Determination of all non-quadratic imaginary cyclic number fields of 2-power degree with relative class number ≤ 20

by
Young-Ho Park and Soun-Hi Kwon (Seoul)

1. Introduction. Recently, Louboutin [L1] has determined all imaginary cyclic number fields of 2 -power degree with relative class number 1 and 2. (More precisely, he reduced the determination of all non-quadratic imaginary cyclic fields of 2-power degree with cyclic ideal class groups of 2power orders to the determination of all the non-quadratic imaginary cyclic fields of 2-power degree with relative class number one or two.) In [L1] Louboutin has obtained good lower bounds for the relative class number of non-quadratic imaginary cyclic number fields of 2-power degree. Using these lower bounds we prove the following:

Theorem 1. There are 204 non-quadratic imaginary cyclic fields of 2power degree with relative class number $h_{N}^{-} \leq 20$. They all have degrees ≤ 16 and conductors ≤ 2355. Moreover, there are 169 non-quadratic imaginary cyclic fields of 2-power degree with class number $h_{N} \leq 20$. They all have degrees ≤ 16 and conductors ≤ 1789.

In Section 2, we give lower bounds on the relative class numbers of nonquadratic imaginary cyclic fields of 2-power degree. These bounds enable us to get reasonable upper bounds on the conductors of those fields which have relative class number $h_{N}^{-} \leq 20$. In Section 3, we explain how we construct any imaginary cyclic quartic or octic field. In Section 4, we explain how we compute the relative class number of any non-quadratic imaginary cyclic field of 2-power degree. Using Sections 2 and 3 we will be in a position to determine in Section 4 all the non-quadratic imaginary cyclic fields of 2 -power degree with relative class number $h_{N}^{-} \leq 20$. Finally, we will explain how we computed the class numbers of the real subfields N_{+}of those 204 non-quadratic imaginary cyclic fields of 2-power degree with relative class

[^0]number $h_{N}^{-} \leq 20$. All non-quadratic imaginary cyclic number fields of 2power degree with relative class number ≤ 20 are given in Tables 1,2 and 3 .
2. Lower bounds for the relative class number. Let N be a CM-field of degree $2 n, N_{+}$its maximal totally real subfield, h_{N} the class number of N and h_{N}^{-}the relative class number of N. In order to determine all CM-fields of a given degree and given class number, we begin with a reasonable lower bound for h_{N}^{-}, which leads us to a feasible computation. For this purpose we apply the following theorem, due to Louboutin [L1].

Theorem 2. Let N be an imaginary cyclic number field of 2-power degree $2 n=2^{m} \geq 4$, conductor f_{N} and discriminant d_{N}. Then

$$
h_{N}^{-} \geq \frac{2 \varepsilon_{N}}{e(2 n-1)}\left(\frac{\sqrt{f_{N}}}{\pi\left(\log f_{N}+0.05\right)}\right)^{n}
$$

where

$$
\varepsilon_{N}=1-\frac{2 \pi n e^{1 / n}}{d_{N}^{1 /(2 n)}} \quad \text { or } \quad \frac{2}{5} \exp \left(-\frac{2 n \pi}{d_{N}^{1 /(2 n)}}\right) .
$$

In particular,

$$
\begin{array}{ll}
\text { if } n=2 \text { and } f_{N} \geq 118000 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=4 \text { and } f_{N} \geq 14800 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=8 \text { and } f_{N} \geq 4900 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=16 \text { and } f_{N} \geq 2000 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=32 \text { and } f_{N} \geq 1300 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=64 \text { and } f_{N} \geq 1000 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=128 \text { and } f_{N} \geq 900 & \text { then } \\
h_{N}^{-}>20 ; \\
\text { if } n=256 \text { and } f_{N} \geq 800 & \text { then }
\end{array} h_{N}^{-}>20 .
$$

If $h_{N}^{-} \leq 20$, then $n \leq 256$.
Proof. See Theorem 4 of [L1]. For the last statement, it suffices to notice that $f_{N} \geq 2 n+1$.
3. Conductors of cyclic number fields. Let N be a cyclic number field of degree $2 n=2^{m}, f_{N}$ the conductor of N, d_{N} the discriminant of N and h_{N} the class number of N. Let χ_{N} be a primitive character of order $2 n$ such that N is associated with the cyclic group generated by χ_{N}, $\left\{\chi_{N}^{i}: 0 \leq i \leq 2 n-1\right\}$. For any positive integer n and prime q, let $v_{q}(n)$ denote the exponent of q in the prime factorization of n. The following properties are very useful in determining all possible conductors smaller than a fixed constant.

Proposition 1. Let N be a quartic cyclic number field and k the quadratic subfield of N.
(i) The conductor f_{N} can be written as

$$
f_{N}=\prod_{i=1}^{s} p_{i} \prod_{j=1}^{t} q_{j}, \quad f_{k}=2^{\varepsilon} \prod_{j=1}^{t} q_{j}, \quad s \geq 0 \text { and } t \geq 1
$$

Here, p_{i} 's and q_{j} 's are all distinct, p_{i} is $2^{2}, 2^{3}$ or an odd prime, q_{j} is 2^{4} or odd prime equal to 1 modulo 4 , and $\varepsilon=-1$ or 0 according as 16 divides $\prod q_{j}$ or not. In addition, $d_{N}=f_{N}^{2} f_{k}$.
(ii) For a given conductor f_{N} with $f_{N} \equiv 0 \bmod 8$, there are 2^{t-1} imaginary cyclic quartic fields and 2^{t-1} real fields.
(iii) For a given conductor f_{N} with $v_{2}\left(f_{N}\right)=2$, we assume $p_{1}=2^{2}$. Then there are 2^{t-1} cyclic quartic fields of conductor f_{N}; all of them are real if

$$
1+\sum_{i \geq 2}^{s} \frac{p_{i}-1}{2}+\sum_{j=1}^{t} \frac{q_{j}-1}{4} \equiv 0(\bmod 2)
$$

and all are imaginary otherwise.
(iv) For a given odd conductor f_{N}, there are 2^{t-1} cyclic quartic fields of conductor f_{N}; all of them are real if

$$
\sum_{i=1}^{s} \frac{p_{i}-1}{2}+\sum_{j=1}^{t} \frac{q_{j}-1}{4} \equiv 0(\bmod 2)
$$

and all are imaginary otherwise.
Proof. (i) Let χ_{N} be a primitive Dirichlet character modulo f_{N} of order 4 such that the cyclic group $\left\langle\chi_{N}\right\rangle$ is associated with the field N. Let $f_{N}=\prod p^{a}$. Corresponding to the decomposition

$$
\left(\mathbb{Z} / f_{N} \mathbb{Z}\right)^{*}=\prod\left(\mathbb{Z} / p^{a} \mathbb{Z}\right)^{*},
$$

we may write χ_{N} as $\chi_{N}=\Pi \chi_{p}$ where χ_{p} is a character defined modulo p^{a}. As χ_{N} has order 4 , every χ_{p} has order 2 or 4 and at least one of the χ_{p} has order 4. If χ_{p} has order 2 , then $p^{a}=2^{2}, 2^{3}$ or an odd prime, χ_{p} is the Legendre symbol when p_{i} is odd, and χ_{p} is one of two primitive nonconjugate quadratic characters modulo 8 when $p=2^{3}$. If χ_{p} has order 4 , then $p^{a}=2^{4}$ or an odd prime equal to 1 modulo 4 . Moreover, in that case χ_{p} is one of two conjugate primitive quartic characters modulo p when p is odd, and χ_{p} is one of two non-conjugate characters modulo 16 where $p^{a}=16$. Denote by q_{j} the divisor of f_{N} such that the corresponding character $\chi_{q_{j}}$ is of order 4 , and by p_{i} the divisor of f_{N} such that $\chi_{p_{i}}$ is of order 2 . We
rewrite f_{N} as

$$
f_{N}=\prod_{i=1}^{s} p_{i} \prod_{j=1}^{t} q_{j} \quad \text { and } \quad \chi_{N}=\prod_{i=1}^{s} \chi_{p_{i}} \prod_{j=1}^{t} \chi_{q_{j}},
$$

with the convention $q_{1}=2^{4}$ if $v_{2}\left(f_{N}\right)=4, p_{1}=2^{3}$ if $v_{2}\left(f_{N}\right)=3$ and $p_{1}=2^{2}$ if $v_{2}\left(f_{N}\right)=2$ (we allow $s=0$). Then $\chi_{N}^{2}=\Pi \chi_{q_{j}}^{2}$ is associated with the quadratic subfield k. If q_{j} is an odd prime then the conductor of $\chi_{q_{j}}^{2}$ is also q_{j} and if $q_{1}=2^{4}$ then the conductor of $\chi_{q_{1}}^{2}$ is 2^{3}. So we have

$$
f_{k}=2^{\varepsilon} \prod_{j=1}^{t} q_{j} \quad \text { and } \quad d_{N}=2^{\varepsilon} \prod p_{i}^{2} \prod q_{j}^{3}
$$

where $\varepsilon=-1$ or 0 according as 16 divides $\prod q_{j}$ or not.
(ii) (iii) and (iv). It suffices to notice that N is real or imaginary according as $\chi_{N}(-1)=1$ or $\chi_{N}(-1)=-1$ and that
$\begin{cases}\chi_{p_{i}}(-1)=(-1)^{\left(p_{i}-1\right) / 2} & \text { if } p_{i} \text { is an odd prime, } \\ \chi_{q_{j}}(-1)=(-1)^{\left(q_{j}-1\right) / 4} & \text { if } q_{j} \text { is an odd prime equal to } 1 \bmod 4 .\end{cases}$
Remark 1. If N is an imaginary cyclic quartic field, then $2^{s} 4^{t-1}$ divides h_{N}. In fact, let G_{N} be the genus field of N. Then $\left[G_{N}: \mathbb{Q}\right]=2^{s} 4^{t}$ and $\left[G_{N}: N\right] \mid h_{N}$.

We can prove the similar properties for octic cyclic number fields:
Proposition 2. Let N be an octic cyclic number field, K the quartic subfield of N, and k the quadratic subfield of N.
(i) The conductor f_{N} can be written as

$$
f_{N}=\prod_{i=1}^{s} p_{i} \prod_{j=1}^{t} q_{j} \prod_{k=1}^{u} r_{k}, \quad s \geq 0, t \geq 0 \text { and } u \geq 1
$$

with

$$
f_{K}=2^{\varepsilon_{1}} \prod_{j=1}^{t} q_{j} \prod_{k=1}^{u} r_{k}, \quad f_{k}=2^{2 \varepsilon_{2}} \prod_{k=1}^{u} r_{k} .
$$

Moreover,

$$
d_{N}=f_{N}^{4} f_{K}^{2} f_{k}=2^{2\left(\varepsilon_{1}+\varepsilon_{2}\right)} \prod_{i=1}^{s} p_{i}^{4} \prod_{j=1}^{t} q_{j}^{6} \prod_{k=1}^{u} r_{k}^{7} .
$$

Here, p_{i} 's, q_{j} 's and r_{k} 's are all distinct, p_{i} is $2^{2}, 2^{3}$ or an odd prime, q_{j} is 2^{4} or an odd prime equal to 1 modulo $4, r_{k}$ is 2^{5} or an odd prime equal to 1 modulo $8, \varepsilon_{1}=-1$ or 0 according as 2 divides $\prod q_{j} \prod r_{k}$ or not, and $\varepsilon_{2}=-1$ or 0 according as 2 divides $\prod r_{k}$ or not.
(ii) For a given conductor f_{N} with $f_{N} \equiv 0 \bmod 8$, there are $2^{t} 4^{u-1}$ real fields and $2^{t} 4^{u-1}$ imaginary fields.
(iii) For a given conductor f_{N} with $v_{2}\left(f_{N}\right)=2$, we assume $p_{1}=2^{2}$. Then there are $2^{t} 4^{u-1}$ cyclic octic fields of conductor f_{N}; all of them are real if

$$
1+\sum_{i \geq 2}^{s} \frac{p_{i}-1}{2}+\sum_{j=1}^{t} \frac{q_{j}-1}{4}+\sum_{k=1}^{u} \frac{r_{k}-1}{8} \equiv 0(\bmod 2)
$$

and all are imaginary otherwise.
(iv) For a given odd conductor f_{N}, there are $2^{t} 4^{u-1}$ cyclic octic fields of conductor f_{N}; all of them are real if

$$
\sum_{i=1}^{s} \frac{p_{i}-1}{2}+\sum_{j=1}^{t} \frac{q_{j}-1}{4}+\sum_{k=1}^{u} \frac{r_{k}-1}{8} \equiv 0(\bmod 2)
$$

and all are imaginary otherwise.
Corollary 1. (i) If N is an imaginary cyclic octic field, then $2^{s+2 t+3 u-3}$ divides h_{N}.
(ii) Let N be a non-quadratic imaginary cyclic number field of degree $2 n=2^{m} \geq 4$. Then N has odd class number if and only if f_{N} is 2^{m+2} or an odd prime equal to $2 n+1 \bmod 4 n$.

Proof. This follows from genus field theory and Theorem 10.4(b) of [W].

Set

$$
\zeta_{N}=\exp \left(\frac{2 i \pi}{f_{N}}\right) \quad \text { and } \quad \zeta_{N_{+}}=\exp \left(\frac{2 i \pi}{f_{N_{+}}}\right)
$$

From χ_{N} and $\chi_{N_{+}}$we can compute numerically two polynomials defining the number fields N and N_{+}, respectively, for

$$
\theta_{N}=\sum_{\substack{g=1 \\ \chi_{N}(g)=1}}^{f_{N}-1} \zeta_{N}^{g} \text { and } \theta_{N_{+}}=\sum_{\substack{g=1 \\ \chi_{+}(g)=1}}^{f_{N_{+}-1}} \zeta_{N_{+}}^{g}
$$

are primitive elements of N and N_{+}, respectively. However, if N or N_{+}is quartic we use [HHRW1] to get a more convenient primitive element for N or N_{+}.
4. Main results. We can evaluate precisely the relative class number by the following formula:

$$
h_{N}^{-}=Q w_{N} \prod_{\chi \text { odd }}\left(-\frac{1}{2} B_{1, \chi}\right)
$$

where Q is the Hasse unit index of N, w_{N} is the number of roots of unity in N, f_{χ} is the conductor of χ and $B_{1, \chi}=\left(1 / f_{\chi}\right) \sum_{a=1}^{f_{\chi}-1} \chi(a) a$. The $B_{1, \chi}$ are called the generalized Bernoulli numbers. (See [W], Chapter 4, Theorem 4.) Now, according to $[\mathrm{H}]$ or $[\mathrm{Lm}]$ imaginary cyclic fields have the Hasse unit indices equal to 1 , and according to Lemma (b) of [L2] for N an imaginary cyclic field of degree $2 n=2^{m} \geq 4$ we have $w_{N}=2$ except if $2 n+1=$ $2^{m}+1=p$ is prime and $N=\mathbb{Q}\left(\zeta_{p}\right)$. Therefore, when N is an imaginary cyclic field of degree $2 n=2^{m} \geq 4$, setting $\alpha_{N}=\sum_{a=1}^{f_{N}-1} \chi_{N}(a) a \in \mathbb{Z}\left[\zeta_{2^{m}}\right]$ we get

$$
h_{N}^{-}=\frac{w_{N}}{\left(2 f_{N}\right)^{n}} \prod_{\substack{i=1 \\ i \text { odd }}}^{2^{m}-1}\left(\sum_{a=1}^{f_{N}-1} \chi_{N}^{i}(a) a\right)=\frac{w_{N}}{\left(2 f_{N}\right)^{n}} N_{\mathbb{Q}\left(\zeta_{2} m\right) / \mathbb{Q}}\left(\alpha_{N}\right) .
$$

From this relative class number formula we get the following proposition which explains why our computation did not yield any field with some relative class numbers:

Proposition 3 (Louboutin). Let N be an imaginary cyclic number field of degree $2 n=2^{m} \geq 4$ and let q be an odd prime. If q divides h_{N}^{-}then $v_{q}\left(h_{N}^{-}\right)$, the exponent of q in the factorization of h_{N}^{-}, is divisible by f_{q}, the order of q in the multiplicative group $\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}$. Therefore,

$$
\begin{array}{lll}
h_{N}^{-} \leq 20 \text { and } 2 n=4 & \text { imply } & h_{N}^{-} \in\{1,2,4,5,8,9,10,13,16,17,18,20\} \\
h_{N}^{-} \leq 20 \text { and } 2 n=8 & \text { imply } & h_{N}^{-} \in\{1,2,4,8,9,16,17,18\} \\
h_{N}^{-} \leq 20 \text { and } 2 n=16 & \text { imply } & h_{N}^{-} \in\{1,2,4,8,16,17\}
\end{array}
$$

Proof. Use Theorem 2.13 of [W] and the prime ideal factorization of the principal ideal $\left(\alpha_{N}\right)=\left(\sum_{a=1}^{f_{N}-1} a \chi_{N}(a)\right)$ of $\mathbb{Q}\left(\zeta_{2^{m}}\right)$.

To determine all the non-quadratic imaginary cyclic fields of degree $2 n=$ $2^{m} \geq 4$ with relative class number $h_{N}^{-} \leq 20$ we proceeded as follows.

First, according to Theorem 2 and using Propositions 1 and 2 we found all the imaginary cyclic quartic fields with conductor $f_{N} \leq 118000$ (there are 64078 of them) and all the imaginary cyclic octic fields with $f_{N} \leq 14800$ (there are 3599 of them).

Second, we computed the relative class numbers of all those 67677 imaginary cyclic fields. We found that there are 188 imaginary cyclic quartic fields with $h_{N}^{-} \leq 20$ and 13 imaginary cyclic octic fields with $h_{N}^{-} \leq 20$.

Third, for all those 201 quartic and octic fields we computed the class numbers of their real subfields N_{+}. If N_{+}is real quadratic, then this computation was easy. If N_{+}is cyclic quartic, then we used the table of [M.N.G]. We found that 166 out of those 201 fields have class number $h_{N} \leq 20$.

Fourth, for imaginary cyclic fields of degree $2 n=2^{m} \geq 16$ results similar to those of Propositions 1 and 2 enabled us to make a list of all the imaginary
cyclic fields of degree $2 n=2^{m} \geq 16$ with $f_{N} \leq 5000$ (see Theorem 2). There are 996 such fields.

Fifth, we computed their relative class numbers and found that 3 out of them have $h_{N}^{-} \leq 20$. Finally, using PARI-GP and polynomials defining N_{+} for those 3 fields (see Section 3), we found that all have $h_{N} \leq 20$.

We list all imaginary cyclic quartic fields with relative class number ≤ 20 in Table 1, all imaginary cyclic octic fields with relative class number ≤ 20 in Table 2, and all imaginary cyclic fields of degree $2 n=2^{m} \geq 16$ with relative class number ≤ 20 in Table 3. The results of our computation agree with those of [G], [H], [HHRW1], [HHRW2], [HHRWH], [L1], [L2], [MM], [M.N.G], [S], [Y], [YH1] and [YH2].

Table 1. The imaginary cyclic quartic fields $N=\mathbb{Q}\left(\sqrt{-\beta_{N}}\right)$ with $h_{N}^{-} \leq 20$

$h_{N}^{-}=1$					
f	$h_{N_{+}}$	β_{N}	f	$h_{N_{+}}$	β_{N}
5	1	$5+2 \sqrt{5}$	37	1	$37+6 \sqrt{37}$
13	1	$13+2 \sqrt{13}$	53	1	$53+2 \sqrt{53}$
16	1	$2+\sqrt{2}$	61	1	$61+6 \sqrt{61}$
29	1	$29+2 \sqrt{29}$			

$h_{N}^{-}=2$					
40	1	$5+\sqrt{5}$	80	2	$10+3 \sqrt{10}$
48	1	$3(2+\sqrt{2})$	85	1	$17(5+2 \sqrt{5})$
65	1	$13(5+2 \sqrt{5})$	85	2	$85+6 \sqrt{85}$
65	1	$5(13+2 \sqrt{13})$	104	1	$13+3 \sqrt{13}$
80	1	$5(2+\sqrt{2})$	119	1	$7(17+4 \sqrt{17})$

$h_{N}^{-}=4$					
60	1	$3(5+2 \sqrt{5})$	164	1	$41+4 \sqrt{41}$
68	1	$17+4 \sqrt{17}$	195	2	$3(65+8 \sqrt{65})$
105	1	$21(5+2 \sqrt{5})$	205	2	$205+6 \sqrt{205}$
112	1	$7(2+\sqrt{2})$	219	1	$3(73+8 \sqrt{73})$
120	1	$3(5+\sqrt{5})$	221	1	$17(13+2 \sqrt{13})$
136	1	$17+\sqrt{17}$	221	2	$221+14 \sqrt{221}$
140	1	$7(5+2 \sqrt{5})$	255	1	$15(17+4 \sqrt{17})$
145	1	$29(5+2 \sqrt{5})$	272	2	$34+3 \sqrt{34}$
145	1	$5(29+2 \sqrt{29})$			

Table 1 (cont.)

$h_{N}^{-}=5$					
f	$h_{N_{+}}$	β_{N}	f	$h_{N_{+}}$	β_{N}
101	1	$101+10 \sqrt{101}$	197	1	$197+14 \sqrt{197}$
157	1	$157+6 \sqrt{157}$	349	1	$349+18 \sqrt{349}$
173	1	$173+2 \sqrt{173}$	373	1	$373+18 \sqrt{373}$
$h_{N}^{-}=8$					
156	1	$3(13+2 \sqrt{13})$	285	1	$57(5+2 \sqrt{5})$
165	1	$33(5+2 \sqrt{5})$	305	1	$61(5+2 \sqrt{5})$
205	1	$41(5+2 \sqrt{5})$	356	1	$89+8 \sqrt{89}$
220	1	$11(5+2 \sqrt{5})$	377	1	$29(13+2 \sqrt{13})$
240	2	$3(10+3 \sqrt{10})$	435	4	$3(145+8 \sqrt{145})$
260	2	$65+4 \sqrt{65}$	455	2	$7(65+4 \sqrt{65})$
272	1	$17(2+\sqrt{2})$	545	1	$5(109+10 \sqrt{109})$
273	1	$21(13+2 \sqrt{13})$			

$h_{N}^{-}=9$						
149	1	$149+10 \sqrt{149}$	661	1	$661+6 \sqrt{661}$	
293	1	$293+2 \sqrt{293}$				

$h_{N}^{-}=10$					
51	1	$3(17+4 \sqrt{17})$	365	2	$365+14 \sqrt{365}$
80	2	$10+\sqrt{10}$	391	1	$23(17+4 \sqrt{17})$
85	2	$85+2 \sqrt{85}$	464	2	$58+3 \sqrt{58}$
176	1	$11(2+\sqrt{2})$	481	1	$13(37+6 \sqrt{37})$
185	1	$37(5+2 \sqrt{5})$	485	2	$485+14 \sqrt{485}$
185	1	$5(37+6 \sqrt{37})$	493	2	$493+18 \sqrt{493}$
208	1	$13(2+\sqrt{2})$	527	1	$31(17+4 \sqrt{17})$
208	2	$26+\sqrt{26}$	533	1	$41(13+2 \sqrt{13})$
208	2	$26+5 \sqrt{26}$	533	2	$533+22 \sqrt{533}$
265	1	$53(5+2 \sqrt{5})$	565	2	$565+6 \sqrt{565}$
265	1	$5(53+2 \sqrt{53})$	685	2	$685+18 \sqrt{685}$
267	1	$3(89+8 \sqrt{89})$	699	1	$3(233+8 \sqrt{233})$
287	1	$7(41+4 \sqrt{41})$	771	3	$3(257+16 \sqrt{257})$
304	1	$19(2+\sqrt{2})$	803	1	$11(73+8 \sqrt{73})$
339	1	$3(113+8 \sqrt{113})$	1261	2	$1261+6 \sqrt{1261}$
365	1	$73(5+2 \sqrt{5})$			

Table 1 (cont.)

$h_{N}^{-}=13$					
f	$h_{N_{+}}$	β_{N}	f	$h_{N_{+}}$	β_{N}
269	1	$269+10 \sqrt{269}$	509	1	$509+22 \sqrt{509}$
317	1	$317+14 \sqrt{317}$	557	1	$557+14 \sqrt{557}$
397	1	$397+6 \sqrt{397}$	1789	1	$1789+42 \sqrt{1789}$

$h_{N}^{-}=16$					
240	2	$3(10+\sqrt{10})$	520	2	$65+7 \sqrt{65}$
260	2	$65+8 \sqrt{65}$	580	4	$145+12 \sqrt{145}$
312	1	$3(13+3 \sqrt{13})$	584	1	$73+3 \sqrt{73}$
336	1	$21(2+\sqrt{2})$	609	1	$21(29+2 \sqrt{29})$
340	1	$5(17+4 \sqrt{17})$	615	1	$15(41+4 \sqrt{41})$
380	1	$19(5+2 \sqrt{5})$	663	1	$39(17+4 \sqrt{17})$
385	1	$77(5+2 \sqrt{5})$	689	1	$53(13+2 \sqrt{13})$
408	1	$3(17+\sqrt{17})$	795	2	$3(265+16 \sqrt{265})$
429	1	$33(13+2 \sqrt{13})$	799	1	$47(17+4 \sqrt{17})$
440	1	$11(5+\sqrt{5})$	905	1	$5(181+10 \sqrt{181})$
444	1	$3(37+6 \sqrt{37})$	979	1	$11(89+8 \sqrt{89})$
445	4	$445+18 \sqrt{445}$	1015	4	$7(145+12 \sqrt{145})$
452	1	$113+8 \sqrt{113}$	1271	1	$31(41+4 \sqrt{41})$
465	1	$93(5+2 \sqrt{5})$	1351	1	$7(193+12 \sqrt{193})$
496	1	$31(2+\sqrt{2})$	1595	4	$11(145+8 \sqrt{145})$
505	1	$101(5+2 \sqrt{5})$			

$h_{N}^{-}=17$					
109	1	$109+10 \sqrt{109}$	821	1	$821+14 \sqrt{821}$
229	3	$229+2 \sqrt{229}$	853	1	$853+18 \sqrt{853}$
277	1	$277+14 \sqrt{277}$			

$h_{\bar{N}}^{-}=18$					
424	1	$53+7 \sqrt{53}$	949	2	$949+18 \sqrt{949}$
493	1	$17(29+2 \sqrt{29})$	1059	1	$3(353+8 \sqrt{353})$
592	2	$74+7 \sqrt{74}$	1165	2	$1165+18 \sqrt{1165}$
629	2	$629+2 \sqrt{629}$	1207	1	$71(17+4 \sqrt{17})$
848	2	$106+9 \sqrt{106}$			

Table 1 (cont.)

$h_{N}^{-}=20$					
f	$h_{N_{+}}$	β_{N}	f	$h_{N_{+}}$	β_{N}
205	2	$205+14 \sqrt{205}$	728	1	$7(13+3 \sqrt{13})$
221	2	$221+10 \sqrt{221}$	745	1	$149(5+2 \sqrt{5})$
240	1	$15(2+\sqrt{2})$	772	1	$193+12 \sqrt{193}$
280	1	$7(5+\sqrt{5})$	776	1	$97+9 \sqrt{97}$
305	1	$5(61+6 \sqrt{61})$	805	1	$161(5+2 \sqrt{5})$
328	1	$41+5 \sqrt{41}$	880	2	$11(10+\sqrt{10})$
345	1	$69(5+2 \sqrt{5})$	935	1	$55(17+4 \sqrt{17})$
348	1	$3(29+2 \sqrt{29})$	959	1	$7(137+4 \sqrt{137})$
368	1	$23(2+\sqrt{2})$	1001	1	$77(13+2 \sqrt{13})$
377	1	$13(29+2 \sqrt{29})$	1011	1	$3(337+16 \sqrt{337})$
445	1	$89(5+2 \sqrt{5})$	1040	4	$130+9 \sqrt{130}$
460	1	$23(5+2 \sqrt{5})$	1145	3	$5(229+2 \sqrt{229})$
520	1	$13(5+\sqrt{5})$	1168	2	$146+11 \sqrt{146}$
528	1	$33(2+\sqrt{2})$	1235	2	$19(65+8 \sqrt{65})$
545	1	$109(5+2 \sqrt{5})$	1243	1	$11(113+8 \sqrt{113})$
555	2	$3(185+8 \sqrt{185})$	1252	1	$313+12 \sqrt{313}$
560	2	$7(10+3 \sqrt{10})$	1295	2	$7(185+4 \sqrt{185})$
572	1	$11(13+2 \sqrt{13})$	1313	1	$101(13+2 \sqrt{13})$
624	2	$3(26+5 \sqrt{26})$	1313	1	$13(101+10 \sqrt{101})$
645	1	$129(5+2 \sqrt{5})$	1405	2	$1405+6 \sqrt{1405}$
656	1	$41(2+\sqrt{2})$	1495	2	$23(65+4 \sqrt{65})$
680	2	$85+9 \sqrt{85}$	1599	1	$39(41+4 \sqrt{41})$
696	1	$3(29+5 \sqrt{29})$	1855	2	$7(265+12 \sqrt{265})$
715	2	$11(65+8 \sqrt{65})$	2355	6	$3(785+16 \sqrt{785})$

Table 2. The imaginary cyclic octic fields N with $h_{N}^{-} \leq 20$

h_{N}^{-}	f	$h_{N_{+}}$	f_{+}	quartic subfield N_{+}
polynomial defining N				
1	32	1	16	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$
$x^{8}+8 x^{6}+20 x^{4}+16 x^{2}+2 \quad(N=\mathbb{Q}(\sqrt{-(2+\sqrt{2+\sqrt{2}})}))$				

1	41	1	41	$\mathbb{Q}(\sqrt{41+4 \sqrt{41}})$
$x^{8}+x^{7}+3 x^{6}+11 x^{5}+44 x^{4}-53 x^{3}+153 x^{2}-160 x+59$				

Table 2 (cont.)

h_{N}^{-}	f	$h_{N_{+}}$	f_{+}	quartic subfield N_{+}	
polynomial defining N					

2	51	1	17	$\mathbb{Q}(\sqrt{17+4 \sqrt{17}})$
$x^{8}-x^{7}+10 x^{6}-11 x^{5}+15 x^{4}-61 x^{3}+58 x^{2}-47 x+103$				

2	85	2	85	$\mathbb{Q}(\sqrt{5(17+4 \sqrt{17}}))$
$x^{8}-x^{7}+10 x^{6}-79 x^{5}+134 x^{4}+41 x^{3}+245 x^{2}-846 x+596$				

4	68	1	17	$\mathbb{Q}(\sqrt{17+4 \sqrt{17}})$
$x^{8}+17 x^{6}+68 x^{4}+85 x^{2}+17$				

8	221	2	221	$\mathbb{Q}(\sqrt{13(17+4 \sqrt{17}}))$
$x^{8}-x^{7}+27 x^{6}-96 x^{5}+576 x^{4}-3512 x^{3}-1421 x^{2}-20515 x+139129$				

17	137	1	137	$\mathbb{Q}(\sqrt{137+4 \sqrt{137}})$
$x^{8}+x^{7}+9 x^{6}+105 x^{5}+954 x^{4}+3767 x^{3}+9149 x^{2}+12828 x+7607$				

17	281	1	281	$\mathbb{Q}(\sqrt{281+16 \sqrt{281}})$
$x^{8}+x^{7}+18 x^{6}+145 x^{5}-794 x^{4}-4463 x^{3}+23729 x^{2}-26540 x+559952$				

18	96	1	16	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$	
$x^{8}+24 x^{6}+180 x^{4}+432 x^{2}+162$					$(N=\mathbb{Q}(\sqrt{-3(2+\sqrt{2+\sqrt{2}}}))$

18	119	1	17	$\mathbb{Q}(\sqrt{17+4 \sqrt{17}})$
$x^{8}-x^{7}+27 x^{6}-28 x^{5}+151 x^{4}-350 x^{3}+500 x^{2}-846 x+1157$				

18	160	2	80	$\mathbb{Q}(\sqrt{5(2+\sqrt{2})})$
$x^{8}+40 x^{6}+500 x^{4}+2000 x^{2}+50$				

18	365	1	73	$\mathbb{Q}(\sqrt{73+8 \sqrt{73}})$
$x^{8}-x^{7}+78 x^{6}+17 x^{5}+1706 x^{4}+3421 x^{3}+14117 x^{2}+45478 x+272444$				

18	485	2	485	$\mathbb{Q}(\sqrt{5(97+4 \sqrt{97})})$
$x^{8}-x^{7}+55 x^{6}+156 x^{5}+7384 x^{4}+27896 x^{3}+179695 x^{2}+549 x+85941$				

Table 3. The imaginary cyclic fields N of degree 16 with $h_{N}^{-} \leq 20$
which are the only ones of degree $2^{m} \geq 16$ with $h_{N}^{-} \leq 20$

f	h_{N}^{-}	polynomial defining N
f_{+}	$h_{N_{+}}$	polynomial defining the real octic subfield N_{+}
f_{L}	h_{L}	the quartic subfield L

17	1	$\mathbb{Q}\left(\zeta_{17}\right)$
17	1	$\mathbb{Q}(\cos (2 \pi / 17))$
17	1	$\mathbb{Q}(\sqrt{17+4 \sqrt{17}})$

64	17	$\mathbb{Q}(\sqrt{-(2+\sqrt{2+\sqrt{2+\sqrt{2}}})})$
32	1	$\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$
16	1	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$

113	17	$x^{16}+x^{15}+4 x^{14}+20 x^{13}+110 x^{12}+525 x^{11}+325 x^{10}-425 x^{9}$ $+12062 x^{8}-21729 x^{7}+64244 x^{6}-119403 x^{5}+154492 x^{4}$ $-132177 x^{3}+210865 x^{2}-281708 x+132937$
113	1	$x^{8}+x^{7}-49 x^{6}+16 x^{5}+511 x^{4}-367 x^{3}-1499 x^{2}+798 x+1372$
113	1	$\mathbb{Q}(\sqrt{113+8 \sqrt{113}})$

Remark 2. Some of the fields which appear in Tables 2 and 3 could be given explicitly. In Table 2, the first field of conductor 32 is $N=$ $\mathbb{Q}(\sqrt{-(2+\sqrt{2+\sqrt{2}})})$ and the ninth field of conductor 96 is $N=$ $\mathbb{Q}(\sqrt{-3(2+\sqrt{2+\sqrt{2}})})$. In Table 3, the first field of conductor 17 is $N=$ $\mathbb{Q}\left(\zeta_{17}\right)$ and $N_{+}=\mathbb{Q}(\cos (2 \pi / 17))$ and the second field of conductor 64 is $N=\mathbb{Q}(\sqrt{-(2+\sqrt{2+\sqrt{2+\sqrt{2}}})})$ and $N_{+}=\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$ (see [L2]).

Acknowledgements. We would like to express our gratitude to S. Louboutin for his valuable suggestions.

References

[G] K. Girstmair, The relative class numbers of imaginary cyclic fields of degree 4, 6, 8 and 10, Math. Comp. 61 (1993), 881-887.
[M.N.G] M.-N. Gras, Classes et unités des extensions cycliques réelles de degré 4 de \mathbb{Q}, Ann. Inst. Fourier (Grenoble) 29 (1) (1979), 107-124; Table numérique
du nombre de classes et des unités des extensions cycliques réelles de degré 4 de \mathbb{Q}, Publ. Math. Fac. Sci. Besançon, 1977-78.
[HHRW1] K. Hardy, R. H. Hudson, D. Richman and K. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc. 311 (1989), 1-55.
[HHRW2] -, —, —, —, Table of the relative class numbers $h^{*}(K)$ of imaginary cyclic quartic fields K with $h^{*}(K) \equiv 2(\bmod 4)$ and conductor $f<416,000$, Carle-ton-Ottawa Math. Lecture Note Ser. 8 (1987).
[HHRWH] K. Hardy, R. H. Hudson, D. Richman, K. Williams and M. N. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, CarletonOttawa Math. Lecture Note Ser. 7 (1986).
[H] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, 1985.
[Lm] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347-359.
[L1] S. Louboutin, CM-fields with cyclic ideal class group of 2-power orders, J. Number Theory, to appear.
[L2] -, Determination of all nonquadratic imaginary cyclic number fields of 2power degree with ideal class group of exponent ≤ 2, Math. Comp. 64 (1995), 323-340.
[MM] J. Masley and H. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
[S] B. Setzer, The determination of all imaginary quartic number fields with class number 1, Math. Comp. 35 (1980), 1383-1386.
[W] L. C. Washington, Introduction to Cyclotomic Fields, Springer, 1983.
$[\mathrm{Y}]$ K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), 899-921.
[YH1] K. Yoshino and M. Hirabayashi, On the relative class number of the imaginary abelian number field I, Mem. College Liberal Arts, Kanazawa Medical Univ. 9 (1981), 5-53.
[YH2] -, -, On the relative class number of the imaginary abelian number field $I I$, ibid. 10 (1982), 33-81.

Department of Mathematics
Korea University
136-701 Seoul, Korea
E-mail: youngho@semi.korea.ac.kr

Department of Mathematics Education
Korea University 136-701 Seoul, Korea
E-mail: shkwon@semi.korea.ac.kr

[^0]: 1991 Mathematics Subject Classification: Primary 11R29; Secondary 11R20.
 Research supported by KOSEF grant 961-0101-007-2.

