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On the distribution of primitive roots mod p
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Cristian Cobeli (Bucureşti and Rochester, N.Y.) and
Alexandru Zaharescu (Bucureşti and Cambridge, Mass.)

1. Introduction. There are many sequences of interest in number
theory which are believed to have a Poisson distribution, but in very few
cases one is actually able to prove the relevant conjectures. It is our purpose
here to expose such a case.

Let p be a large prime number and consider the set of primitive roots
mod p with representatives 1 < γ1 < . . . < γϕ(p−1) < p.

In this paper we study the distribution of the number of γ’s in the interval
(n, n + t], 1 ≤ n ≤ p, where t ∼ λp/ϕ(p − 1) and λ is a positive constant.
We show that if ϕ(p − 1)/p is small then the distribution is approximately
that of a Poisson variable with parameter λ.

Next we consider the proportion of differences γi+1 − γi which are at
least λ times greater than the average, that is,

(1) gp(λ) =
#{i : 1 ≤ i ≤ ϕ(p− 1), γi+1 − γi ≥ λp/ϕ(p− 1)}

ϕ(p− 1)
,

where γϕ(p−1)+1 = γ1 + p. A probabilistic reasoning leads one to expect
that if ϕ(p− 1)/p is small then gp(λ) is close to e−λ.

We prove that this is true and moreover, for any sequence {pn}n≥1 of
primes with ϕ(pn − 1)/pn → 0, the sequence {gpn(λ)}n≥1 of functions con-
verges to e−λ uniformly on compact subsets of [0,∞).

Since gp(λ) is a step function the condition that ϕ(p − 1)/p be small is
obviously indispensable in the above statements.

It is interesting to see these results in perspective with the similar prob-
lems for quadratic residues (nonresidues). Because the average distance
between two quadratic residues is 2, the analogue of gp(λ), which is also a
step function, is never close to e−λ.

To achieve our goal in Section 2 we estimate the number of r-tuples
of primitive roots. This is enough to obtain the Poisson distribution in
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Section 3. An argument inspired from sieve theory is then employed to
settle the problem of convergence of gp(λ).

Finally, we mention that all the results we prove refer to the primitive
roots in intervals of length greater than p1/2+δ, for any fixed δ > 0. It
would be interesting to know if one can obtain the same results for shorter
intervals.

2. r-tuples of primitive roots. In what follows p will be a prime
number and I = {M + 1, . . . ,M + N} a subset of {1, . . . , p}.

For H = {h1, . . . , hr} we denote by N (H) = N (H; p, I) the number of
n’s, n ∈ I, for which all the components of the r-tuple (n + h1, . . . , n + hr)
are primitive roots mod p.

More generally, for two disjoint sets A, B of integers we define N (A,B) =
N (A,B; p, I) the number of n’s, n ∈ I, for which n + a is a primitive root
for any a ∈ A, and n + b is not a primitive root for any b ∈ B. Thus
N (H) = N (H, ∅). For p large and A,B two sets of integers disjoint mod p,
it is reasonable to expect that N (A,B) is about |I|(ϕ(p−1)/p)|A|(1−ϕ(p−
1)/p)|B|. This is confirmed by Theorem 1 below.

The proof goes via counting r-tuples of primitive roots. At this point
we follow the approach of Johnsen who investigated this problem in [5]. In
order to keep the presentation simple we give only the version which will be
needed in what follows. At the same time, we make the necessary changes
to obtain the same results in shorter intervals.

Let H = {h1, . . . , hr} be a set of r ≥ 1 integers, and χ1, . . . , χr Dirichlet
characters mod p. Define

S(χ1, . . . , χr;H, I) =
∑
n∈I

χ1(n + h1) . . . χr(n + hr).

An estimation for S(χ1, . . . , χr;H, I) is given by the next lemma which may
be regarded as a generalized version of the Pólya–Vinogradov inequality.

Lemma 1. Let H = {h1, . . . , hr} be a set of distinct integers mod p and
r ≥ 1 Dirichlet characters χ1, . . . , χr not all principal. Then

|S(χ1, . . . , χr;H, I)| ≤ 2r
√

p log p.

P r o o f. Clearly we may assume that p ≥ 7 and all characters are non-
principal. To have S = S(χ1, . . . , χr;H, I) as a complete sum over all
n mod p we write it in terms of Gauss sums:

S =
p∑

n=1

χ1(n + h1) . . . χr(n + hr)
∑
m∈I

[
1
p

p∑
k=1

e

(
k

m− n

p

)]

=
1
p

p∑
k=1

∑
m∈I

e

(
km

p

) p∑
n=1

χ1(n + h1) . . . χr(n + hr)e
(
−kn

p

)
.
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Isolating the contribution of the terms in which k = p we have

S =
N

p

p∑
n=1

χ1(n + h1) . . . χr(n + hr)(2)

+
1
p

p−1∑
k=1

∑
m∈I

e

(
km

p

) p∑
n=1

χ1(n + h1) . . . χr(n + hr)e
(
−kn

p

)
.

A bound for the first sum is given by the following inequality (see Johnsen
[5, Lemma 1]):∣∣∣ p∑

n=1

χ1(n + h1) . . . χr(n + hr)
∣∣∣ < (r − 1)

√
p + 1.

In the other term the first inner sum is a geometric progression and can be
calculated explicitly:∑

m∈I
e

(
km

p

)
=

e
(
k M

p

)
− e

(
k M+N+1

p

)
e
(

k
p

)
− 1

.

Here the numerator has modulus at most 2, while the modulus of the de-
nominator is 2|sin(kπ/p)|. Hence∣∣∣∣ ∑

m∈I
e

(
km

p

)∣∣∣∣ ≤ ∣∣∣∣sin πk

p

∣∣∣∣−1

≤
(

2
∥∥∥∥k

p

∥∥∥∥)−1

where ‖ · ‖ is the distance to the nearest integer.
To bound the most inner sum in the second line of (2) let χ be a generator

of the group of Dirichlet characters mod p. Then χ1(n+h1) . . . χr(n+hr) =
χ(R(n)), where R(n) =

∏r
j=1(n + hj)αj , and for any j1, . . . , jr, χj = χαj .

Then Weil’s estimate (see [8]) gives∣∣∣∣ p∑
n=1

χ1(n + h1) . . . χr(n + hr)e
(
−kn

p

)∣∣∣∣ =
∣∣∣∣ p∑

n=1

χ(R(n))e
(
−kn

p

)∣∣∣∣ ≤ r
√

p.

On combining all these, we deduce

|S(χ1, . . . , χr;H, I)| ≤ N

p
[(r − 1)

√
p + 1] +

1
p

p−1∑
k=1

1
2‖k/p‖

r
√

p

≤ rN
√

p
+ r

√
p

(p−1)/2∑
k=1

1
k
≤ 2r

√
p log p,

which gives the stated result.

Now we introduce the following characteristic function:

(3) δ(n) =
{ 1 if n is a primitive root mod p,

0 otherwise.
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Similarly, for any integer k, we define

(4) δk(n) =
{ 1 if n is a k-power mod p,

0 otherwise.
Obviously, for any n mod p, δk(n) = δ(k,p−1)(n), where (k, p − 1) is the
greatest common divisor of k and p− 1.

Since δk(n) = 1 is equivalent with k | p−1
ord n and∑

k|n

µ(k) =
{

1 if n = 1,
0 otherwise,

it follows that

(5) δ(n) =
∑

k|p−1

µ(k)δk(n).

On the other hand, if k | p− 1 then there are exactly k Dirichlet characters
mod p with χk = χ0, where χ0 is the principal character. This implies that

δk(n) =
1
k

∑
χk=χ0

χ(n).

Inserting this on the right side of (5) we obtain

(6) δ(n) =
∑

k|p−1

µ(k)
k

∑
χk=χ0

χ(n).

Now we prove the following:

Theorem 1. Let A, B be two sets of integers distinct mod p. Then∣∣∣∣N (A,B)− |I|
(

ϕ(p− 1)
p

)|A|(
1− ϕ(p− 1)

p

)|B|∣∣∣∣
≤ 2|B|+1|A ∪ B|√p(log p)(σ0(p− 1))|A∪B|.

Here σ0(p− 1) is the number of divisors of p− 1.

P r o o f. We begin with the case B = ∅. Then A is not empty. Set
s = |A|. By (6) we have

N (A) =
∑
n∈I

∏
a∈A

δ(n + a) =
∑
n∈I

∏
a∈A

[ ∑
k|p−1

µ(k)
k

∑
χk=χ0

χ(n + a)
]
.

Inverting the order of summation, the above is

N (A) =
∑

k1|p−1

. . .
∑

ks|p−1

µ(k1) . . . µ(ks)
k1 . . . ks

×
∑

χ
k1
1 =χ0

. . .
∑

χks
s =χ0

S(χ1, . . . , χs;A, I).
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Here the terms with χj = χ0 for j = 1, . . . , s have the main contribution.
This is equal to

N
∑

k1|p−1

µ(k1)
k1

. . .
∑

ks|p−1

µ(ks)
ks

= N

(
ϕ(p− 1)

p− 1

)s

= N

(
ϕ(p− 1)

p

)s[
1 + O

(
s

p

)]
.

Since all the remaining terms contain at least one nonprincipal character we
can apply Lemma 1 to estimate them. The absolute value of their sum is

≤
∑

k1|p−1

. . .
∑

ks|p−1

1
k1 . . . ks

∑
χ

k1
1 =χ0

. . .
∑

χks
s =χ0

2s
√

p log p

= 2s
√

p(log p)
∑

k1|p−1

. . .
∑

ks|p−1

1
k1 . . . ks

k1 . . . ks

= 2s
√

p(log p)(σ0(p− 1))s.

This concludes the proof in the case B = ∅.
Now we take a general B. We write N (A,B) using the characteristic

function δ(n) and change the order of summation to obtain

N (A,B) =
∑
n∈I

∏
a∈A

δ(n + a)
∏
b∈B

[1− δ(n + b)](7)

=
∑
n∈I

∏
a∈A

δ(n + a)
∑
C⊂B

(−1)|C|
∏
c∈C

δ(n + c)

=
∑
C⊂B

(−1)|C|
∑
n∈I

∏
d∈A∪C

δ(n + d) =
∑
C⊂B

(−1)|C|N (A ∪ C).

From the first part of the proof it follows that

N (A ∪ C) = N

(
ϕ(p− 1)

p

)|A∪C|

+ 2θC |A ∪ C|√p(log p)(σ0(p− 1))|A∪C|,

where θC ’s are some real numbers with |θC | ≤ 1. The theorem follows by
inserting this in (7).

Let us remark that in Theorem 1 the dependence is only on the length of
I and not on its position in [1, p]. Although we expect Theorems 2, 3 and 4
below to be true for intervals as short as pδ, for any constant δ > 0, in order
to obtain nontrivial results, from now on we will consider only intervals I
with lengths greater than p1/2+δ.

We note in passing that one has asymptotical results for the number of
primitive roots in shorter intervals I of length > p1/4+δ (see Burgess [1]).
The same phenomenon appears more generally in the case of r-tuples of
primitive roots but it seems to vanish when r goes to infinity. This explains
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why we are not able to use Burgess’ ideas to improve on the exponent 1/2
for |I| in our results.

For our purpose it is also convenient to express Theorem 1 in a different
form transferring the influence of the Euler function and the divisor function
on the error term. The size of the divisor function is given by σ0(n) =
Oδ(n(δ+log 2)/ log log n) (see Ramanujan [6]). The Euler function is bounded
by

φ(n) ≥ e−γ n

log log n +
5

2eγ log log n

,

where γ is the Euler constant (see Rosser and Schoenfeld [7]). We also note
that ϕ(p− 1)/p ≤ 1/2. Thus we obtain the following:

Corollary 1. Let δ > 0 be a real number. Assume that |I| ≥ p1/2+2δ

and A, B are disjoint sets mod p with 1 ≤ |A ∪ B| < δ log log p. Then

N (A,B) = |I|
(

ϕ(p− 1)
p

)|A|(
1− ϕ(p− 1)

p

)|B|

[1 + Oδ(p−δ/2)].

It would be interesting to know how much one can increase |A∪B| in the
statement of Corollary 1. We expect that this result holds true as long as
|I|(ϕ(p−1)/p)|A|(1−ϕ(p−1)/p)|B| > pδ. We note that |A| cannot be taken to
be larger than log p, even if |I| = p and B = ∅. Moreover, there are infinitely
many primes p for which |A| cannot be larger than (log p)/ log log log p.

3. The Poisson distribution of primitive roots. We now consider
the random variable given by the number of primitive roots mod p in (n, n+t]
and calculate the distribution of its restriction to our interval I. Thus for
t ≥ 1 and a nonnegative integer k let us define Pk(t) = Pk(t; p, I) to be the
proportion of integers n ∈ I for which the interval (n, n+ t] contains exactly
k primitive roots mod p.

Since Pk(t) = 0 for k > t, in the following we will assume that k ≤ t.
There are different ways to proceed in the calculation of Pk(t). One of

them is to find the moments of the random variable. This method was used
for example by Gallagher [2], who studied the distribution of primes in short
intervals under the r-tuple conjecture for prime numbers. Although we can
follow the same steps, in our case with Corollary 1 at hand we will proceed
as follows.

Clearly we have

(8) Pk(t) =
1
|I|

∑
C⊂{1,...,[t]}

|C|=k

N (C, C),

where C is the set of integers from [1, t] which are not in C.
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Suppose that δ > 0 is a fixed real number. Then if |I| ≥ p1/2+2δ and
k ≤ t < δ log log p, by Corollary 1 we have

Pk(t) =
∑

C⊂{1,...,[t]}
|C|=k

(
ϕ(p− 1)

p

)|C|(
1− ϕ(p− 1)

p

)|C̄|

[1 + Oδ(p−δ/2)](9)

=
(

[t]
k

)(
ϕ(p− 1)

p

)k(
1− ϕ(p− 1)

p

)[t]−k

[1 + Oδ(p−δ/2)].

Suppose now that p goes to infinity through a sequence of primes with
the property that ϕ(p− 1)/p has limit zero, while λ = tϕ(p− 1)/p remains
constant. This shows that asymptotically the probability distribution of the
random variable defined above is that of Poisson with parameter λ, that is,

Pk(t) ∼ e−λ λk

k!
for any nonnegative integer k. More precisely, taking into account the error
term we obtain

Theorem 2. Let k be a nonnegative integer , δ > 0 and 1 ≤ t ≤ δ log log p
be real numbers. Set λ = tϕ(p− 1)/p and suppose |I| ≥ p1/2+2δ. Then

Pk(t) = e−λ λk

k!
eO((1+k+λ)ϕ(p−1)/p)

[
1 + O

(
k2

λ
· ϕ(p− 1)

p

)]
[1 + Oδ(p−δ/2)].

Next consider the question of how far an arbitrary n ∈ I is to the next
primitive root. Let D(n) be the random variable denoting this distance.
Clearly, there are no primitive roots in (n, n + t] if and only if D(n) > t.
Then Theorem 2 for k = 0 shows that D(n) is asymptotically exponentially
distributed. We obtain

Corollary 2. Denote by PI(D > t) the probability that D(n) > t.
Then, under the hypothesis of Theorem 2,

PI(D > t) = e−λeO((1+λ)ϕ(p−1)/p)[1 + Oδ(p−δ/2)].

4. The distribution of the differences between consecutive
primitive roots. For any real number λ > 0 denote by g(λ) = g(λ; p, I)
the proportion of differences between consecutive primitive roots in I which
are at least λ times greater than the average p/ϕ(p− 1).

Since by Corollary 1 the number of primitive roots in I is equal to
|I|(ϕ(p− 1)/p)[1 + Oδ(p−δ/2)] we have

(10) g(λ) =
pG(λ)

|I|ϕ(p− 1)
[1 + Oδ(p−δ/2)]

where G(λ) denotes the number of γi ∈ I for which γi+1−γi ≥ λp/ϕ(p−1).
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The usual way to get information about G(λ) is via estimates for the
number of r-tuples of elements from the given sequence. For the general
connections, as well as for the treatment of some particular sequences see
Hooley [4]. Here we will use a simple relation between G(λ) and the quan-
tities Pk(t) from Theorem 2 for which we already have an estimate. One
verifies that

(11) G(λ) = |I|(P0(dte − 1)− P0(dte))

for any λ > 0 and t = λp/ϕ(p − 1). Here dte denotes the smallest integer
greater than or equal to t.

On combining (9)–(11), for 1 ≤ t ≤ δ log log p we deduce

g(λ) =
p

ϕ(p− 1)
(P0(dte − 1)− P0(dte))[1 + Oδ(p−δ/2)]

=
p

ϕ(p− 1)

[(
1− ϕ(p− 1)

p

)dte−1

−
(

1− ϕ(p− 1)
p

)dte]
[1 + Oδ(p−δ/2)]

=
(

1− ϕ(p− 1)
p

)dte−1

[1 + Oδ(p−δ/2)].

For ϕ(p− 1)/p ≤ λ ≤ δ(ϕ(p− 1)/p) log log p this implies

(12) g(λ) = e−λ+O((1+λ)ϕ(p−1)/p)[1 + Oδ(p−δ/2)].

Now suppose {pn}n≥1 is a sequence of primes with ϕ(pn − 1)/pn → 0.
We want to show that the sequence {gpn

(λ)}n≥1 of functions converges to
e−λ uniformly on compact subsets of [0,∞).

The relation (12) implies that this is true provided 1 ≤ λpn/ϕ(pn − 1)
≤ δ log log pn for n sufficiently large.

The first inequality above is satisfied because λ > 0 is fixed. However,
there are sequences of primes for which the second inequality fails if λ is
large enough.

Since Corollary 1 is not strong enough for our purpose we appeal directly
to Theorem 1. Proceeding as above we find that our problem would be solved
if the following weaker inequality holds for n sufficiently large:

(13) λ < 2δ
ϕ(pn − 1)

pn
· log pn

log σ0(pn − 1)
.

This inequality is not always true either. What happens is that there are
large primes p for which both bounds for ϕ(p− 1) and σ0(p− 1) used before
are simultaneously essentially best possible.
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Indeed, the constant log 2 in Ramanujan’s bound for σ0(n) is attained
for the sequence {nj}j≥1 given by

nj =
∏
q<j

q prime

q.

On the other hand, for the same numbers nj the bound provided by
Rosser and Schoenfeld is also close to an equality. Now, for large j we
know from Linnik’s Theorem that there are primes pj < nL

j such that nj

divides pj − 1, where L is a positive absolute constant. Then it is easy
to see that for such sequences of primes pj the inequality (13) is false if
λ is large in terms of L and δ. With the bound 5.5 for Linnik’s constant
provided by Heath-Brown [3], we find that even in the most fortunate case
when I = {1, . . . , p}, (13) fails for λ > 1.95.

In order to overcome this difficulty, we would need to have in Corollary 1
asymptotical results for larger sets A, B.

Looking for an improvement we see that formula (7) is not satisfactory
because it contains too many terms. In such a situation techniques inspired
from sieve theory prove to be very helpful.

In (7) we restrict the range of summation to the subsets C having at
most 2r elements, where r < |B|/4 is a parameter to be chosen later. An
argument familiar from Brun’s sieve method yields∑

n∈I

∏
a∈A

δ(n + a)
∑
C⊂B

|C|≤2r−1

(−1)|C|
∏
c∈C

δ(n + c) ≤ N (A,B)

≤
∑
n∈I

∏
a∈A

δ(n + a)
∑
C⊂B
|C|≤2r

(−1)|C|
∏
c∈C

δ(n + c).

From this we obtain

(14)
∑
C⊂B

|C|≤2r−1

(−1)|C|N (A ∪ C) ≤ N (A,B) ≤
∑
C⊂B
|C|≤2r

(−1)|C|N (A ∪ C).

Now by Theorem 1 the left hand side of (14) equals∑
C⊂B

|C|≤2r−1

(−1)|C||I|
(

ϕ(p− 1)
p

)|A∪C|

+ O

[
r

(
|B|
2r

)
(|A|+ 2r)

√
p(log p)(σ0(p− 1))|A|+2r

]

= |I|
(

ϕ(p− 1)
p

)|A| ∑
k≤2r−1

(−1)k

(
|B|
k

)(
ϕ(p− 1)

p

)k
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+O

[
r
|B|2r

(2r)!
(|A|+ 2r)

√
p(log p)(σ0(p− 1))|A|+2r

]
.

Similarly the right hand side of (14) is equal to

|I|
(

ϕ(p− 1)
p

)|A| ∑
k≤2r

(−1)k

(
|B|
k

)(
ϕ(p− 1)

p

)k

+O

[
r
|B|2r

(2r)!
(|A|+ 2r)

√
p(log p)(σ0(p− 1))|A|+2r

]
.

On the other hand, we have∑
k≤2r−1

(−1)k

(
|B|
k

)(
ϕ(p− 1)

p

)k

≤
(

1− ϕ(p− 1)
p

)|B|

≤
∑
k≤2r

(−1)k

(
|B|
k

)(
ϕ(p− 1)

p

)k

.

On combining all these it follows that∣∣∣∣N (A,B)− |I|
(

ϕ(p− 1)
p

)|A|(
1− ϕ(p− 1)

p

)|B|∣∣∣∣
≤ |I|

(
ϕ(p− 1)

p

)|A|(|B|
2r

)(
ϕ(p− 1)

p

)2r

+ O

[
r
|B|2r

(2r)!
(|A|+ 2r)

√
p(log p)(σ0(p− 1))|A|+2r

]
.

In what follows we write

η(δ, p) =
δ

8e2
· p

ϕ(p− 1)
log log p

and assume that |A| < (δ/2) log log p and |B| < η(δ, p). To balance the error
terms we take r = (δ/8) log log p. Now, if |B| < (δ/2) log log p then we are
under the assumption of Corollary 1. If |B| ≥ (δ/2) log log p then we have
r < |B|/4 and we can use the above calculation. In both cases the following
holds true:

Theorem 3. Let δ > 0 be a real number. Assume that |I| ≥ p1/2+2δ

and A, B are disjoint sets mod p with |A| < (δ/2) log log p and |B| < η(δ, p).
Then

N (A,B)

= |I|
(

ϕ(p− 1)
p

)|A|(
1− ϕ(p− 1)

p

)|B|[
1 + Oδ

((
|B|

eη(δ, p)

)(δ/4) log log p)]
.
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From Theorem 3 and (8), for t < η(δ, p) we derive

P0(t) =
(

1− ϕ(p− 1)
p

)[t][
1 + Oδ

((
|B|

eη(δ, p)

)(δ/4) log log p)]
.

Finally, inserting this on the right side of (11) we conclude with the following
theorem which solves the problem raised in the introduction.

Theorem 4. Let δ > 0 and 0 ≤ λ ≤ δ
8e2 log log p be real numbers and

suppose |I| ≥ p1/2+2δ. Then

g(λ; p, I) = e−λ+O((1+λ)ϕ(p−1)/p)[1 + Oδ(e−(δ/8) log log p)].
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