whose vertices are all contained in K. We consider an arbitrary vertex V1

together with two edges of the boundary of D which intersect at V1 and two
additional points V2 and V3 on these edges. Here we choose V2, V3 ∈ K so
that there is no other point of K between V1 and V2 or between V1 and V3.

We will examine four cases and prove that (a) or (b) holds.

Case A: The set K does not lie in the lattice generated by the points
V1, V2, V3. We show that (b) holds. There is a vector v ∈ K,

v = α(V2 − V1) + β(V3 − V1),

for which at least one of the coordinates α and β is not a positive integer.
Select v in such a way that there is no other vector v′ with coordinates
satisfying α′ ≤ α and β′ ≤ β. Then 2V1, V1 + V2, V1 + V3 and V1 + v do not
belong to the set 2(K \ {V1}). Therefore

(2.3) |2(K\{V1})| ≤ |2K| − 4.

If the set K lies in the lattice generated by V1, V2, V3 it can be mapped,
by a linear transformation, onto an isomorphic set which lies in the first
quadrant where the points have nonnegative integer coordinates. We may
suppose that V1 = (0, 0), V2 = (1, 0) and V3 = (0, 1).

Case B: On the line {x2 = 0} defined by (0, 0) and (1, 0) we have at
least 2s−1 points of K. We show that K lies on no more than s−1 parallel
lines.

Suppose that K is decomposable into r subsets K1, . . . ,Kr which lie on
r lines, parallel to the axis {x2 = 0}.
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(i) If s ≤ r ≤ k/s it follows from (2.2) that

|2K| ≥ (4− 2/r)k − (2r − 1) ≥ (4− 2/s)k − (2s− 1),

which contradicts (1.2).
(ii) If r > k/s we deduce from (2.1) that

|2K| ≥ 2k + (k1 + kr − 2)(r − 1)− 1 ≥ 2k + (2s− 2)(k/s− 1)− 1

= 4k − 2
k

s
− 2s + 1 = (4− 2/s)k − (2s− 1),

which contradicts (1.2). Finally, we conclude that K lies on no more than
s−1 lines parallel to {x2 = 0}. In this case, (a) is proved with δ0 = 1/(s−1).

Case C: On the line {x2 = 0} we have no more than 2s − 2 points of
K and these points are not an arithmetic progression. Suppose that (c, 0)
and (d, 1) are points of K with maximal abscissa on the lines {x2 = 0}
and {x2 = 1}, respectively. Let [c, d) be the semi-line defined by these two
points. Let H be the convex body defined by [c, d) and the two semi-axes
{x1 = 0}, {x2 = 0}, that is, the region defined by the inequalities

x1 ≥ 0, x2 ≥ 0, x1 ≤ c + (d− c)x2.

We will use the notation

K1 = K ∩ {x2 = 0}, K2 = K ∩ {x2 = 1},
k1 = |K1| ≤ 2s− 2, k2 = |K2|.

Since K1 is not an arithmetic progression, we thus have c ≥ 3, |K1| ≥ 3,
|2K1| ≥ 2k1 and |K1 +K2| ≥ k1 +k2. There are two cases to consider: d > c
or d ≤ c.

(i) If d > c and k2 < k1, then the removal of K1 from K reduces the
cardinality of 2K by at least 4k1 since

(2.4) |2(K\K1)| ≤ |2K|−|2K1|−|K1+(0, 1)|−|K1+(d, 1)| ≤ |2K|−4k1.

If k2 ≥ k1, then the removal of K1 from K reduces the cardinality of 2K
by at least 4k1 since

|2(K\K1)| ≤ |2K| − |2K1| − |K1 + K2| ≤ |2K| − (2k1 + k1 + k2)(2.5)
≤ |2K| − 4k1.

We conclude that (b) holds if d > c.

(ii) If d ≤ c and K is not included in H, then the removal of (c, 0) reduces
the cardinality of 2K by at least 4:

(2.6) |2(K\(c, 0))| ≤ |2K| − 4.

(Indeed, we use inequality (2.3) with V1 = (c, 0).)
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If d ≤ c and K is included in H, then we apply Freiman’s Theorem 1.1.
First, we suppose d ≥ 3, otherwise it follows that

(2.7) K is covered by four lines parallel to {x2 = 0}.
(Indeed, if 0 ≤ d ≤ 1, then K is covered by {x2 = 0} and {x2 = 1}. If d = 2,
then K is covered by {x2 = 0}, {x2 = 1}, {x2 = 2} and {x2 = 3}. Note
that we used d ≤ 2 < c.)

If c = maxK1 ≤ 2k1 − 3, then using the inequality k1 ≤ 2s − 2 we get
c ≤ 4s− 7; thus

(2.8) K lies on no more than 4s− 6 lines parallel to {x1 = 0}.
If c = maxK1 > 2k1−3, Freiman’s Theorem implies that |2K1| ≥ 3k1−3.

If k2 ≥ 3, then the removal of K1 from K reduces the cardinality of 2K by
at least 4k1, since

|2(K\K1)| ≤ |2K| − |2K1| − |K1 + K2|(2.9)
≤ |2K| − (3k1 − 3)− (k1 + 3) ≤ |2K| − 4k1.

If on {x2 = 1} we have only two points (0, 1) and (d, 1), then in the “general”
case we still obtain |K1 + K2| ≥ k1 + 3. More exactly, if K1 is not equal
to L = {(0, 0), (d, 0), (2d, 0), . . .} ∪ {(1, 0), (1 + d, 0), (1 + 2d, 0), . . .}, then

|K1 + K2| ≥ k1 + 3

and (as above) the removal of K1 from K reduces the cardinality of 2K by
at least 4k1; that is,

(2.10) |2(K\K1)| ≤ |2K| − 4k1.

If K1 = L, that is, K1 is the union of two arithmetic progressions modulo
d, with d ≥ 3, then the removal of (0, 0) from K reduces the cardinality of
2K by at least 4: the points (0, 0), (0, 1), (1, 0), (d, 0) are in 2K but not in
2(K\(0, 0)); therefore

(2.11) |2(K\(0, 0))| ≤ |2K| − 4.

Before examining case D, let us make one further remark. Suppose that
k2 = 2 and K does not lie on {x2 = 0} ∪ {x2 = 1}. We show that the
removal of K1 from K reduces the cardinality of 2K by at least 4k1 and
therefore (2.10) is again true. Indeed, if t > 1 is the smallest number such
that K3 = K ∩ {x2 = t} satisfies |K3| = k3 ≥ 1, then

|2K| ≥ |2(K \K1)|+ |K1 + K1|+ |K1 + K2|+ (|K1 + K3| − |2K2|)
≥ |2(K \K1)|+ (3k1 − 3) + (k1 + 2) + (k1 + k3 − 3)
≥ |2(K \K1)|+ 4k1 + (k1 + k3 − 4) ≥ |2(K \K1)|+ 4k1.

Case D: The points of K1 = K ∩ {x2 = 0} form an arithmetic pro-
gression with no more than 2s − 2 elements. Let K1 = K ∩ {x2 = 0} =
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{(0, 0), (1, 0), . . . , (c − 1, 0)} with c ≤ 2s − 2 and let (d, 1) be the point of
K2 = K ∩ {x2 = 1} with maximal abscissa on the line {x2 = 1}. As in case
C, we define the convex set H by the inequalities

x1 ≥ 0, x2 ≥ 0, x1 ≤ (c− 1) + (d− c + 1)x2.

If K is not included in H, then the removal of (c− 1, 0) from K reduces
the cardinality of 2K by at least 4:

(2.12) |2(K\(c− 1, 0))| ≤ |2K| − 4.

If K is included in H and if d ≤ c− 1, then

(2.13) K lies on no more than 2s− 2 lines parallel to {x1 = 0}.

If K ⊆ H, d ≥ c + 1 and K2 6= {(0, 1), (d, 1)}, then |K1 + K2| ≥ 2k1 + 1.
Thus, the removal of K1 from K reduces the cardinality of 2K by at least
4k1. Indeed,

|2(K\K1)| ≤ |2K| − |2K1| − |K1 + K2|(2.14)
≤ |2K| − (2k1 − 1)− (2k1 + 1) ≤ |2K| − 4k1.

If K ⊆ H, d ≥ c + 1 and K2 = {(0, 1), (d, 1)}, then the removal
of (0, 0) from K reduces the cardinality of 2K by at least 4: the points
(0, 0), (0, 1), (1, 0), (d, 1) are all in 2K but not in 2(K\(0, 0)). Therefore

(2.15) |2(K\(0, 0))| ≤ |2K| − 4.

If K ⊆ H and d = c, then the set K lies in the convex region defined by
the inequalities

x1 ≥ 0, x2 ≥ 0, x2 ≥ x1 − (c− 1).

Moreover, c is bounded in terms of s:

1 ≤ c ≤ 2s− 2.

We may suppose that we have the same situation on the lines {x1 = 0},
{x1 = 1}, that is, K lies in the convex region defined by the inequalities

x2 ≥ 0, x1 ≥ 0, x1 ≥ x2 − (e− 1),

with 1 ≤ e ≤ 2s− 2. Note that (c− 1) + (e− 1) + 1 ≤ 4s− 5. We conclude
that

(2.16) K lies on no more than 4s− 5 lines parallel to {x2 = x1}.

We may now complete the proof of Lemma 2.2 without difficulty. As
in case B, if one of the cases (2.7), (2.8), (2.13), (2.16) holds, then we
can easily find the number δ0 = δ0(s) claimed by (a). Actually, we may
choose δ0 = δ0(s) = 1/(4s− 4). Otherwise we apply (2.3)–(2.6), (2.9)–
(2.12), (2.14), (2.15) and we prove (b).
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P r o o f o f L e m m a 2.1. Let us say that the set K is good if it satisfies
condition (a). Let K ′ be a minimal subset of K satisfying

(2.17) |K ′ + K ′| ≤ |K + K| − 4(|K| − |K ′|)
and

(2.18) |K ′| ≥ k

2s
.

In order to prove Lemma 2.1 it is enough to show that K ′ is good. Suppose
that K ′ is not good. Note that K ′ satisfies the small doubling property
(1.2). By applying (a) and (b) there exists K ′′ ⊆ K ′ satisfying

0 < |K ′| − |K ′′| ≤ 2s− 2,(2.19)
|K ′′ + K ′′| ≤ |K ′ + K ′| − 4(|K ′| − |K ′′|).(2.20)

Then by (2.17) and (2.20) we obtain

(2.21) |K ′′ + K ′′| ≤ |K + K| − 4(|K| − |K ′′|).
Therefore we should have

(2.22) |K ′′| < k

2s
,

otherwise there would be a contradiction to the minimal choice of K ′. Now
(2.18), (2.19) and (2.22) yield that

(2.23)
k

2s
≤ |K ′| < k

2s
+ 2s− 2.

Combining this with (2.17) we get

|K ′ + K ′| <
(

4− 2
s

)
k − (2s− 1)− 4k + 4

k

2s
+ 4(2s− 2) = 6s− 7,

which is a contradiction if k > s(6s− 6). (Indeed, |K ′ + K ′| ≥ 2|K ′| − 1 ≥
k/s− 1 > 6s− 7.)

We have proved that there is a good subset K ′ ⊆ K satisfying

|K ′| ≥ k

2s
.

Then for some line ` we have

|` ∩K ′| ≥ δ0(s)|K ′|,
from which

|` ∩K| ≥ δ0(s)
2s

|K| = δ(s)|K| with δ(s) =
1
2s

δ0(s).

Thus the assertion of Lemma 2.1 is proved for |K| > s(6s− s). Now assume
that |K| ≤ s(6s − 6). For every line `′ that contains at least two points of
K we may write

|`′ ∩K| ≥ 2 ≥ δ(s)|K|
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since |K| ≤ s(6s− 6) ≤ 4s(4s− 4) = 2/δ(s). The proof of Lemma 2.1 is now
complete.

Remark. As we see from the proof of Lemma 2.1, we may choose the
following value for the constant δ(s):

(2.24) δ = δ(s) =
1

2s(4s− 4)
� 1

s2
.

Proof of Theorem A. By Lemma 2.1, there exists a line ` in R2 such that
|` ∩K| ≥ δk, where δ = δ(s) is given by (2.24). Let us cover K by r lines
parallel to `. Using the inequality |K + K| < (4− 2/s)k we get

rδk ≤ r|` ∩K| ≤ |K + K| ≤ 4s− 2
s

k

and so

r ≤ 4s− 2
sδ

.

If we suppose that k ≥ (4s− 2)/δ, then we get r ≤ k/s. But for s ≤ r ≤ k/s,
by using (2.2), we obtain

|K + K| ≥ (4− 2/r)k − (2r − 1) ≥ (4− 2/s)k − (2s− 1),

which contradicts (1.2).
We deduce that r ≤ s − 1 and therefore there exist s − 1 parallel lines

which cover the set K. This completes the proof.

Remark. In Theorem A, we may take the following value for k0(s):

(2.25) k0(s) =
4s− 2
δ(s)

= 16(s− 1)s(2s− 1) = O(s3).

We end this section by giving an example which shows that Theorem A
cannot be improved by increasing the upper bound of |2K|.

Example A. Put K = K1 ∪ . . . ∪Ks with Ki = {(t, i) : t = 1, . . . , x}. It
is clear that if x > s, then K does not lie on s− 1 parallel lines,

k = |K| = sx and |2K| = (2s− 1)(2x− 1) = (4− 2/s)|K| − (2s− 1).

3. The precise structure of K ⊆ Z2 for s = 3. We first prove
Theorem B. We assume that K lies on the lines {x2 = 0} and {x2 = 1}. Let
the set of abscissae for x2 = 0 and x2 = 1 be equal to {a0, . . . , am−1} and
{b0, . . . , bn−1}, respectively, m + n = k. After a suitable affine isomorphism
we may assume that a0 = 0, b0 = am−1 and the greatest common divisor of
{a0, . . . , am−1, b1, . . . , bn−1} is equal to 1. We project the set K onto the line
{x2 = 0} and parallel to the line defined by the points (b0, 1) and (am−1, 0).
We recall Freiman’s definition [F1], p. 27, for the particular case of a set of
lattice points. For some fixed κ, let r be the number of points in K having
the first coordinate κ, say (κ, u1), . . . , (κ, ur). Instead of these r points we
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choose the points (κ, 0), (κ, 1), . . . , (κ, r − 1). This process is performed for
all fixed κ with r ≥ 1. The set M so obtained is called the projection of the
set K onto the line {x2 = 0}.

In our case, we obtain a set M = M1 ∪M2 where M1 is such that the
ordinates of its points are all zero, while the set of abscissae is

{a0, . . . , am−1; b1, . . . , bn−1}

and the set M2 consists of the single point (b0, 1). Using Theorem 1.16 of
[F1], p. 27, we get

|2K| ≥ |2M | = |2M1|+ (k − 1) + 1 = |2M1|+ k,

and so
|2M1| ≤ |2K| − k < 3k − 6 = 3|M1| − 3.

Upon recalling that the greatest common divisor of M1 is one, Theorem 1.1
therefore yields the conclusion

bn−1 − a0 ≤ |2M1| − k + 1 ≤ |2K| − 2k + 1.

The proof of Theorem B is now complete.

For a nonempty finite set X = {x1 < . . . < xn} ⊆ Z we denote by d(X)
the greatest common divisor of {xi − x1 : 1 ≤ i ≤ n}, by `(X) = xn − x1

the length of X and by hX = `(X)−|X|+1 the number of holes in X. The
assertion of Theorem B may be reworded as follows:

Theorem B∗. Let K be a finite subset of Z2 which lies on the lines
{x2 = 0} and {x2 = 1}. Let the sets of abscissae for x2 = 0 and x2 = 1 be
A and B, respectively.

(a) If `(A) + `(B) ≤ 2|K| − 5, then (d(A), d(B)) = 1 and

(3.1) |K + K| ≥ 3|K| − 3 + hA + hB = 2|K| − 1 + `(A) + `(B).

(b) If `(A) + `(B) ≥ 2|K| − 4 and (d(A), d(B)) = 1, then

(3.2) |K + K| ≥ 4|K| − 6.

P r o o f. Note first that d = (d(A), d(B)) ≥ 2 implies `(A) + `(B) ≥
d(|A| − 1) + d(|B| − 1) ≥ 2(|A|+ |B| − 2) = 2|K| − 4.

(a) We assume `(A) + `(B) ≤ 2|K| − 5.

If |2K| ≥ 4|K|−6, then inequality (3.1) is true because 2|K|−1+`(A)+
`(B) ≤ 4|K| − 6 ≤ |2K|.

Suppose |2K| < 4|K| − 6. By using (d(A), d(B)) = 1 and Theorem B we
get

|2K| = l1+l2+2k−3 ≥ (`(A)+1)+(`(B)+1)+2k−3 = 2|K|−1+`(A)+`(B).
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(b) We assume `(A) + `(B) ≥ 2|K| − 4.
Suppose |2K| < 4|K| − 6. By using (d(A), d(B)) = 1 and Theorem B we

obtain
|2K| − 2k + 3 = l1 + l2 ≥ `(A) + 1 + `(B) + 1,

and so `(A)+`(B) ≤ |2K|−2k+1 < 2k−5, which contradicts the assumption
of (b).

The proof of Theorem B∗ is complete.

We now present some examples:

Example B.1. An investigation of the set

(3.3) K ′
0 = {(0, 0), (1, 0), . . . , (m− 2, 0), (x, 0); (0, 1), (1, 1), . . . , (n− 1, 1)},

where x > 2 max{m,n}, gives |K ′
0 + K ′

0| = 4|K ′
0| − 6 and shows that in-

equality (3.2) cannot be improved.

Example B.2. The set

(3.4) K ′′
0 = {(0, 0), (1, 0), . . . , (m− 3, 0), (x, 0); (0, 1)},

where m− 3 < x < 2m− 6, gives hA = x−m + 2, hB = 0 and

|K ′′
0 + K ′′

0 | = x + 2m− 1 = 3|K ′′
0 | − 3 + hA + hB .

This shows that inequality (3.1) is sharp.

4. On the precise structure of K ⊆ Z2 for s = 4. In this section
we prove Theorem C. Assume k0 = k0(4) = 1344. Using (2.25), Theorem A
and inequality (2.2) we get

(4.1)
10
3

k − 5 ≤ |K + K| < 3.5k − 7,

and also that K is decomposable into three sets A,B, C which lie on three
parallel lines {x2 = u}, {x2 = v}, {x2 = w}, respectively, where u < v < w.

If 2v 6= u + w then 2B ∩ (A+ C) = ∅. Therefore

|K + K| ≥ |2A|+ |A+ B|+ |2B|+ |B + C|+ |2C|+ |A+ C| ≥ 4|K| − 6,

which contradicts (4.1). Hence, we may assume that K lies on the lines:
{x2 = 0}, {x2 = 1}, {x2 = 2}. Let the sets of abscissae of K for x2 = 0,
x2 = 1, x3 = 2 be A, B, C, respectively.

If B2 ∩ (A+ C) = ∅, then

|K + K| ≥ |2A|+ |A + B|+ (|A + C|+ |B2|) + |B + C|+ |2C|
= 4|A|+ 3|B|+ 4|C| − 5.

But

|K + K| ≥ |2A|+ |A + B|+ |2B|+ |B + C|+ |2C| = 3|A|+ 4|B|+ 3|C| − 5.
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By taking the arithmetic mean we get

|K + K| ≥ 3.5|K| − 5,

which contradicts (4.1).
Therefore we suppose that B2 ∩ (A + C) is a nonempty set. After a

suitable affine isomorphism of R2, we find t ∈ Z such that

(4.2) (t, 0) ∈ A, (t, 1) ∈ B, (t, 2) ∈ C.
We project the set K onto the line {x2 = 0} (see Section 3 for the defini-

tion). The projection M is decomposable into three subsets M1,M2,M3,
which lie on three parallel lines {x2 = 0}, {x2 = 1}, {x2 = 2}. Let the sets
of abscissae of M for x2 = 0, x2 = 1, x2 = 2, respectively, be equal to

M1 = {a0, . . . , am−1} ⊇ M2 = {b0, . . . , bn−1} ⊇ M3 = {c0, . . . , cp−1}.
Here m + n + p = k and p ≥ 1, by (4.2). Without loss of generality, we can
assume that the greatest common divisor of {a1 − a0, . . . , am−1 − a0} is 1,
and a0 = 0. Let us define l1, l2, l3 by

l1 = 1 + max(A), l2 = 1 + max(B), l3 = 1 + max(C).

Theorem 1.16 of [F1], p. 27, states that

(4.3) |2M | ≤ |2K|.
Moreover, it is obvious that p = |A ∩B ∩ C|,

A ∪B ∪ C = {a0, . . . , am},
min(A ∪B ∪ C) = a0 = 0, max(A ∪B ∪ C) = am−1 = max(l1, l2, l3)− 1

and K ⊆ K0, where

K0 = {(i, 0) : i = 0, . . . , l1 − 1} ∪ {(j, 1) : j = 0, . . . , l2 − 1}
∪ {(s, 2) : s = 0, . . . , l3 − 1}.

Therefore, max(l1, l2, l3) − 1 = am−1 − a0 is exactly the length of M1 =
M ∩ {x2 = 0}.

We now estimate the cardinality of M1 + M2, using the following result
from [F2].

Theorem 4.1. Let M and N be finite sets of nonnegative integers, 0 ∈
M , 0 ∈ N .

(a) If max(`(M), `(N)) = `(M) ≤ |M | + |N | − 3, then |M + N | ≥
`(M) + |N |.

(b) If max(`(M), `(N)) ≥ |M |+ |N | − 2 and d(M ∪N) = 1, then

|M + N | ≥ |M |+ |N | − 3 + min(|M |, |N |).
This is a generalization of Theorem 1.1 to the case of distinct summands.

For some improvements of Theorem 4.1 see [L-S] and [S].
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If am−1 ≥ m + n− 2, then |M1 + M2| ≥ m + n− 3 + n = m + 2n− 3. It
follows that

|2K| ≥ |2M | ≥ |2M1|+ |M1 + M2|+ |M1 + M3|+ |M2 + M3|+ |2M3|
≥ (2m− 1) + (m + 2n− 3) + (m + p− 1) + (n + p− 1) + (2p− 1)
= 4m + 3n + 4p− 7 ≥ 3.5k − 7,

since m ≥ n, which contradicts (4.1).
Thus, we assume that am−1 ≤ m + n − 3; it follows that |M1 + M2| ≥

am−1 + n, and so we obtain

|2K| ≥ |2M |(4.4)
≥ |2M1|+ (am−1 + n) + (m + p− 1) + (n + p− 1) + (2p− 1)
= |2M1|+ am−1 + m + 2n + 4p− 3.

Suppose |2M1| ≥ 3m− 3. Using (4.4) and am−1 ≥ m− 1 we obtain |2K| ≥
5m + 2n + 4p− 7 ≥ 3.5|K| − 7, which contradicts (4.1). We conclude that

|2M1| < 3m− 3.

However, the greatest common divisor of M1 is one and therefore by Theo-
rem 1.1 we obtain

(4.5) 1 + am−1 ≤ |2M1| −m + 1 ≤ |2K| − (2m + 2n + 4p + am−1 − 3) + 1.

This yields the conclusion

`(M1) = am−1 ≤ 1
2 |2K| − (m + n + 2p) + 1.5 = 1

2 |2K| − k − p + 1.5
≤ 1

2 |2K| − k + 0.5,

that is,

|2K| ≥ (2k − 1) + 2`(M1) + 2(p− 1) = (4k − 5) + 2hM1 − 2n(4.6)
≥ (2k − 1) + 2`(M1) = (2k − 1) + 2[max(l1, l2, l3)− 1].(4.7)

The proof of Theorem C is now complete.

We end this section by giving a direct version of Theorem C. We use the
same notation as above.

First situation. In the proof of Theorem C we noticed that if K does not
lie on three equidistant lines, or if B2∩ (A+C) = ∅, then |2K| ≥ 3.5|K|−7.

Second situation. Suppose that K lies on the lines {x2 = 0}, {x2 = 1},
{x2 = 2}, and B2 ∩ (A + C) is a nonempty set. After a suitable affine
isomorphism of R2, we assume that there are at least three points in K with
the same abscissa. Denote by L = L(K) = `(A∪B∪C) the length of K and
by D = D(K) = d(A∪B ∪C) the greatest common divisor of K. Theorem
C may be reworded as follows:
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Theorem C∗. Let K be a finite subset of Z2 which lies on the lines
{x2 = 0}, {x2 = 1} and {x2 = 2}. Let the sets of abscissae for x2 = 0,
x2 = 1 and x2 = 2 be A,B and C, respectively. Suppose that 0 ∈ A∩B ∩C.

(a) If L/D < 3
4k − 3, then

(4.8) |K + K| ≥ (2|K| − 1) + 2L/D.

(b) If L/D ≥ 3
4k − 3, then

(4.9) |K + K| ≥ 3.5|K| − 7.

P r o o f. (a) We distinguish two cases. If |2K| ≥ 3.5k−7, then inequality
(4.8) is a consequence of L/D < 3

4k − 3.
Suppose now that

(4.10) |2K| < 3.5k − 7.

Note that 0 ∈ A ∩ B ∩ C implies A ∪ B ∪ C ⊆ DZ. Put K ′ = {(x/D, y) :
(x, y) ∈ K} and denote by M ′ the projection of K ′ on the line {x2 = 0}.
The set of abscissae of M ′∩{x2 = 0} has length L/D. Therefore, inequality
(4.7) gives

(4.11) |2K| = |2K ′| ≥ (2|K ′| − 1) + 2L/D = (2|K| − 1) + 2L/D,

and inequality (4.8) is proved.
(b) Assume L/D ≥ 3

4k − 3 and |2K| < 3.5k − 7. Apply Theorem C
to the set K ′ defined above. We find that (4.11) is true. Thus, L/D ≤
1
2 (|2K| − 2k + 1) < 1

2 (3.5k − 7 − 2k + 1) = 3
4k − 3, which contradicts the

assumption of (b). The proof of Theorem C∗ is complete.

Example A, for s = 4, shows that Theorem C cannot be improved by
increasing the upper bound of |2K|.

Example C. An investigation of the set

(4.12) K0 = {(0, 0), (1, 0), . . . , (2l − 2, 0), (x, 0);
(0, 1), (1, 1), . . . , (l − 2, 1); (0, 2)}

where 2l − 1 ≤ x ≤ 3l − 4, gives

l1 = x + 1, l2 = l − 1, l3 = 1, |K0| = 3l, max(l1, l2, l3) = x + 1

and

L = L(K0) = x, D = D(K0) = 1.

It is easy to verify that if 2l−1 ≤ x ≤ 3l−4, then |2K1| = x+2l, |K1+K2| =
x+ l−1, |(K1 +K3)∪2K2| = |K1 +K3| = 2l, |K2 +K3| = l−1, |2K3| = 1.
Thus

|2K0| = (2|K0| − 1) + 2x = (2|K0| − 1) + 2L/D.
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Therefore, inequality (4.8) cannot be improved. Moreover, if x = 3
4 |K0|−3 =

9
4 l − 3, then

|2K0| = 3.5|K0| − 7.

Thus, inequality (4.9) is also sharp.
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