Determination of all non-quadratic imaginary cyclic number fields of 2-power degree with relative class number ≤ 20

by

YOUNG-HO PARK and SOUN-HI KWON (Seoul)

1. Introduction. Recently, Louboutin [L1] has determined all imaginary cyclic number fields of 2-power degree with relative class number 1 and 2. (More precisely, he reduced the determination of all non-quadratic imaginary cyclic fields of 2-power degree with cyclic ideal class groups of 2power orders to the determination of all the non-quadratic imaginary cyclic fields of 2-power degree with relative class number one or two.) In [L1] Louboutin has obtained good lower bounds for the relative class number of non-quadratic imaginary cyclic number fields of 2-power degree. Using these lower bounds we prove the following:

THEOREM 1. There are 204 non-quadratic imaginary cyclic fields of 2power degree with relative class number $h_N^- \leq 20$. They all have degrees ≤ 16 and conductors ≤ 2355 . Moreover, there are 169 non-quadratic imaginary cyclic fields of 2-power degree with class number $h_N \leq 20$. They all have degrees ≤ 16 and conductors ≤ 1789 .

In Section 2, we give lower bounds on the relative class numbers of nonquadratic imaginary cyclic fields of 2-power degree. These bounds enable us to get reasonable upper bounds on the conductors of those fields which have relative class number $h_N^- \leq 20$. In Section 3, we explain how we construct any imaginary cyclic quartic or octic field. In Section 4, we explain how we compute the relative class number of any non-quadratic imaginary cyclic field of 2-power degree. Using Sections 2 and 3 we will be in a position to determine in Section 4 all the non-quadratic imaginary cyclic fields of 2-power degree with relative class number $h_N^- \leq 20$. Finally, we will explain how we computed the class numbers of the real subfields N_+ of those 204 non-quadratic imaginary cyclic fields of 2-power degree with relative class

¹⁹⁹¹ *Mathematics Subject Classification*: Primary 11R29; Secondary 11R20. Research supported by KOSEF grant 961-0101-007-2.

^[211]

number $h_N^- \leq 20$. All non-quadratic imaginary cyclic number fields of 2-power degree with relative class number ≤ 20 are given in Tables 1, 2 and 3.

2. Lower bounds for the relative class number. Let N be a CM-field of degree 2n, N_+ its maximal totally real subfield, h_N the class number of N and h_N^- the relative class number of N. In order to determine all CM-fields of a given degree and given class number, we begin with a reasonable lower bound for h_N^- , which leads us to a feasible computation. For this purpose we apply the following theorem, due to Louboutin [L1].

THEOREM 2. Let N be an imaginary cyclic number field of 2-power degree $2n = 2^m \ge 4$, conductor f_N and discriminant d_N . Then

$$h_N^- \ge \frac{2\varepsilon_N}{e(2n-1)} \left(\frac{\sqrt{f_N}}{\pi(\log f_N + 0.05)}\right)^2$$

where

$$\varepsilon_N = 1 - \frac{2\pi n e^{1/n}}{d_N^{1/(2n)}} \quad or \quad \frac{2}{5} \exp\left(-\frac{2n\pi}{d_N^{1/(2n)}}\right)$$

In particular,

$$\begin{array}{ll} \mbox{if} & n=2 \ and \ f_N \geq 118000 & then \ \ h_N^- > 20; \\ \mbox{if} & n=4 \ and \ f_N \geq 14800 & then \ \ h_N^- > 20; \\ \mbox{if} & n=8 \ and \ f_N \geq 4900 & then \ \ h_N^- > 20; \\ \mbox{if} & n=16 \ and \ f_N \geq 2000 & then \ \ h_N^- > 20; \\ \mbox{if} & n=32 \ and \ f_N \geq 1300 & then \ \ h_N^- > 20; \\ \mbox{if} & n=64 \ and \ f_N \geq 1000 & then \ \ h_N^- > 20; \\ \mbox{if} & n=128 \ and \ f_N \geq 900 & then \ \ h_N^- > 20; \\ \mbox{if} & n=256 \ and \ f_N \geq 800 & then \ \ h_N^- > 20. \\ \end{array}$$

If $h_N^- \le 20$, then $n \le 256$.

Proof. See Theorem 4 of [L1]. For the last statement, it suffices to notice that $f_N \ge 2n + 1$. ■

3. Conductors of cyclic number fields. Let N be a cyclic number field of degree $2n = 2^m$, f_N the conductor of N, d_N the discriminant of N and h_N the class number of N. Let χ_N be a primitive character of order 2n such that N is associated with the cyclic group generated by χ_N , $\{\chi_N^i : 0 \le i \le 2n - 1\}$. For any positive integer n and prime q, let $v_q(n)$ denote the exponent of q in the prime factorization of n. The following properties are very useful in determining all possible conductors smaller than a fixed constant. PROPOSITION 1. Let N be a quartic cyclic number field and k the quadratic subfield of N.

(i) The conductor f_N can be written as

$$f_N = \prod_{i=1}^{s} p_i \prod_{j=1}^{t} q_j, \quad f_k = 2^{\varepsilon} \prod_{j=1}^{t} q_j, \quad s \ge 0 \text{ and } t \ge 1.$$

Here, p_i 's and q_j 's are all distinct, p_i is $2^2, 2^3$ or an odd prime, q_j is 2^4 or odd prime equal to 1 modulo 4, and $\varepsilon = -1$ or 0 according as 16 divides $\prod q_j$ or not. In addition, $d_N = f_N^2 f_k$.

(ii) For a given conductor f_N with $f_N \equiv 0 \mod 8$, there are 2^{t-1} imaginary cyclic quartic fields and 2^{t-1} real fields.

(iii) For a given conductor f_N with $v_2(f_N) = 2$, we assume $p_1 = 2^2$. Then there are 2^{t-1} cyclic quartic fields of conductor f_N ; all of them are real if

$$1 + \sum_{i \ge 2}^{s} \frac{p_i - 1}{2} + \sum_{j=1}^{t} \frac{q_j - 1}{4} \equiv 0 \pmod{2}$$

and all are imaginary otherwise.

(iv) For a given odd conductor f_N , there are 2^{t-1} cyclic quartic fields of conductor f_N ; all of them are real if

$$\sum_{i=1}^{s} \frac{p_i - 1}{2} + \sum_{j=1}^{t} \frac{q_j - 1}{4} \equiv 0 \pmod{2}$$

and all are imaginary otherwise.

Proof. (i) Let χ_N be a primitive Dirichlet character modulo f_N of order 4 such that the cyclic group $\langle \chi_N \rangle$ is associated with the field N. Let $f_N = \prod p^a$. Corresponding to the decomposition

$$(\mathbb{Z}/f_N\mathbb{Z})^* = \prod (\mathbb{Z}/p^a\mathbb{Z})^*,$$

we may write χ_N as $\chi_N = \prod \chi_p$ where χ_p is a character defined modulo p^a . As χ_N has order 4, every χ_p has order 2 or 4 and at least one of the χ_p has order 4. If χ_p has order 2, then $p^a = 2^2, 2^3$ or an odd prime, χ_p is the Legendre symbol when p_i is odd, and χ_p is one of two primitive nonconjugate quadratic characters modulo 8 when $p = 2^3$. If χ_p has order 4, then $p^a = 2^4$ or an odd prime equal to 1 modulo 4. Moreover, in that case χ_p is one of two conjugate primitive quartic characters modulo 16 where $p^a = 16$. Denote by q_j the divisor of f_N such that the corresponding character χ_{q_j} is of order 4, and by p_i the divisor of f_N such that χ_{p_i} is of order 2. We rewrite f_N as

$$f_N = \prod_{i=1}^{s} p_i \prod_{j=1}^{t} q_j$$
 and $\chi_N = \prod_{i=1}^{s} \chi_{p_i} \prod_{j=1}^{t} \chi_{q_j}$,

with the convention $q_1 = 2^4$ if $v_2(f_N) = 4$, $p_1 = 2^3$ if $v_2(f_N) = 3$ and $p_1 = 2^2$ if $v_2(f_N) = 2$ (we allow s = 0). Then $\chi_N^2 = \prod \chi_{q_j}^2$ is associated with the quadratic subfield k. If q_j is an odd prime then the conductor of $\chi_{q_j}^2$ is also q_j and if $q_1 = 2^4$ then the conductor of $\chi_{q_1}^2$ is 2^3 . So we have

$$f_k = 2^{\varepsilon} \prod_{j=1}^t q_j$$
 and $d_N = 2^{\varepsilon} \prod p_i^2 \prod q_j^3$

where $\varepsilon = -1$ or 0 according as 16 divides $\prod q_j$ or not.

(ii) (iii) and (iv). It suffices to notice that N is real or imaginary according as $\chi_N(-1) = 1$ or $\chi_N(-1) = -1$ and that

 $\begin{cases} \chi_{p_i}(-1) = (-1)^{(p_i-1)/2} & \text{if } p_i \text{ is an odd prime,} \\ \chi_{q_j}(-1) = (-1)^{(q_j-1)/4} & \text{if } q_j \text{ is an odd prime equal to 1 mod 4.} \end{cases}$

REMARK 1. If N is an imaginary cyclic quartic field, then $2^{s}4^{t-1}$ divides h_N . In fact, let G_N be the genus field of N. Then $[G_N : \mathbb{Q}] = 2^{s}4^{t}$ and $[G_N : N] \mid h_N$.

We can prove the similar properties for octic cyclic number fields:

PROPOSITION 2. Let N be an octic cyclic number field, K the quartic subfield of N, and k the quadratic subfield of N.

(i) The conductor f_N can be written as

$$f_N = \prod_{i=1}^{s} p_i \prod_{j=1}^{t} q_j \prod_{k=1}^{u} r_k, \quad s \ge 0, \ t \ge 0 \ and \ u \ge 1,$$

with

$$f_K = 2^{\varepsilon_1} \prod_{j=1}^t q_j \prod_{k=1}^u r_k, \quad f_k = 2^{2\varepsilon_2} \prod_{k=1}^u r_k.$$

Moreover,

$$d_N = f_N^4 f_K^2 f_k = 2^{2(\varepsilon_1 + \varepsilon_2)} \prod_{i=1}^s p_i^4 \prod_{j=1}^t q_j^6 \prod_{k=1}^u r_k^7.$$

Here, p_i 's, q_j 's and r_k 's are all distinct, p_i is $2^2, 2^3$ or an odd prime, q_j is 2^4 or an odd prime equal to 1 modulo 4, r_k is 2^5 or an odd prime equal to 1 modulo 8, $\varepsilon_1 = -1$ or 0 according as 2 divides $\prod q_j \prod r_k$ or not, and $\varepsilon_2 = -1$ or 0 according as 2 divides $\prod r_k$ or not. (ii) For a given conductor f_N with $f_N \equiv 0 \mod 8$, there are $2^t 4^{u-1}$ real fields and $2^t 4^{u-1}$ imaginary fields.

(iii) For a given conductor f_N with $v_2(f_N) = 2$, we assume $p_1 = 2^2$. Then there are $2^t 4^{u-1}$ cyclic octic fields of conductor f_N ; all of them are real if

$$1 + \sum_{i \ge 2}^{s} \frac{p_i - 1}{2} + \sum_{j=1}^{t} \frac{q_j - 1}{4} + \sum_{k=1}^{u} \frac{r_k - 1}{8} \equiv 0 \pmod{2}$$

and all are imaginary otherwise.

(iv) For a given odd conductor f_N , there are $2^t 4^{u-1}$ cyclic octic fields of conductor f_N ; all of them are real if

$$\sum_{i=1}^{s} \frac{p_i - 1}{2} + \sum_{j=1}^{t} \frac{q_j - 1}{4} + \sum_{k=1}^{u} \frac{r_k - 1}{8} \equiv 0 \pmod{2}$$

and all are imaginary otherwise.

COROLLARY 1. (i) If N is an imaginary cyclic octic field, then $2^{s+2t+3u-3}$ divides h_N .

(ii) Let N be a non-quadratic imaginary cyclic number field of degree $2n = 2^m \ge 4$. Then N has odd class number if and only if f_N is 2^{m+2} or an odd prime equal to $2n + 1 \mod 4n$.

Proof. This follows from genus field theory and Theorem 10.4(b) of [W]. \blacksquare

Set

$$\zeta_N = \exp\left(\frac{2i\pi}{f_N}\right)$$
 and $\zeta_{N_+} = \exp\left(\frac{2i\pi}{f_{N_+}}\right)$.

From χ_N and χ_{N_+} we can compute numerically two polynomials defining the number fields N and N_+ , respectively, for

$$\theta_N = \sum_{\substack{g=1\\\chi_N(g)=1}}^{f_N - 1} \zeta_N^g \text{ and } \theta_{N_+} = \sum_{\substack{g=1\\\chi_{N_+}(g)=1}}^{f_{N_+} - 1} \zeta_{N_+}^g$$

are primitive elements of N and N_+ , respectively. However, if N or N_+ is quartic we use [HHRW1] to get a more convenient primitive element for N or N_+ .

4. Main results. We can evaluate precisely the relative class number by the following formula:

$$h_N^- = Q w_N \prod_{\chi \text{ odd}} \left(-\frac{1}{2} B_{1,\chi} \right)$$

where Q is the Hasse unit index of N, w_N is the number of roots of unity in N, f_{χ} is the conductor of χ and $B_{1,\chi} = (1/f_{\chi}) \sum_{a=1}^{f_{\chi}-1} \chi(a)a$. The $B_{1,\chi}$ are called the *generalized Bernoulli numbers*. (See [W], Chapter 4, Theorem 4.) Now, according to [H] or [Lm] imaginary cyclic fields have the Hasse unit indices equal to 1, and according to Lemma (b) of [L2] for N an imaginary cyclic field of degree $2n = 2^m \ge 4$ we have $w_N = 2$ except if $2n + 1 = 2^m + 1 = p$ is prime and $N = \mathbb{Q}(\zeta_p)$. Therefore, when N is an imaginary cyclic field of degree $2n = 2^m \ge 4$, setting $\alpha_N = \sum_{a=1}^{f_N-1} \chi_N(a)a \in \mathbb{Z}[\zeta_{2^m}]$ we get

$$h_N^- = \frac{w_N}{(2f_N)^n} \prod_{\substack{i=1\\i \text{ odd}}}^{2^m - 1} \left(\sum_{a=1}^{f_N - 1} \chi_N^i(a)a\right) = \frac{w_N}{(2f_N)^n} N_{\mathbb{Q}(\zeta_{2^m})/\mathbb{Q}}(\alpha_N).$$

From this relative class number formula we get the following proposition which explains why our computation did not yield any field with some relative class numbers:

PROPOSITION 3 (Louboutin). Let N be an imaginary cyclic number field of degree $2n = 2^m \ge 4$ and let q be an odd prime. If q divides h_N^- then $v_q(h_N^-)$, the exponent of q in the factorization of h_N^- , is divisible by f_q , the order of q in the multiplicative group $(\mathbb{Z}/2^m\mathbb{Z})^*$. Therefore,

- $h_N^- \leq 20 ~~and~ 2n = 4 ~~imply ~~h_N^- \in \{1,2,4,5,8,9,10,13,16,17,18,20\},$
- $h_N^- \leq 20 \ and \ 2n = 8 \qquad imply \quad h_N^- \in \{1, 2, 4, 8, 9, 16, 17, 18\},$
- $h_N^- \leq 20 \ and \ 2n = 16 \quad imply \quad h_N^- \in \{1,2,4,8,16,17\}.$

Proof. Use Theorem 2.13 of [W] and the prime ideal factorization of the principal ideal $(\alpha_N) = (\sum_{a=1}^{f_N-1} a\chi_N(a))$ of $\mathbb{Q}(\zeta_{2^m})$.

To determine all the non-quadratic imaginary cyclic fields of degree $2n = 2^m \ge 4$ with relative class number $h_N^- \le 20$ we proceeded as follows.

First, according to Theorem 2 and using Propositions 1 and 2 we found all the imaginary cyclic quartic fields with conductor $f_N \leq 118000$ (there are 64078 of them) and all the imaginary cyclic octic fields with $f_N \leq 14800$ (there are 3599 of them).

Second, we computed the relative class numbers of all those 67677 imaginary cyclic fields. We found that there are 188 imaginary cyclic quartic fields with $h_N^- \leq 20$ and 13 imaginary cyclic octic fields with $h_N^- \leq 20$.

Third, for all those 201 quartic and octic fields we computed the class numbers of their real subfields N_+ . If N_+ is real quadratic, then this computation was easy. If N_+ is cyclic quartic, then we used the table of [M.N.G]. We found that 166 out of those 201 fields have class number $h_N \leq 20$.

Fourth, for imaginary cyclic fields of degree $2n = 2^m \ge 16$ results similar to those of Propositions 1 and 2 enabled us to make a list of all the imaginary

cyclic fields of degree $2n = 2^m \ge 16$ with $f_N \le 5000$ (see Theorem 2). There are 996 such fields.

Fifth, we computed their relative class numbers and found that 3 out of them have $h_N^- \leq 20$. Finally, using PARI-GP and polynomials defining N_+ for those 3 fields (see Section 3), we found that all have $h_N \leq 20$.

We list all imaginary cyclic quartic fields with relative class number ≤ 20 in Table 1, all imaginary cyclic octic fields with relative class number ≤ 20 in Table 2, and all imaginary cyclic fields of degree $2n = 2^m \geq 16$ with relative class number ≤ 20 in Table 3. The results of our computation agree with those of [G], [H], [HHRW1], [HHRW2], [HHRWH], [L1], [L2], [MM], [M.N.G], [S], [Y], [YH1] and [YH2].

 $h_{N}^{-} = 1$ h_{N_+} β_N h_{N_+} β_N ff $\mathbf{5}$ 1 $5 + 2\sqrt{5}$ 1 $37 + 6\sqrt{37}$ 37 1 $13 + 2\sqrt{13}$ 1 $53 + 2\sqrt{53}$ 1353 $2 + \sqrt{2}$ $61 + 6\sqrt{61}$ 1 611 16 $29 + 2\sqrt{29}$ 291 $h_{N}^{-} = 2$ $5 + \sqrt{5}$ $10 + 3\sqrt{10}$ 40 1 80 $\mathbf{2}$ $3(2+\sqrt{2})$ $17(5 + 2\sqrt{5})$ 1 85148 $13(5+2\sqrt{5})$ 2 $85 + 6\sqrt{85}$ 651 85 $5(13 + 2\sqrt{13})$ $13 + 3\sqrt{13}$ 651 1041 $5(2+\sqrt{2})$ $7(17 + 4\sqrt{17})$ 80 1 119 1 $h_N^- = 4$ 60 $3(5+2\sqrt{5})$ 164 1 $41 + 4\sqrt{41}$ 1 $17 + 4\sqrt{17}$ $3(65 + 8\sqrt{65})$ 68 1 195 $\mathbf{2}$ $21(5+2\sqrt{5})$ $\mathbf{2}$ $205 + 6\sqrt{205}$ 1051 205 $7(2+\sqrt{2})$ $3(73 + 8\sqrt{73})$ 1121 2191 $3(5 + \sqrt{5})$ $17(13 + 2\sqrt{13})$ 1201 2211 $17 + \sqrt{17}$ $221 + 14\sqrt{221}$ 1361 221 $\mathbf{2}$ $15(17 + 4\sqrt{17})$ $7(5+2\sqrt{5})$ 1401 2551 $34 + 3\sqrt{34}$ $29(5+2\sqrt{5})$ 272 $\mathbf{2}$ 1451 $5(29 + 2\sqrt{29})$ 1451

Table 1. The imaginary cyclic quartic fields $N = \mathbb{Q}(\sqrt{-\beta_N})$ with $h_N^- \leq 20$

Table 1 (cont.)

$h_N^- = 5$							
f	h_{N_+}	β_N	f	h_{N_+}	β_N		
101	1	$101 + 10\sqrt{101}$	197	1	$197 + 14\sqrt{197}$		
157	1	$157 + 6\sqrt{157}$	349	1	$349 + 18\sqrt{349}$		
173	1	$173 + 2\sqrt{173}$	373	1	$373 + 18\sqrt{373}$		
		h	$\bar{V} = 8$				
$\overline{156}$	1	$\frac{n_{T}}{3(13+2\sqrt{13})}$	285	1	$57(5+2\sqrt{5})$		
165	1	$33(5+2\sqrt{5})$	305	1	$61(5+2\sqrt{5})$		
205	1	$41(5+2\sqrt{5})$	356	1	$89 + 8\sqrt{89}$		
200	1	$11(5+2\sqrt{5})$ $11(5+2\sqrt{5})$	377	1	$29(13+2\sqrt{13})$		
240	2	$3(10+3\sqrt{10})$	435	4	$3(145 + 8\sqrt{145})$		
240 260	2	$65 + 4\sqrt{65}$	455	2	$7(65+4\sqrt{65})$		
200	1	$17(2+\sqrt{2})$	545	1	$5(109 + 10\sqrt{109})$		
273	1	$21(13+2\sqrt{13})$	040	1	5(105 + 107 105)		
	1	21(15 + 2 \ 15)					
		h_{I}	$\bar{V} = 9$				
149	1	$149 + 10\sqrt{149}$	661	1	$661 + 6\sqrt{661}$		
293	1	$293 + 2\sqrt{293}$					
		h_N^-	= 10				
51	1	$\frac{1}{3(17+4\sqrt{17})}$	365	2	$365 + 14\sqrt{365}$		
80	2	$10 + \sqrt{10}$	391	1	$23(17+4\sqrt{17})$		
85	2	$85 + 2\sqrt{85}$	464	2	$58 + 3\sqrt{58}$		
176	-	$11(2+\sqrt{2})$	481	1	$13(37 + 6\sqrt{37})$		
185	1	$37(5+2\sqrt{5})$	485	2	$485 + 14\sqrt{485}$		
185	1	$5(37+6\sqrt{37})$	493	2	$493 + 18\sqrt{493}$		
208	1	$13(2+\sqrt{2})$	527	1	$31(17+4\sqrt{17})$		
208	2	$26 + \sqrt{26}$	533	1	$41(13+2\sqrt{13})$		
208	2	$26 + 5\sqrt{26}$	533	2	$533 + 22\sqrt{533}$		
265	-	$53(5+2\sqrt{5})$	565	2	$565 + 6\sqrt{565}$		
265	1	$5(53+2\sqrt{53})$	685	2	$685 + 18\sqrt{685}$		
267	1	$3(89 + 8\sqrt{89})$	699	1	$3(233 + 8\sqrt{233})$		
287	1	$7(41 + 4\sqrt{41})$	771	3	$3(257 + 16\sqrt{257})$ $3(257 + 16\sqrt{257})$		
304	1	$19(2+\sqrt{2})$	803	1	$11(73+8\sqrt{73})$		
339	1	$3(113 + 8\sqrt{113})$	1261	2	$11(13 + 6\sqrt{13})$ $1261 + 6\sqrt{1261}$		
365	1	$3(113 + 3\sqrt{113})$ $73(5 + 2\sqrt{5})$	1201	4	1201 1 00 1201		
	T	10(0+200)					

Table 1 (cont.)

$h_N^- = 13$						
f	h_{N_+}	β_N	f	h_{N_+}	β_N	
269	1	$269 + 10\sqrt{269}$	509	1	$509 + 22\sqrt{509}$	
317	1	$317 + 14\sqrt{317}$	557	1	$557 + 14\sqrt{557}$	
397	1	$397 + 6\sqrt{397}$	1789	1	$1789 + 42\sqrt{1789}$	
		h	$_{V} = 16$			
240	2	$\frac{n_N}{3(10+\sqrt{10})}$	520	2	$65 + 7\sqrt{65}$	
260	2	$65 + 8\sqrt{65}$	580	4	$145 + 12\sqrt{145}$	
312	1	$3(13+3\sqrt{13})$	584	1	$73 + 3\sqrt{73}$	
336	1	$21(2+\sqrt{2})$	609	1	$21(29+2\sqrt{29})$	
340	1	$5(17+4\sqrt{17})$	615	1	$15(41 + 4\sqrt{41})$	
380	1	$19(5+2\sqrt{5})$	663	1	$39(17 + 4\sqrt{17})$	
385	1	$77(5+2\sqrt{5})$	689	1	$53(13+2\sqrt{13})$	
408	1	$3(17 + \sqrt{17})$	795	2	$3(265 + 16\sqrt{265})$	
429	1	$33(13 + 2\sqrt{13})$	799	1	$47(17 + 4\sqrt{17})$	
440	1	$11(5+\sqrt{5})$	905	1	$5(181 + 10\sqrt{181})$	
444	1	$3(37 + 6\sqrt{37})$	979	1	$11(89 + 8\sqrt{89})$	
445	4	$445 + 18\sqrt{445}$	1015	4	$7(145 + 12\sqrt{145})$	
452	1	$113 + 8\sqrt{113}$	1271	1	$31(41 + 4\sqrt{41})$	
465	1	$93(5+2\sqrt{5})$	1351	1	$7(193 + 12\sqrt{193})$	
496	1	$31(2+\sqrt{2})$	1595	4	$11(145 + 8\sqrt{145})$	
505	1	$101(5+2\sqrt{5})$				
		h=	$\bar{J} = 17$			
109	1	$\frac{n_N}{109 + 10\sqrt{109}}$	V = 17 821	1	$821 + 14\sqrt{821}$	
229	3	$109 + 10\sqrt{109}$ $229 + 2\sqrt{229}$	853	1	$853 + 18\sqrt{853}$	
277	1	$223 + 2\sqrt{223}$ $277 + 14\sqrt{277}$	000	T	000 ± 100000	
			V = 18			
424	1	$53 + 7\sqrt{53}$	949	2	$949 + 18\sqrt{949}$	
493	1	$17(29 + 2\sqrt{29})$	1059	1	$3(353 + 8\sqrt{353})$	
592	2	$74 + 7\sqrt{74}$	1165	2	$1165 + 18\sqrt{1165}$	
629	2	$629 + 2\sqrt{629}$	1207	1	$71(17+4\sqrt{17})$	
848	2	$106 + 9\sqrt{106}$				

$h_N^- = 20$							
f	h_{N_+}	β_N	f	h_{N_+}	β_N		
205	2	$205 + 14\sqrt{205}$	728	1	$7(13 + 3\sqrt{13})$		
221	2	$221 + 10\sqrt{221}$	745	1	$149(5+2\sqrt{5})$		
240	1	$15(2+\sqrt{2})$	772	1	$193 + 12\sqrt{193}$		
280	1	$7(5+\sqrt{5})$	776	1	$97 + 9\sqrt{97}$		
305	1	$5(61 + 6\sqrt{61})$	805	1	$161(5+2\sqrt{5})$		
328	1	$41 + 5\sqrt{41}$	880	2	$11(10 + \sqrt{10})$		
345	1	$69(5+2\sqrt{5})$	935	1	$55(17 + 4\sqrt{17})$		
348	1	$3(29 + 2\sqrt{29})$	959	1	$7(137 + 4\sqrt{137})$		
368	1	$23(2+\sqrt{2})$	1001	1	$77(13 + 2\sqrt{13})$		
377	1	$13(29 + 2\sqrt{29})$	1011	1	$3(337 + 16\sqrt{337})$		
445	1	$89(5+2\sqrt{5})$	1040	4	$130 + 9\sqrt{130}$		
460	1	$23(5+2\sqrt{5})$	1145	3	$5(229 + 2\sqrt{229})$		
520	1	$13(5+\sqrt{5})$	1168	2	$146 + 11\sqrt{146}$		
528	1	$33(2+\sqrt{2})$	1235	2	$19(65 + 8\sqrt{65})$		
545	1	$109(5 + 2\sqrt{5})$	1243	1	$11(113 + 8\sqrt{113})$		
555	2	$3(185 + 8\sqrt{185})$	1252	1	$313 + 12\sqrt{313}$		
560	2	$7(10 + 3\sqrt{10})$	1295	2	$7(185 + 4\sqrt{185})$		
572	1	$11(13 + 2\sqrt{13})$	1313	1	$101(13 + 2\sqrt{13})$		
624	2	$3(26 + 5\sqrt{26})$	1313	1	$13(101 + 10\sqrt{101})$		
645	1	$129(5+2\sqrt{5})$	1405	2	$1405 + 6\sqrt{1405}$		
656	1	$41(2+\sqrt{2})$	1495	2	$23(65 + 4\sqrt{65})$		
680	2	$85 + 9\sqrt{85}$	1599	1	$39(41 + 4\sqrt{41})$		
696	1	$3(29 + 5\sqrt{29})$	1855	2	$7(265 + 12\sqrt{265})$		
715	2	$11(65 + 8\sqrt{65})$	2355	6	$3(785 + 16\sqrt{785})$		

Table 1 (cont.)

Table 2. The imaginary cyclic octic fields N with $h_N^- \leq 20$

h_N^-	f	h_{N_+}	f_+	quartic subfield N_+		
	polynomial defining N					
1	32	1	16	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$		
$x^{8} + 8x^{6} + 20x^{4} + 16x^{2} + 2 (N = \mathbb{Q}(\sqrt{-(2 + \sqrt{2} + \sqrt{2})}))$						
1	41	1	41	$\mathbb{Q}(\sqrt{41+4\sqrt{41}})$		
x ⁸ -	$x^8 + x^7 + 3x^6 + 11x^5 + 44x^4 - 53x^3 + 153x^2 - 160x + 59$					

Table 2 (cont.)						
h_N^-	f	h_{N_+}	f_+	quartic subfield N_+		
	polynomial defining N					
2	51	1	17	$\mathbb{Q}(\sqrt{17+4\sqrt{17}})$		
				$-11x^5 + 15x^4 - 61x^3 + 58x^2 - 47x + 103$		
2	85	2	85	$\mathbb{Q}(\sqrt{5(17+4\sqrt{17})})$		
				$\frac{2}{79x^5 + 134x^4 + 41x^3 + 245x^2 - 846x + 596}$		
4	68	1	17	$\mathbb{Q}(\sqrt{17} + 4\sqrt{17})$		
			x^8	$+17x^6 + 68x^4 + 85x^2 + 17$		
8	221	2	221	$\mathbb{Q}(\sqrt{13(17+4\sqrt{17})})$		
$x^{8} -$	$-x^{7} +$	$27x^{6}$ –	$-96x^5$	$+576x^4 - 3512x^3 - 1421x^2 - 20515x + 139129$		
17	137	1	137	$\mathbb{Q}(\sqrt{137 + 4\sqrt{137}})$		
x^8	$+x^{7}$ -	$+9x^{6}+$	$-105x^{5}$	$5 + 954x^4 + 3767x^3 + 9149x^2 + 12828x + 7607$		
17	281	1	281	$\mathbb{Q}(\sqrt{281 + 16\sqrt{281}})$		
$x^{8} + $	$x^{7} + 3$	$18x^6 +$	$145x^5$	$-794x^4 - 4463x^3 + 23729x^2 - 26540x + 559952$		
18	96	1	16	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$		
x^8	$x^{8} + 24x^{6} + 180x^{4} + 432x^{2} + 162 (N = \mathbb{Q}(\sqrt{-3(2 + \sqrt{2} + \sqrt{2})}))$					
18	119	1	17	$\mathbb{Q}(\sqrt{17+4\sqrt{17}})$		
$x^{8} - x^{7} + 27x^{6} - 28x^{5} + 151x^{4} - 350x^{3} + 500x^{2} - 846x + 1157$						
18	160	2	80	$\mathbb{Q}(\sqrt{5(2+\sqrt{2})})$		
$x^8 + 40x^6 + 500x^4 + 2000x^2 + 50$						
18	365	1	73	$\mathbb{Q}(\sqrt{73+8\sqrt{73}})$		
	$x^{8} - x^{7} + 78x^{6} + 17x^{5} + 1706x^{4} + 3421x^{3} + 14117x^{2} + 45478x + 272444$					
18	485	2	485	$\mathbb{Q}(\sqrt{5(97+4\sqrt{97})})$		
	$\frac{1}{x^8 - x^7 + 55x^6 + 156x^5 + 7384x^4 + 27896x^3 + 179695x^2 + 549x + 85941}{x^8 - x^7 + 55x^6 + 156x^5 + 7384x^4 + 27896x^3 + 179695x^2 + 549x + 85941}$					
L						

Table 2 (cont.)

Table 3. The imaginary cyclic fields N of degree 16 with $h_N^- \le 20$ which are the only ones of degree $2^m \ge 16$ with $h_N^- \le 20$

f	h_N^-	polynomial defining N
f_+	h_{N_+}	polynomial defining the real octic subfield N_+
f_L	h_L	the quartic subfield L
17	1	$\mathbb{Q}(\zeta_{17})$
17	1	$\mathbb{Q}(\cos(2\pi/17))$
17	1	$\mathbb{Q}(\sqrt{17+4\sqrt{17}})$
64	17	$\mathbb{Q}(\sqrt{-(2+\sqrt{2+\sqrt{2}+\sqrt{2}})})$
32	1	$\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$
16	1	$\mathbb{Q}(\sqrt{2+\sqrt{2}})$
113	17	$x^{16} + x^{15} + 4x^{14} + 20x^{13} + 110x^{12} + 525x^{11} + 325x^{10} - 425x^9$
		$+12062x^8 - 21729x^7 + 64244x^6 - 119403x^5 + 154492x^4$
		$-132177x^3 + 210865x^2 - 281708x + 132937$
113	1	$x^{8} + x^{7} - 49x^{6} + 16x^{5} + 511x^{4} - 367x^{3} - 1499x^{2} + 798x + 1372$
113	1	$\mathbb{Q}(\sqrt{113+8\sqrt{113}})$

REMARK 2. Some of the fields which appear in Tables 2 and 3 could be given explicitly. In Table 2, the first field of conductor 32 is $N = \mathbb{Q}(\sqrt{-(2+\sqrt{2}+\sqrt{2})})$ and the ninth field of conductor 96 is $N = \mathbb{Q}(\sqrt{-3(2+\sqrt{2}+\sqrt{2})})$. In Table 3, the first field of conductor 17 is $N = \mathbb{Q}(\zeta_{17})$ and $N_+ = \mathbb{Q}(\cos(2\pi/17))$ and the second field of conductor 64 is $N = \mathbb{Q}(\sqrt{-(2+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2})})$ and $N_+ = \mathbb{Q}(\sqrt{2+\sqrt{2}+\sqrt{2}})$ (see [L2]).

Acknowledgements. We would like to express our gratitude to S. Louboutin for his valuable suggestions.

References

- [G] K. Girstmair, The relative class numbers of imaginary cyclic fields of degree 4, 6, 8 and 10, Math. Comp. 61 (1993), 881–887.
- [M.N.G] M.-N. Gras, Classes et unités des extensions cycliques réelles de degré 4 de Q, Ann. Inst. Fourier (Grenoble) 29 (1) (1979), 107–124; Table numérique

du nombre de classes et des unités des extensions cycliques réelles de degré 4 de \mathbb{Q} , Publ. Math. Fac. Sci. Besançon, 1977–78.

- [HHRW1] K. Hardy, R. H. Hudson, D. Richman and K. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc. 311 (1989), 1–55.
- [HHRW2] -, -, -, -, -, Table of the relative class numbers $h^*(K)$ of imaginary cyclic quartic fields K with $h^*(K) \equiv 2 \pmod{4}$ and conductor f < 416,000, Carleton-Ottawa Math. Lecture Note Ser. 8 (1987).
- [HHRWH] K. Hardy, R. H. Hudson, D. Richman, K. Williams and M. N. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, Carleton-Ottawa Math. Lecture Note Ser. 7 (1986).
 - [H] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, 1985.
 - [Lm] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347–359.
 - [L1] S. Louboutin, CM-fields with cyclic ideal class group of 2-power orders, J. Number Theory, to appear.
 - [L2] —, Determination of all nonquadratic imaginary cyclic number fields of 2power degree with ideal class group of exponent ≤ 2 , Math. Comp. 64 (1995), 323–340.
 - [MM] J. Masley and H. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
 - [S] B. Setzer, The determination of all imaginary quartic number fields with class number 1, Math. Comp. 35 (1980), 1383-1386.
 - [W] L. C. Washington, Introduction to Cyclotomic Fields, Springer, 1983.
 - [Y] K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), 899–921.
 - [YH1] K. Yoshino and M. Hirabayashi, On the relative class number of the imaginary abelian number field I, Mem. College Liberal Arts, Kanazawa Medical Univ. 9 (1981), 5–53.
 - [YH2] —, —, On the relative class number of the imaginary abelian number field II, ibid. 10 (1982), 33–81.

Department of Mathematics	Department of Mathematics Education
Korea University	Korea University
136-701 Seoul, Korea	136-701 Seoul, Korea
E-mail: youngho@semi.korea.ac.kr	E-mail: shkwon@semi.korea.ac.kr

Received on 8.11.1996 and in revised form on 4.6.1997 (3072)