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1. Introduction and main results. Arithmetical properties of bino-
mial coefficients have been studied by many authors. Of particular interest
is the sequence of middle binomial coefficients

( 2n
n

)
. Perhaps some of this

interest is due to its historic role in the proof of the prime number theo-
rem. For example, Erdős conjectured that

( 2n
n

)
is not square-free for every

n > 4 (see, for example, [EG]). This conjecture has been recently settled af-
firmatively by Granville and Ramaré [GR] and Velammal [V] (and formerly,
for sufficiently large n, by Sárközy [Sár]; see also [San] and [EK]). Another
relevant result is that no middle binomial coefficient can be written in a
non-trivial way as a product of other such coefficients [E].

In this paper we discuss the behaviour of the sequence modulo prime
powers. Our first result is

Theorem 1.1. For every odd prime power pe and congruence class peZ+
s, there exist infinitely many positive integers n such that

( 2n
n

) ∈ peZ+ s.

The theorem may be rephrased as the assertion that the sequence(( 2n
n

))∞
n=1, considered as a sequence in the ring of p-adic integers, is dense

in that ring.

Remark 1.1. The assertion of Theorem 1.1 fails modulo powers of 2
since

( 2n
n

)
is even for all n ≥ 1.

Next, it is natural to ask how the sequence
( 2n
n

)
is distributed modulo pe,

namely with what asymptotic proportion it assumes each of the pe possible
values. A few trials (or a knowledge of a certain classical fact regarding
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binomial coefficients, to be formulated subsequently as Theorem 2.1) may
convince one that the sequence is nearly always 0 modulo pe even though,
according to Theorem 1.1, each of the other pe − 1 values is also assumed
infinitely often. Thus it makes sense to compare the relative frequencies of
the non-zero classes modulo pe. By the same token, the classes of the form
peZ+spe−1, 1 ≤ s ≤ p−1, appear much more frequently than the others. In
general, one may expect

( 2n
n

)
to belong to two classes peZ+s1 and peZ+s2

with the same asymptotic frequency if and only if the exact power of p
dividing s1 and s2 is the same. Our next theorem, to be stated after a few
definitions, is a weaker version of this.

A sequence of integers (an)∞n=1 is uniformly distributed ([KN, p. 305], [N,
p. 1]) modulo a positive integer l if

#({1 ≤ n ≤ N : an ≡ s (mod l)})
N

−−−→
N→∞

1
l
, s = 0, 1, . . . , l − 1,

where #(F ) denotes the cardinality of a finite set F . The sequence is weakly
uniformly distributed modulo l [N, p. 8] (see also [KN, p. 318] and the ref-
erences listed there) if (an, l) = 1 infinitely often and

#({1 ≤ n ≤ N : an ≡ s (mod l)})
#({1 ≤ n ≤ N : (an, l) = 1}) −−−→

N→∞
1
φ(l)

, s = 1, . . . , l−1, (s, l) = 1.

Now, in general, the notion of uniform distribution has a stronger version
where instead of requiring only that the dispersion of large initial pieces of
the sequence becomes more and more even, we require this to happen for any
large finite portion of the sequence. This version is termed well-distribution
[KN, pp. 84, 200, 221]. We are specifically interested in the following

Definition 1.1. The sequence (an)∞n=1 is weakly well-distributed mod-
ulo l if (an, l) = 1 infinitely often and

#({M ≤ n ≤ N : an ≡ s (mod l)})
#({M ≤ n ≤ N : (an, l) = 1}) −−−−−→

N−M→∞
1
φ(l)

,

s = 1, . . . , l − 1, (s, l) = 1.

Theorem 1.2. For every odd prime p, the sequence
(( 2n

n

))∞
n=1 is weakly

well-distributed modulo p.

Remark 1.2. As mentioned earlier, one may actually expect the the-
orem to be true modulo pe. Unfortunately, this stronger result does not
follow from our method. The problem lies with the complicated formula for
calculating binomial coefficients modulo a prime power versus the simple
formula in case of a prime (see Theorems 2.1 and 2.2 infra).

It is of interest to mention here results in a similar spirit, by Hexel
[Hex], Hexel and Sachs [HS], and Garfield and Wilf [GW]. They considered
the number of entries in each row of Pascal’s triangle belonging to each
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of the residue classes modulo p, and were able to calculate the generating
function. Another closely related work is due to Barbolosi and Grabner [BG],
who considered the number of entries in the first n rows of Pascal’s triangle,
assuming each value modulo p. It follows from their results in particular that
each of the non-zero values appears with the same asymptotic frequency.

Theorem 1.2 will be proved using a rather more general result. To state
this, we recall a few additional definitions. A sequence (an)∞n=1 in a compact
group G is uniformly distributed if it is uniformly distributed with respect
to the Haar measure µ on G, namely if

1
N

N∑
n=1

f(an) −−−→
N→∞

\
G

f dµ

for every continuous real-valued function f on G [KN, p. 221]. The gen-
eralization of the concept of well-distribution is obvious. (Thus, the above
definitions referred to the case where G is the additive group of the ring
Z/lZ, or, alternatively, after discarding those terms of our sequence which
are not relatively prime to l, the multiplicative group of the same ring.)

Theorem 1.3. Let G be a compact group and α0, α1, . . . , αr−1 ∈ G.
Consider the sequence (an)∞n=1 defined as follows: If n = d0+d1r+. . .+dkrk

is the base r expansion of n (0 ≤ di ≤ r − 1 with dk > 0 for n > 0), then

an = αd0αd1 . . . αdk .

Assume that :

(1) The closed subgroup of G generated by α0, α1, . . . , αr−1 is G itself.
(2) No coset of a proper closed normal subgroup of G contains all the

elements α0, α1, . . . , αr−1.

Then (an)∞n=1 is well-distributed in G.

For the proofs we shall require a few results concerning congruences of
various binomial coefficients and other quantities. These results seem to be
of independent interest, and are stated separately in Section 2. All proofs are
carried out in Section 3. In Section 4 we present a result of Erdős, Graham,
Ruzsa and Straus [EGRS], relating to the behaviour of the middle binomial
coefficients modulo products of two distinct primes.

We would like to express our gratitude to J. P. Allouche, Y. Bilu, Y. Caro
and M. Lin for their helpful comments on an earlier draft of this paper. We
thank also the referee for the numerous points he raised, which added to the
presentation of the paper.

2. Some congruences. We start with a few known results concerning
the values of certain binomial coefficients modulo prime powers.
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Theorem 2.1 [L, Sec. XXI]. Let m and n be non-negative integers with
base p expansions

n =
k∑

i=0

nip
i, m =

k∑

i=0

mip
i, (0 ≤ ni,mi < p).

(1) If mi > ni for some i, then p | ( nm
)
.

(2) If mi ≤ ni for each i, then

(2.1)
(
n

m

)
≡

k∏

i=0

(
ni
mi

)
(mod p).

Note that, putting
(
a
b

)
= 0 for a < b, we may view the first part of the

theorem as a special case of the second. Also, there is a simple formula for
the exact power of p dividing

(
n
m

)
. Namely, let e be the number of carries

when adding m and n−m as numbers written in base p. Then pe | ( nm
)

but
pe+1 -

(
n
m

)
[K, pp. 115f].

A result which gives readily an extension of (2.1) to prime power moduli
is the following one, due to Granville.

Theorem 2.2 [Gran]. If p does not divide
(
n
m

)
, then

(
n

m

)
≡
(

[n/p]
[m/p]

)(
n′

m′

)/(
[n′/p]
[m′/p]

)
(mod pe),

where l′ denotes the least non-negative residue of an integer l modulo pe.

Iterating this formula we find that, if p does not divide
(
n
m

)
, then, de-

noting

P =
k−e+1∏

i=0

(
ni + ni+1p+ . . .+ ni+e−1p

e−1

mi +mi+1p+ . . .+mi+e−1pe−1

)

and

Q =
k−e+1∏

i=1

(
ni + ni+1p+ . . .+ ni+e−2p

e−2

mi +mi+1p+ . . .+mi+e−2pe−2

)
,

we have

(2.2)
(
n

m

)
≡ P

Q
(mod pe).

Proposition 2.1. For any prime p and positive integers a, e

(
2ape

ape

)
≡
(

2ape−1

ape−1

)




(mod 4), p = 2, e = 1,
(mod 23e), p = 2, e > 1,
(mod 33e−1), p = 3,
(mod p3e), p ≥ 5.
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Remark 2.1. This proposition, as well as the next one, are generaliza-
tions of known results. Our proofs, in the next section, follow those given
by Gardiner [Ga], with slight modifications for the more general case.

Remark 2.2. It follows from the proposition, in particular, that for any
prime p and positive integer a the sequence

(( 2ape

ape

))∞
e=1, considered as a

sequence in the ring Zp of p-adic integers, is convergent. While this is of no
direct bearing upon the paper, it would be interesting to know whether the
limit is some “recognizable” number.

We shall use the convention that
∑′ denotes sums taken only over those

elements in the index set which are relatively prime to the relevant modu-
lus p.

Proposition 2.2. For every prime p and positive integers a, e,

(1)

(2.3)
ape∑′

j=1

1
j
≡ 0





(mod 22e−2), p = 2, e > 1,
(mod 32e−1), p = 3,
(mod p2e), p ≥ 5.

(2)

(2.4)
ape∑′

j=1

1
j2 ≡ 0





(mod 2e−1), p = 2, e > 1,
(mod 3e−1), p = 3, e > 1,
(mod pe), p ≥ 5.

(3)

(2.5)
∑′

1≤j<k≤ape

1
jk
≡ 0





(mod 2e−2), p = 2, e > 2,
(mod 3e−1), p = 3,
(mod pe), p ≥ 5.

3. Proofs

Proof of Proposition 2.2. (2) Since inversion is a 1-1 map on the group
of units (Z/peZ)× of the ring Z/peZ, we have

ape∑′

j=1

1
j2 ≡ a

pe∑′

j=1

1
j2 ≡ a

pe∑′

j=1

j2 = a
( pe∑

j=1

j2 −
pe−1∑

j=1

(pj)2
)

=
a

6
[pe(pe + 1)(2pe + 1)− pe+1(pe−1 + 1)(2pe−1 + 1)].

Now the expression inside the brackets is clearly divisible by pe. As the initial
factor of 1/6 reduces the exponent by 1 for p = 2, 3, we arrive at (2.4).
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(1) We have

ape∑′

j=1

1
j

=
1
2

ape∑′

j=1

(
1
j

+
1

ape − j
)

=
ape

2

ape∑′

j=1

1
j(ape − j) .

Now
ape∑′

j=1

1
j(ape − j) ≡

ape∑′

j=1

−1
j2 (mod pe),

so that, along with (2.4), we obtain (2.3).
(3) We have

∑′

1≤j<k≤ape

1
jk

=
1
2

[( ape∑′

j=1

1
j

)2

−
ape∑′

j=1

1
j2

]
,

which implies (2.5).

Proof of Proposition 2.1. For p = 2, e = 1, we have
(

4a
2a

)
=

2a∏

j=1

2a+ j

j
=

a∏

k=1

2a+ 2k
2k

2a∏′

j=1

(
1 + 2

a

j

)
=
(

2a
a

)
(1 + 2S),

where S is a rational which is a 2-adic integer. Since
( 2a
a

)
is even, we obtain( 4a

2a

) ≡ ( 2a
a

)
(mod 4). In all other cases we have

(
2ape

ape

)
=

ape∏

j=1

ape + j

j
=
ape−1∏

k=1

ape + kp

kp

ape∏′

j=1

2ape − j
j

=
(

2ape−1

ape−1

) ape∏′

j=1

(
−1 + 2ape · 1

j

)

=
(

2ape−1

ape−1

)
·
[
1− 2ape

ape∑′

j=1

1
j

+ 4a2p2e
∑′

1≤j<k≤ape

1
jk

+ p3eS

]
,

where S is a p-adic integer. In view of Proposition 2.2, this completes the
proof.

Proof of Theorem 1.1. We first consider the case e = 1, (s, p) = 1. In
view of Theorem 2.1, when trying to find suitable integers n, we have to
make sure that all digits in their base p expansion are ≤ (p − 1)/2. From
(2.1) it follows that the set R of all residue classes s relatively prime to p
appearing infinitely often forms a multiplicative subsemigroup, and therefore
subgroup, of (Z/pZ)×. Moreover, the residue classes of all the numbers

( 2g
g

)
,
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1 ≤ g ≤ (p − 1)/2, belong to R. In particular, the residue class of
( 2

1

)
= 2

belongs to R. Now

2−1
(

2g
g

)/(
2(g − 1)
g − 1

)
=

2g(2g − 1)
2g2 =

2g − 1
g

,

which implies that for g ∈ {2, 3, 4, . . . , (p− 1)/2} the residue class of
(2g − 1)/g is in R. Suppose that R is a proper subgroup of (Z/pZ)×, and
let k be the least positive integer whose residue class is not in R. Then
k is odd (since 2 ∈ R) and 2 ≤ k ≤ p − 1, so k = 2g − 1 for some
g ∈ {2, 3, 4, . . . , (p− 1)/2}. Now g < k so the residue classes of (2g − 1)/g
and g are in R, so the residue class of k = g · (2g − 1)/g is in R. Since this
is a contradiction, R = (Z/pZ)×, which concludes this case.

Now let us consider the case e = 2, (s, p) = 1. From Proposition 2.1 it
follows in particular that(

2ap
ap

)
≡
(

2a
a

)
(mod p2), a = 1, 2, . . . , (p− 1)/2.

Consider the value of
( 2n
n

)
only for numbers n of the form n = n0 + n1p

2 +
. . . + nkp

2k with 0 ≤ ni ≤ (p− 1)/2 for each i (the important point here
being that the base p expansion of n contains no two consecutive non-zero
digits). From (2.2) and Proposition 2.1 it follows that for such n,

(
2n
n

)
≡

k∏

i=0

(
2nip
nip

)
(mod p2).

Let R be the set of residue classes modulo p2 appearing infinitely often
among these values. Then R is a subgroup of (Z/p2Z)× and contains the
residue classes of all numbers of the form

( 2g
g

)
, where 1 ≤ g ≤ (p− 1)/2. As

in the preceding case, the residue classes of 1, 2, . . . , p−1 are in R. Moreover,
−1 ≡ p2− 1 = 2 · p+1

2 · (p− 1), so the residue classes of −1,−2, . . . ,−(p− 1)
are in R. Consider s as an element of (Z/p2Z)×. Suppose s 6∈ R. Then
s, 2s, . . . , (p − 1)s 6∈ R. Moreover, writing (Z/p2Z)× =

⋃p−1
i=0 Ci, where Ci

consists of the residue classes of ip + 1, ip + 2, . . . , ip + p − 1, we see that
none of those multiples of s belongs to either C0 or Cp−1. Hence for some
1 ≤ t1 < t2 ≤ p−1 and 1 ≤ i ≤ p−2 we have t1s, t2s ∈ Ci, so that (t2−t1)s ∈
C0 ∪ Cp−1, which is a contradiction. Consequently, R = (Z/p2Z)×, which
concludes this case.

Next we turn to the case of general e, still with (s, p) = 1. In view of
the preceding case, we can find some n0 ∈ N such that

( 2n0
n0

)
is a primitive

root modulo p2, and therefore a primitive root modulo pe. Examining the
proof in the preceding case we notice that n0 may be assumed to contain
arbitrarily many zeros (e zeros is what we need) between any two non-
zero digits in its base p expansion. Take a u ∈ N such that

( 2n0
n0

)u ≡ s
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(mod pe). Construct a positive integer n by concatenating u times the base
p expansion of n0, again leaving blocks of e consecutive zeros between any
two occurrences of the block corresponding to n0 (i.e., n =

∑u−1
j=0 p

j(e+d)n0,
where d = 1 + blogp n0c). Again using (2.2) we obtain

( 2n
n

) ≡ ( 2n0
n0

)u ≡ s
(mod pe). As the condition on u determines it only modulo φ(pe), we again
find infinitely many solutions for our equation.

Arriving finally at the general case, we may assume that s = cpk, where
1 ≤ c < pe−k, (c, p) = 1 and 1 ≤ k < e. Without loss of generality we may
assume that e > 2k. A slight modification of the discussion in the former
case shows that there exist infinitely many numbers n such that n ≡ pk

(mod pe) and
( 2n
n

) ≡ c(4pk − 2) (mod pe−k). For such n we have
(

2(n− 1)
n− 1

)
=

n

4n− 2

(
2n
n

)
≡ cpk (mod pe).

Hence our equation has again infinitely many solutions, which completes the
proof.

We now turn to the proof of Theorem 1.3. One way to tackle it is by
trying to prove that the sequence of measures defined by

µN =
1
N

N−1∑
n=0

δan , N = 0, 1, 2, . . .

converges weakly to the Haar measure on G, where δx denotes the Dirac
measure supported at x. (Of course, this would prove only uniform distri-
bution. For well-distribution one needs to let the index range over arbitrary
long intervals.) It turns out that, in case α0 = 1, the measure µrn is the
n-fold convolution of µr. Hence, using Ito–Kawada’s theorem (cf. [Hey] or
[R]) one can proceed to show the required convergence holds at least for
the subsequence of measures µrn . Our approach is basically equivalent, but
is more direct, and hence more likely to be applicable, say, to obtaining
discrepancy estimates.

Lemma 3.1. Under the assumptions of Theorem 1.3, for every irreducible
unitary representation σ 6= 1 of G we have

1
rn

(σ(α0) + σ(α1) + . . .+ σ(αr−1))n −−−→
n→∞

0.

P r o o f. It suffices to prove that all eigenvalues of the matrix

σ(α0) + σ(α1) + . . .+ σ(αr−1)
r

are strictly less than 1 in their absolute value. Since for every vector v we
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have

(3.1)
∥∥∥∥
σ(α0) + σ(α1) + . . .+ σ(αr−1)

r
v

∥∥∥∥ ≤
1
r

r−1∑

i=0

‖σ(αi)v‖ = ‖v‖,

all those eigenvalues are of absolute value not exceeding 1. Suppose λ is an
eigenvalue with |λ| = 1. If v is an eigenvector corresponding to the eigenvalue
λ, then, by (3.1),

σ(αi)v = λv, i = 0, 1, . . . , r − 1.

It follows that v is a common eigenvector of the matrices σ(αi), i = 0, 1, . . . ,
r − 1, and hence an eigenvector of σ(x) for every x in the subgroup gener-
ated by the αi’s. Since this subgroup is dense in G, it follows that v is an
eigenvector of σ(x) for every x ∈ G. As σ is irreducible, this means that σ
is 1-dimensional. Define

H = {x ∈ G : σ(x) = 1}.
Obviously, H is a closed normal proper subgroup of G, and all αi’s belong
to a single coset of H, contrary to our assumptions. This proves the lemma.

Proof of Theorem 1.3. Recall that, by Weyl’s criterion for well-distribu-
tion in compact groups [KN, p. 227], (an)∞n=1 is well-distributed if and only
if

(3.2)
1

N −M
N−1∑

n=M

σ(an) −−−−−→
N−M→∞

0

for every irreducible unitary representation σ 6= 1 of G.
Let σ be such a representation. Assume first that M = crh, N = (c+1)rh

for some c and (large) h. It is easy to see that

N−1∑

n=M

σ(an) =
( r−1∑

i=0

σ(αi)
)h
σ(ac).

By Lemma 3.1 we see that (3.2) is valid for M , N of this form. A rou-
tine approximation argument, based on dividing an arbitrary large interval
[M,N − 1] into a union of several intervals of the form [crh, (c + 1)rh − 1]
with large h (or h’s) and a (relatively) small leftover, finishes the proof.

Proof of Theorem 1.2. In view of Theorem 2.1, the terms of our sequence
which are relatively prime to p (and thus relevant to the theorem) are exactly
those for which in the base p expansion of n all digits are at most (p− 1)/2.
Let r = (p+ 1)/2. Define a sequence (an)∞n=1 in the group G = (Z/pZ)× as
follows: If n = n0 +n1r+ . . .+nkr

k is the base r expansion of n, then an is
the residue class of

( 2m
m

)
, where m = n0 + n1p+ . . .+ nkp

k. The foregoing
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means that the result of the theorem is equivalent to the sequence (an)∞n=1
being well-distributed in G.

Now let αi ∈ G be the residue class of
( 2i
i

)
modulo p for i = 0, 1, . . . , r−1.

Theorem 2.1 shows that the sequence (an)∞n=1 is constructed from the ele-
ments αi in exactly the general manner described in Theorem 1.3. Moreover,
the first part of the proof of Theorem 1.1 shows that the elements αi satisfy
the two conditions of Theorem 1.3, so that the sequence (an)∞n=1 is indeed
well-distributed in G. This proves the theorem.

4. Related open problems. Our results deal with the behaviour of
the binomial coefficients

( 2n
n

)
modulo prime powers. It is natural to inquire

how they behave modulo other integers. The only result in this direction of
which we are aware is due to Erdős, Graham, Ruzsa and Straus [EGRS],
who proved that the sequence

( 2n
n

)
assumes infinitely often values which are

relatively prime to 15, or, more generally, relatively prime to pq, where p and
q are distinct odd primes. Thus, considering the modulus 15, for example,
it is a simple matter to show (as mentioned in Section 1) that most terms
in our sequence are 0 modulo 15. Theorem 1.1 implies that each of the sets
{1, 4, 7, 10, 13}, {2, 5, 8, 11, 14}, {1, 6, 11}, {2, 7, 12}, {3, 8, 13} and {4, 9, 14}
contains, modulo 15, infinitely many terms of our sequence. The result of
Erdős et al. shows the same for the set {1, 2, 4, 7, 8, 11, 13, 14}.

While the result of Erdős et al. is similar in spirit to the results of this
paper, the underlying ideas used in the proofs are completely different. As
is clear from our exposition, the candidates for satisfying the assertion of
Theorem 1.1 are numbers whose base p expansion is simple to describe. What
is needed is to understand the behaviour of the coefficients

( 2n
n

)
for these

candidates n. The problem of [EGRS] is to show that the sets of numbers n
corresponding to two distinct primes p and q intersect at an infinite set.
Thus it is unlikely that our methods may be applied to questions of the
type studied in [EGRS]. For example, it is natural to expect that, say,( 2n
n

)
belongs infinitely often to each residue class modulo 15. However, the

question cannot be tackled using the methods of this paper (nor does it
seem to follow in an easy way using the methods of [EGRS]).

In conclusion, it may be of interest to mention here the following question
of Graham, which carries a $1,000 prize [Grah].

Question. Is
(( 2n

n

)
, 105

)
= 1 for infinitely many positive integers n?
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