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Explicit evaluations of some Weil sums
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Robert S. Coulter (St. Lucia, Qld.)

1. Introduction. In this article we will explicitly evaluate exponential
sums of the form ∑

x∈Fq

χ(axpα+1)

where χ is a non-trivial additive character of the finite field Fq with q = pe

odd and a ∈ Fq. The case a = 0 is trivial and so we assume throughout
that a 6= 0. These sums form a subset of a much larger class of exponential
sums of the form ∑

x∈Fq

χ(f(x))

where f ∈ Fq[X]. These sums are also known as Weil sums. The problem
of explicitly evaluating these sums is quite often difficult. Results giving
estimates for the absolute value of the sum are more common and such
results have been regularly appearing for many years. The book [5] by Lidl
and Niederreiter gives an overview of this area of research in the concluding
remarks of Chapter 5.

As with previous explicit evaluations, the special form of our polynomial
will play an integral part. In [1] Carlitz obtained explicit evaluations of
Weil sums with f(X) = aXp+1 + bX. His methods involved first obtaining
evaluations when b = 0 and then proceeding to the general case. This article
is largely a generalisation of the methods used by Carlitz in the first part
of [1]. A further article dealing with the second part of Carlitz’ evaluation
method is under preparation.

The polynomials studied in this article are of the form f(X) = aXpα+1

where α is an arbitrary natural number. These monomials are a subset
of the class of polynomials known as Dembowski–Ostrom polynomials (or
D–O polynomials). We may define a D–O polynomial to be any polynomial
which, when reduced, has the shape
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f(X) =
e−1∑

i,j=0

aijX
pi+pj

.

D–O polynomials play an important role in the study of planar functions
(see [4, 2]). This article was motivated by the connection between bent
polynomials and planar polynomials recently identified in a joint article by
the author and Matthews [3]. In that article bent polynomials were defined
in terms of character sums and shown to be the multivariate equivalent of
planar polynomials over a finite field.

Throughout this article Fq will denote the finite field of q elements with
q = pe odd, α will denote any natural number and d = gcd(α, e) = (α, e).
We denote the non-zero elements of Fq by F∗q . We shall denote by Tr the
absolute trace function. The canonical additive character of Fq, denoted by
χ1, is given by

χ1(x) = e2πiTr(x)/p

for all x ∈ Fq. Note that χ1(xp) = χ1(x) for all x ∈ Fq. Any additive
character χa of Fq can be obtained from χ1 by χa(x) = χ1(ax) for all x ∈ Fq.
Due to this fact we only explicitly evaluate the Weil sums with χ = χ1 as it
is possible to evaluate the Weil sums for any non-trivial additive character
simply by manipulating the results obtained using this identity. We denote
our Weil sum by Sα(a). That is,

Sα(a) =
∑
x∈Fq

χ1(axpα+1).

The evaluation splits into two sections: one for e/d odd and one for e/d
even. Our two main results are given in the following two theorems.

Theorem 1. Let e/d be odd. Then

Sα(a) =
{

(−1)e−1√q η(a) if p ≡ 1 mod 4,
(−1)e−1ie

√
q η(a) if p ≡ 3 mod 4.

Here η denotes the multiplicative quadratic character of Fq.

Theorem 2. Let e/d be even with e = 2m. Then

Sα(a) =


pm if a(q−1)/(pd+1) 6= (−1)m/d and m/d even,
−pm if a(q−1)/(pd+1) 6= (−1)m/d and m/d odd ,
pm+d if a(q−1)/(pd+1) = (−1)m/d and m/d odd ,
−pm+d if a(q−1)/(pd+1) = (−1)m/d and m/d even.

While Theorem 1 can be established easily using known results the proof
of Theorem 2 is long and involved, taking up the majority of this article.
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2. Preliminaries. Let g be a fixed primitive element of Fq. Then for
each j = 0, . . . , q − 2 we define a multiplicative character λj of Fq by

λj(gk) = e2πijk/(q−1)

for k = 0, . . . , q− 2. We shall use η to denote the quadratic character of Fq,
that is, η = λ(q−1)/2. For any additive character χ and any multiplicative
character λ of Fq we can define the classical Gaussian sum G(λ, χ) by

G(λ, χ) =
∑
x∈F∗q

λ(x)χ(x).

We have the following results on Gaussian sums which appear in [5].

Lemma 2.1 ([5, Theorem 5.12]). For any finite field we have

(i) G(λp, χb) = G(λ, χbp),
(ii) G(λ, χab) = λ(a)G(λ, χb).

Lemma 2.2 ([5, Theorem 5.15]). For Fq a finite field of odd characteristic
we have

G(η, χ1) =
{

(−1)e−1√q if p ≡ 1 mod 4,
(−1)e−1ie

√
q if p ≡ 3 mod 4.

There is one more result on Gaussian sums relevant to our work (see [5,
Theorem 5.16]).

Lemma 2.3 (Stickelberger’s Theorem). Let q be a prime power , let λ be
a non-trivial multiplicative character of Fq2 of order k dividing q + 1 and
let χ1 be the canonical additive character of Fq2 . Then

G(λ, χ1) =
{

q if k is odd or (q + 1)/k is even,
−q if k is even and (q + 1)/k is odd.

The following result on Weil sums will also be required.

Lemma 2.4 ([5, Theorem 5.30]). Let n ∈ N and λ be a multiplicative
character of Fq of order d = (n, q − 1). Then∑

x∈Fq

χ(axn + b) = χ(b)
d−1∑
j=1

λj(a)G(λj , χ)

for any a, b ∈ Fq with a 6= 0.

We have the following simple theorem on Weil sums.

Theorem 2.5. Let f(X) = aXn ∈ Fq[X] with q = pe odd and (n, q − 1)
= 2. Then∑

x∈Fq

χ1(f(x)) =
{

(−1)e−1√q η(a) if p ≡ 1 mod 4,
(−1)e−1ie

√
q η(a) if p ≡ 3 mod 4.

P r o o f. The theorem is established directly from Lemmas 2.2 and 2.4.
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Finally, we will need the following lemma on greatest common divisors.

Lemma 2.6. Let d = (α, e) and p be odd. Then

(pα + 1, pe − 1) =
{

2 if e/d is odd,
pd + 1 if e/d is even.

P r o o f. It is well known that (p2α − 1, pe − 1) = p(2α,e) − 1. Now

(p2α − 1, pe − 1) = (pα − 1, pe − 1)
(

pα + 1,
pe − 1

(pα − 1, pe − 1)

)
= (pd − 1)

(
pα + 1,

pe − 1
pd − 1

)
.

Further, (pα + 1, pα − 1) = (pα + 1, pd − 1) = 2 and (pe − 1)/(pd − 1) =
1 + pd + . . . + p((e/d)−1)d. Thus

(1) (p2α − 1, pe − 1) =

 pd − 1
2

(pα + 1, pe − 1) if e/d is odd,

(pd − 1)(pα + 1, pe − 1) if e/d is even.
It is a simple matter to show

(2α, e) =
{

d if e/d is odd,
2d if e/d is even

and from this and (1) the lemma is established.

3. The case e/d odd. For e/d odd we avoid following the methods
that Carlitz applies in [1]. This case can be dealt with simply by using some
of the preliminary results given in the previous section.

Theorem 1. Let e/d be odd. Then

Sα(a) =
{

(−1)e−1√q η(a) if p ≡ 1 mod 4,
(−1)e−1ie

√
q η(a) if p ≡ 3 mod 4,

where η denotes the multiplicative quadratic character.

P r o o f. For e/d odd we have (pα + 1, q − 1) = 2 by Lemma 2.6. Theo-
rem 2.5 can now be applied to complete the proof.

We note that, at first glance, the results Carlitz achieves in [1] do not
appear to be the same as Theorem 1 with α = 1. It can be checked, however,
that they are indeed equivalent. The different ways in which they are stated
can be attributed to the different methods used to prove the results.

4. The solvability of the equation apα

xp2α

+ ax = 0. We are left
with the case e/d even. Clearly e = 2m for some integer m. The following
result is of central importance to the remainder of this article.
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Theorem 4.1. For e = 2m the equation

apα

xp2α

+ ax = 0

is solvable for x ∈ F∗q if and only if e/d is even and

a(q−1)/(pd+1) = (−1)m/d.

In such cases there are p2d − 1 non-zero solutions.

P r o o f. We wish to solve

(2) xp2α−1 = −a1−pα

with x ∈ F∗q . Suppose there exists a solution to (2). By raising both sides
of (2) by (q − 1)/(pd − 1) it is clear that e/d must be even since

(xp2α−1)(q−1)/(pd−1) = (−apα−1)(q−1)/(pd−1)

implies

1 = (−1)(q−1)/(pd−1)(aq−1)(p
α−1)/(pd−1) = (−1)e/d.

For e/d even (q − 1)/(p2d − 1) is an integer. If we now raise both sides of
(2) by (q − 1)/(p2d − 1) we obtain the condition

(−apα−1)(q−1)/(p2d−1) = 1

or equivalently

a(q−1)(pα−1)/(p2d−1) = (−1)m/d.

Now (pα − 1, q − 1) = pd − 1 and (pα − 1)/(pd − 1) is odd when α/d is odd.
So we can simplify the condition by noticing that in such cases

(a(q−1)/(pd+1))(p
α−1)/(pd−1) = ((−1)m/d)(p

α−1)/(pd−1)

or equivalently a(q−1)/(pd+1) = (−1)m/d. So if equation (2) is solvable then
e/d is even and a(q−1)/(pd+1) = (−1)m/d.

Now let e/d be even with e = 2m. Let g be a primitive element of Fq and
a = gt satisfy a(q−1)/(pd+1) = (−1)m/d. If m/d is even then t = s(pd + 1)
and if m/d is odd then t = (2s + 1)(pd + 1)/2. We wish to show that there
exists some x ∈ F∗q satisfying (2). Equivalently, we wish to prove that for
any integer s there exists some integer r, with x = gr, satisfying

gr(p2α−1) = g(q−1)/2gs(pd+1)(1−pα)

when m/d is even, or

gr(p2α−1) = g(q−1)/2g(2s+1)(pd+1)(1−pα)/2

when m/d is odd. In both cases we wish to prove the result without condi-
tions on s.
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Recall iu ≡ v mod n has a solution i if and only if (u, n) | v. Suppose
first that m/d is even. Then there exists an integer r satisfying

gr(p2α−1) = g(q−1)/2gs(pd+1)(1−pα)

for any s if and only if (p2α − 1, q − 1) = p2d − 1 divides

s(pd + 1)(1− pα) + (q − 1)/2.

This is satisfied without conditions on s as p2d−1 divides both (pd+1)(1−pα)
and (q − 1)/2 when m/d is even.

Now suppose m/d is odd. Then there exists an integer r satisfying

gr(p2α−1) = g(q−1)/2g(2s+1)(pd+1)(1−pα)/2

for any s if and only if p2d − 1 divides

(2s + 1)(pd + 1)(1− pα)
2

+
q − 1

2
or equivalently if and only if

(2s + 1)(1− pα)
pd − 1

+
q − 1

p2d − 1

is even. As m/d is odd so too is (q−1)/(p2d−1). Also, as e/d is even we have
α/d is odd and so (2s+1)(1−pα)/(pd−1) is odd for any s. Thus under our
assumptions equation (2) is solvable without conditions on s. Let x0 be any
such solution. Then for any w ∈ Fp2d the element x = wx0 will be a solution
of the equation. Thus it is clear that there will be (p2α− 1, q− 1) = p2d− 1
non-zero solutions.

We make the following observations in regard to Theorem 4.1. Let
f(X) = apα

Xp2α

+ aX. The polynomial f belongs to the well known class
of polynomials called linearised (or affine) polynomials. These polynomials
have been extensively studied (see [5] for some of their properties). In par-
ticular, a linearised polynomial is a permutation polynomial if and only if
x = 0 is its only root in Fq (see [5, Theorem 7.9]). Theorem 4.1 thus tells
us that f is a permutation polynomial over Fq with q = pe and e = 2m if
and only if either e/d is odd or e/d is even and a(q−1)/(pd+1) 6= (−1)m/d.

5. The absolute value of Sα(a) with e = 2m. The proof of Theorem 2
will involve two steps. In this section we shall prove that Sα(a) is a real
number and calculate its absolute value. This will leave us only with the
task of determining the sign, which we deal with in the following section.
We note that throughout this section we only require that e = 2m. It is
only in determining the sign that we will need to assume e/d is even.

Lemma 5.1. For e = 2m there exists some x ∈ Fq satisfying xpα+1 = −1.
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P r o o f. The equation xpα+1 = −1 is solvable in Fq if and only if
(pα + 1, q − 1) divides (q − 1)/2. If e/d is odd then by Lemma 2.6 this
is equivalent to 4 | q− 1, which is always true as e = 2m. If e/d is even then
the equation is solvable if and only if pd + 1 | (q − 1)/2. This is equivalent
to (q− 1)/(pd + 1) being even, which will occur if and only if e/d is even.

Lemma 5.2. For e = 2m we have Sα(a) = Sα(−a) = Sα(a).

P r o o f. From the previous lemma there exists z ∈ Fq satisfying
zpα+1 = −1. From the definition

Sα(a) =
∑
x∈Fq

χ1(axpα+1) =
∑
x∈Fq

χ1(a(zx)pα+1)

=
∑
x∈Fq

χ1(−axpα+1) = Sα(−a).

To prove the second equality note that

Sα(a) =
∑
x∈Fq

χ1(axpα+1) =
∑
x∈Fq

χ1(−axpα+1) =
∑
x∈Fq

χ1(axpα+1),

which can only occur if Sα(a) is real, i.e. only when Sα(a) = Sα(a).

The immediate consequence relevant to our discussion is that we now
know that if e = 2m then Sα(a) is a real number and so S2

α(a) = |Sα(a)|2.
We have now established enough background material to prove our first
result on Sα(a) with e/d even. Note that at this stage we only require e to
be even.

Theorem 5.3. For e = 2m we have

Sα(a) = ±


pm if e/d odd ,
pm if e/d is even and a(q−1)/(pd+1) 6= (−1)m/d,
pm+d if e/d is even and a(q−1)/(pd+1) = (−1)m/d.

P r o o f. By Lemma 5.2,

S2
α(a) = Sα(a)Sα(−a)(3)

=
∑

w,y∈Fq

χ1(awpα+1 − aypα+1)

=
∑

x,y∈Fq

χ1(a(x + y)pα+1 − aypα+1)

=
∑
x∈Fq

χ1(axpα+1)
∑
y∈Fq

χ1(axpα

y + axypα

)

=
∑
x∈Fq

χ1(axpα+1)
∑
y∈Fq

χ1((apα

xp2α

+ ax)ypα

).
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The inner sum is zero unless apα

xp2α

+ax = 0. By Theorem 4.1, if e/d is odd
or e/d is even and a(q−1)/(pd+1) 6= (−1)m/d then the only solution to this
equation is x = 0, from which the first two cases of the theorem follow. If e/d

is even and a(q−1)/(pd+1) = (−1)m/d then there are a total of p2d solutions
to this equation. Moreover, for any such x0 satisfying apα

xp2α

+ ax = 0 we
have

(axpα+1
0 )pα

= apα

xp2α

0 xpα

0 = −axpα+1
0

so that
χ1(axpα+1

0 ) = χ1((axpα+1
0 )pα

) = χ1(axpα+1
0 ).

As p is odd we have χ1(axpα+1
0 ) = 1. Combining this with equation (3)

yields the final case of our theorem and completes the proof.

We note that the first case of Theorem 5.3 and Theorem 1 with e = 2m
coincide.

6. Determining the sign of Sα(a) with e/d even. It remains to
determine the sign of Sα(a) with e/d even. So far, for e/d even, we have
been generalising arguments used by Carlitz in [1]. We continue in this vein
throughout the remainder of this article.

Theorem 6.1. Let e/d be even and let N = Nα(a, q) denote the number
of solutions (x, y) ∈ Fq × Fq of the equation

axpα+1 = ypd

− y.

Then
N = q + (pd − 1)Sα(a).

P r o o f. We have

qN =
∑

w∈Fq

∑
x,y∈Fq

χ1(w(axpα+1 − ypd

+ y))

= q2 +
∑

w∈F∗q

∑
x∈Fq

χ1(awxpα+1)
∑
y∈Fq

χ1(w(y − ypd

))

= q2 +
∑

w∈F∗q

∑
x∈Fq

χ1(awxpα+1)
∑
y∈Fq

χ1(ypd

(wpd

− w)).

The inner sum is zero unless wpd

= w, i.e. w ∈ Fpd . Simplifying yields

Nα(a, q) = q +
∑

w∈F∗
pd

∑
x∈Fq

χ1(awxpα+1).

It is possible to remove w from the inner sum and so simplify the equation
further. If w ∈ F∗pd then the equation wzpα+1

w = 1 is solvable for zw ∈ Fq
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provided (pα +1, q− 1) = pd +1 divides (q− 1)/(pd− 1). If e/d is even then
this is always true and so

Nα(a, q) = q +
∑

w∈F∗
pd

∑
x∈Fq

χ1(awxpα+1) = q +
∑

w∈F∗
pd

∑
x∈Fq

χ1(aw(zwx)pα+1)

= q +
∑

w∈F∗
pd

∑
x∈Fq

χ1(axpα+1) = q + (pd − 1)Sα(a).

We are now ready to prove Theorem 2 using a counting argument con-
cerning Nα(a, q) and comparing our results with those obtained in Theo-
rem 6.1.

Theorem 2. Let e/d be even with e = 2m. Then

Sα(a) =


pm if a(q−1)/(pd+1) 6= (−1)m/d and m/d even,
−pm if a(q−1)/(pd+1) 6= (−1)m/d and m/d odd ,
pm+d if a(q−1)/(pd+1) = (−1)m/d and m/d odd ,
−pm+d if a(q−1)/(pd+1) = (−1)m/d and m/d even.

P r o o f. Consider the equation axpα+1 = ypd − y. If (x, y) is a solution
with x 6= 0 then (wx, y) is also a solution where wpd+1 = 1. Thus the
solutions of this equation with x 6= 0 occur in batches of size pd + 1. In
addition there are pd solutions with x = 0. So according to this counting
argument we have

N ≡ pd mod pd + 1 ≡ −1 mod pd + 1.

Theorem 6.1 gives us an alternative evaluation of N , and combining it with
the above equation obtained through our counting argument we obtain

(4) 2− 2Sα(a) ≡ 0 mod pd + 1.

Suppose that p > 3 or that p = 3 and d > 1. There are two cases to consider.
We consider the case a(q−1)/(pd+1) 6= (−1)m/d first. For this case Sα(a) =

εpm where ε = ±1. Recalling

pm − 1 = (pd + 1)(p(m/d−1)d − p(m/d−2)d + . . .− 1)

if m/d is even and

pm + 1 = (pd + 1)(p(m/d−1)d − p(m/d−2)d + . . . + 1)

if m/d is odd, it is clear that

pm mod pd + 1 =
{
−1 if m/d odd,
1 if m/d even.

Combining this with (4) and Theorem 6.1 gives us the first two cases of
Theorem 2.
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If a(q−1)/(pd+1) = (−1)m/d then

Sα(a) = εpmpd ≡ −εpm mod pd + 1

and so it is clear we will obtain the opposite signs to those of the first case.
This completes the proof for all cases except p = 3 and d = 1.

The previous arguments require the stipulation that if p = 3 then d > 1
as otherwise ε could be ±1 and still satisfy (4). For the rest of the proof
we thus assume p = 3 and d = 1. Firstly, by Lemma 2.6, we have k =
(pα + 1, q − 1) = 4. Let λ be the multiplicative character of Fq of order 4.
If g is a primitive element of Fq then we have

λ(gt) =


1 if t ≡ 0 mod 4,
i if t ≡ 1 mod 4,
−1 if t ≡ 2 mod 4,
−i if t ≡ 3 mod 4.

Lemma 2.1 tells us that G(λ3, χ1) = G(λ, χ1). Combining this information
with the previous case statement and Lemmas 2.2 and 2.4 we obtain through
some manipulation

(5) Sα(a) =

 2G(λ, χ1) + (−1)m+1pm if t ≡ 0 mod 4,
−2G(λ, χ1) + (−1)m+1pm if t ≡ 2 mod 4,
(−1)mpm if t ≡ 1, 3 mod 4,

where a = gt.
If m is odd then so too is (3m + 1)/4 and we can apply Stickelberger’s

Theorem to determine G(λ, χ1) = −pm. If a(q−1)/4 = −1 then a = gt where
t ≡ 2 mod 4 and if a(q−1)/4 6= −1 then t ≡ 0, 1, 3 mod 4. Thus Sα(a) =
2pm + pm = pm+1 when a(q−1)/4 = −1. If t ≡ 1, 3 mod 4 we have Sα(a) =
−pm and if t ≡ 0 mod 4 we obtain Sα(a) = −2pm + pm = −pm. All of these
results coincide with our previous results.

Finally, suppose m is even. Then a(q−1)/4 = 1 if t ≡ 0 mod 4 and
a(q−1)/4 6= 1 if t ≡ 1, 2, 3 mod 4. Suppose firstly that t ≡ 2 mod 4. By
Theorem 5.3

Sα(a) = ±pm = −2G(λ, χ1)− pm

and so G(λ, χ1) = 0 or −pm. But |G(λ, χ1)| = pm for any non-trivial λ (see
[5, Theorem 5.11]), and so G(λ, χ1) = −pm. Substituting back into (5) in
much the same way as we did for m odd completes the proof.

Having evaluated Sα(a) for e/d even we can now return to Theorem 6.1
to obtain explicitly the number of solutions of the equation axpα+1 = ypd−y.
We leave this to the reader. We note that the proof of Theorem 2 includes
the proof of the following corollary on Gauss sums.

Corollary 6.2. Let q = 32m and denote by λ the multiplicative char-
acter of Fq of order 4. Then G(λ, χ1) = −3m.
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