Primes in almost all short intervals

by
Alessandro Zaccagnini (Parma)

1. Introduction. The object of this paper is to extend the range of validity of a well-known result of prime number theory. We deal with the Selberg integral

$$
J(x, h):=\int_{x}^{2 x}\left|\pi(t)-\pi(t-h)-\frac{h}{\log t}\right|^{2} d t
$$

The Prime Number Theorem suggests that $J(x, h)$ should be of lower order of magnitude than $x h^{2}(\log x)^{-2}$, at least when h is not too small with respect to x, and the Brun-Titchmarsh inequality trivially implies $J(x, h) \ll$ $x h^{2}(\log x)^{-2}$ provided only that $h \geq x^{\varepsilon}$ for some fixed $\varepsilon>0$.

We prove the following
Theorem. We have

$$
J(x, h) \ll \frac{x h^{2}}{(\log x)^{2}}\left(\varepsilon(x)+\frac{\log \log x}{\log x}\right)^{2}
$$

provided that $x^{1 / 6-\varepsilon(x)} \leq h \leq x$, where $0 \leq \varepsilon(x) \leq 1 / 6$ and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$.

It is well known that Huxley's density estimates [5] for the zeros of the Riemann zeta-function yield $J(x, h)=o\left(x h^{2}(\log x)^{-2}\right)$, but only for $h \geq x^{1 / 6}(\log x)^{C}$, for some $C>0$. The weaker result with $h \geq x^{1 / 6+\varepsilon}$ is proved in Saffari and Vaughan [8], Lemma 5, and in [13], where an identity of Heath-Brown (Lemma 1 of [3]) is used.

This paper is inspired by Heath-Brown's extension [4] of Huxley's Theorem [5] that

$$
\pi(x)-\pi(x-h) \sim h(\log x)^{-1}
$$

to the range $h \geq x^{7 / 12-\varepsilon(x)}$. This was achieved by means of another identity (see (2.2) of [4], or Lemma 2 below), thereby avoiding a direct appeal to the

[^0]properties of the zeros of the Riemann zeta-function, besides Vinogradov's zero-free region. We extend this approach to the above integral.

An immediate consequence of this result is that if $x^{1 / 6-\varepsilon(x)} \leq h \leq x$ then for "almost all" $n \in[x, 2 x] \cap \mathbb{N}$ we have $\pi(n)-\pi(n-h) \sim h(\log n)^{-1}$. Here "almost all" means that the above asymptotic equality fails for at most $o(x)$ values of $n \in[x, 2 x] \cap \mathbb{N}$. Relaxing our demand to $\pi(n)-\pi(n-h) \gg$ $h(\log n)^{-1}$ for almost all n 's, one can take h even smaller, and the best result up to date is due to Jia [6] who showed that $h \geq x^{1 / 20+\varepsilon}$ is acceptable, provided that x is large enough.

I thank Alberto Perelli for his unfailing help and János Pintz for some helpful suggestions. Many thanks are due to the referee for a very careful reading of my manuscript and numerous useful remarks.
2. Preliminaries. We assume throughout that x is sufficiently large. For the sake of brevity we set $\mathcal{L}:=\log x$. Our estimates will be uniform with respect to all parameters but k_{0}, which will eventually be chosen as 4. For ease of reference, our notation is consistent, as far as possible, with the notation in [4], and will be introduced at appropriate places. A few comments on the proof are collected at the end of the paper.

Lemma 1. The Theorem follows from the estimate

$$
J^{\prime}(x, \theta):=\int_{x}^{2 x}\left|\pi(t)-\pi(t-\theta t)-\frac{\theta t}{\log t}\right|^{2} d t \ll \frac{x^{3} \theta^{2}}{\mathcal{L}^{2}}\left(\varepsilon(x)+\frac{\log \log x}{\log x}\right)^{2},
$$

uniformly for $x^{-5 / 6-\varepsilon(x)} \leq \theta \leq 1$.
Lemma 2 (Linnik-Heath-Brown's identity). For $z>1$ we have

$$
\begin{equation*}
\log (\zeta(s) \Pi(s))=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k}(\zeta(s) \Pi(s)-1)^{k}=\sum_{k \geq 1} \sum_{p \geq z} \frac{1}{k p^{k s}}, \tag{2.1}
\end{equation*}
$$

where

$$
\Pi(s):=\prod_{p<z}\left(1-\frac{1}{p^{s}}\right) .
$$

For Lemma 1 see the proof of Lemma 6 of [8]. Lemma 2 follows from (2.2)-(2.3) of [4].

For $t \in[x, 2 x]$ we use the interval $\mathcal{I}=\mathcal{I}(t, \theta)=(t-\theta t, t]$, and a parameter z satisfying

$$
x^{1 / k_{0}}<z \leq x^{1 / 3}
$$

We pick out the coefficients in the above identity for the terms with $n \in \mathcal{I}$.

We have

$$
\begin{equation*}
\sum_{k \geq 1} \frac{1}{k}\left|\left\{p: p^{k} \in \mathcal{I}, p \geq z\right\}\right|=\pi(t)-\pi(t-\theta t)+O\left(\theta x^{1 / 2}+\log x\right) \tag{2.2}
\end{equation*}
$$

the contribution from prime powers being negligible. Now the Dirichlet series for $\zeta(s) \Pi(s)-1$ is $\sum_{n \geq z} a(n) n^{-s}$ where $a(1)=0$ and $a(n)=0$ unless all prime factors of n are $\geq \bar{z}$, in which case $a(n)=1$. Furthermore, the Dirichlet series for $(\zeta(s) \Pi(s)-1)^{k}$ is $\sum_{n \geq z} a_{k}(n) n^{-s}, a_{k}$ being the k-fold Dirichlet convolution of a with itself. This means that $a_{k}(n)=0$ unless $n \geq z^{k}$ and $p \geq z$ for all $p \mid n$. Hence there are no terms n^{-s} with $n \in \mathcal{I}$ and $k \geq k_{0}$, and we may consider only the values $k<k_{0}$.

As pointed out in Section 2 of [4], the above identity does not give suitable Dirichlet polynomials at once, and we first need to approximate the above Dirichlet series by manageable Dirichlet polynomials. We set

$$
\zeta_{t}(s):=\sum_{n \leq t} \frac{1}{n^{s}} .
$$

We introduce parameters $z_{1} \in[3, z)$ and $z_{2}:=z_{1}^{\delta}$, where $\delta \geq 2$ and define v_{n} by means of

$$
\Pi_{0}(s):=\prod_{p<z_{1}}\left(1-\frac{1}{p^{s}}\right)=\sum_{n \geq 1} \frac{\mu(n) v_{n}}{n^{s}} .
$$

Then define $\Pi_{1}(s):=\Pi(s) \Pi_{0}(s)^{-1}, L$ to be the integer such that $z_{1}^{L} \leq$ $2 x<z_{1}^{L+1}$ and

$$
\Pi_{2}(s):=\sum_{n<z_{2}} \frac{\mu(n) v_{n}}{n^{s}}, \quad \Sigma_{m}(s):=\sum_{z_{1} \leq p<z} \frac{1}{p^{m s}},
$$

for $m=1, \ldots, L$. Finally, we set

$$
\Pi^{*}(s):=\prod_{m=1}^{L} \Pi_{m}^{*}(s) \quad \text { where } \quad \Pi_{m}^{*}(s):=\sum_{l=0}^{L / m} \frac{(-1)^{l}}{l!m^{l}} \Sigma_{m}(s)^{l} \text {. }
$$

We remark that our choice of the parameters ensures that the coefficient of n^{-s} in $\Pi_{1}(s)$ is the same as the coefficient of n^{-s} in $\Pi^{*}(s)$. We now introduce the Dirichlet polynomials we shall work with. Let B, C, and D be integers such that

$$
t / 2<2^{B} \leq t, \quad z_{2} / 2<2^{C} \leq z_{2}, \quad z / 2 \leq 2^{D}<z,
$$

and set

$$
\begin{equation*}
\zeta_{t}(s)=\sum_{b=0}^{B} X_{b}(s), \quad X_{b}(s):=\sum_{2^{-1-b_{t}<n \leq 2^{-b} t}} n^{-s}, \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
\Pi_{2}(s) & =\sum_{c=0}^{C} Y_{c}(s), \quad Y_{c}(s):=\sum_{2^{-1-c} z_{2}<n \leq 2^{-c} z_{2}} \mu(n) v_{n} n^{-s} \tag{2.4}\\
\Sigma_{m}(s) & =\sum_{d=0}^{D} Z_{d}^{(m)}(s), \quad Z_{d}^{(m)}(s):=\sum_{\substack{2^{-1-d} z<p \leq 2^{-d} z \\
p \geq z_{1}}} p^{-m s} \tag{2.5}
\end{align*}
$$

Hence, for suitable coefficients $c_{m, h}$, we have

$$
\begin{equation*}
\left(\zeta_{t}(s) \Pi_{2}(s) \Pi^{*}(s)\right)^{h}=\sum_{m=1}^{M(h)} c_{m, h} W(s ; m, h) \tag{2.6}
\end{equation*}
$$

where the Dirichlet polynomials W have the form

$$
\begin{equation*}
W(s ; m, h)=W_{X}(s ; m, h) W_{Y}(s ; m, h) W_{Z}(s ; m, h) \tag{2.7}
\end{equation*}
$$

with

$$
\begin{align*}
W_{X}(s) & :=\prod_{i=1}^{h} X_{b_{i}}(s), \quad W_{Y}(s):=\prod_{i=1}^{h} Y_{c_{i}}(s) \\
W_{Z}(s) & :=\prod_{m=1}^{L} \prod_{i=1}^{I_{m}} Z_{d_{i}}^{(m)}(s) \tag{2.8}
\end{align*}
$$

where each I_{m} is $\leq h L / m$, and we dropped m and h for brevity. Writing

$$
\begin{equation*}
X_{i}:=2^{-1-b_{i}} t, \quad Y_{i}:=2^{-1-c_{i}} z_{2}, \quad Z_{i}:=2^{-1-d_{i}} z \tag{2.9}
\end{equation*}
$$

and $I=\sum_{m} I_{m}$, we have

$$
\begin{equation*}
W(s ; m, h)=\sum_{N_{1}<n \leq N_{2}} \frac{e_{m, h}(n)}{n^{s}} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{1}:=\prod_{i=1}^{h} X_{i} Y_{i} \cdot \prod_{m=1}^{L} \prod_{i=1}^{I_{m}} Z_{i} \quad \text { and } \quad N_{2}:=2^{2 h+I} N_{1} \tag{2.11}
\end{equation*}
$$

Since we are interested in the coefficients of the terms n^{-s} with $n \in \mathcal{I}(t, \theta)$, we may obviously discard those sums $W(s)$ with $N_{1} \geq t$ or $N_{2} \leq t / 2$, leaving, after relabeling,

$$
\sum_{m=1}^{N(h)} c_{m, h} W(s ; m, h)
$$

say. As usual, we denote by $d_{m}(n)$ the coefficient of n^{-s} in $\zeta^{m}(s)$. We now state the following results, the first being a consequence of Theorem 2 of Shiu [9].

Lemma 3. For fixed $\varepsilon>0$ and $m, h \in \mathbb{N}$ we have

$$
\sum_{x \leq n \leq x+y} d_{m}^{h}(n)<_{\varepsilon, m, h} y(\log x)^{m^{h}-1},
$$

uniformly for $x^{\varepsilon} \leq y \leq x$.
Lemma 4. For $t \in[x, 2 x]$ there exist Dirichlet polynomials $W(s ; m, h)$ satisfying (2.3)-(2.11) such that
$\sum_{n \in \mathcal{I}(t, \theta)} a_{k}(n)=\sum_{h=0}^{k}(-1)^{k-h}\binom{k}{h} \sum_{m=1}^{N(h)} c_{m, h} \sum_{n \in \mathcal{I}(t, \theta)} e_{m, h}(n)+O\left(x \theta \mathcal{L}^{3 k} \delta^{-\delta / 3}\right)$
when $z_{1} z_{2} \leq x^{1 / 8}$ and $\delta \geq\left(\log \log z_{1}\right)^{2}$.
The proof is quite similar to the proof of Lemma 3 of [4], using Lemma 3 above. We omit it for brevity. Set

$$
\Sigma(h, t, \theta):=\sum_{m=1}^{N(h)} c_{m, h} \sum_{n \in \mathcal{I}(t, \theta)} e_{m, h}(n)
$$

(here a minor clash with the notation of [4] occurs). Then

$$
S(t, \theta):=\pi(t)-\pi(t-\theta t)=\sum_{1 \leq k<k_{0}} \sum_{h=0}^{k} \alpha(h, k) \Sigma(h, t, \theta)+O(E(t, \theta, \delta)),
$$

say, where $\alpha(h, k) \ll 1$ and $E(t, \theta, \delta) \ll \theta\left(x^{1 / 2}+x \mathcal{L}^{3 k} \delta^{-\delta / 3}\right)$ by (2.1), (2.2) and Lemma 4. Our aim is to prove that each Σ can be written as

$$
\begin{equation*}
\Sigma(h, t, \theta)=\theta \mathfrak{M}(h, t)+\mathfrak{R}(h, t, \theta), \tag{2.12}
\end{equation*}
$$

where $\mathfrak{M}(h, t)$ is independent of θ and $\mathfrak{R}(h, t, \theta)$ is small in L^{2} norm over $[x, 2 x]$. In fact, assume that (2.12) holds for suitable \mathfrak{M} and \mathfrak{R}, and let

$$
\begin{aligned}
& \mathfrak{M}(t):=\sum_{1 \leq k<k_{0}} \sum_{h=0}^{k} \alpha(h, k) \mathfrak{M}(h, t), \\
& \mathfrak{R}(t, \theta):=\sum_{1 \leq k<k_{0}} \sum_{h=0}^{k} \alpha(h, k) \mathfrak{R}(h, t, \theta),
\end{aligned}
$$

so that $S(t, \theta)=\theta \mathfrak{M}(t)+\mathfrak{R}(t, \theta)+O(E(t, \theta, \delta))$. Since $(a+b+c)^{2} \ll$ $a^{2}+b^{2}+c^{2}$ we have

$$
\begin{gather*}
J^{\prime}(x, \theta) \ll \int_{x}^{2 x}\left\{\theta^{2}\left(\mathfrak{M}(t)-\frac{t}{\log t}\right)^{2}+\mathfrak{R}(t, \theta)^{2}\right\} d t \tag{2.13}\\
+\theta^{2} x^{3} \mathcal{L}^{3 k-2}\left(\delta^{-\delta / 3}+\mathcal{L}^{3 k} \delta^{-2 \delta / 3}\right) .
\end{gather*}
$$

The error term is $<_{A} x^{3} \theta^{2} \mathcal{L}^{-A}$ for any fixed A, provided that $\delta \geq \log \mathcal{L}$, which we assume. Hence by Lemma 1 and (2.13) we have proved

Lemma 5. The Theorem follows from the estimates

$$
\begin{gather*}
\int_{x}^{2 x}\left(\mathfrak{M}(t)-\frac{t}{\log t}\right)^{2} d t \ll \frac{x^{3}}{\mathcal{L}^{2}}\left(\varepsilon(x)+\frac{\log \log x}{\log x}\right)^{2}, \tag{2.14}\\
\int_{x}^{2 x}|\mathfrak{R}(t, \theta)|^{2} d t \ll \frac{x^{3} \theta^{2}}{\mathcal{L}^{2}}\left(\varepsilon(x)+\frac{\log \log x}{\log x}\right)^{2} \tag{2.15}
\end{gather*}
$$

uniformly for $x^{-5 / 6-\varepsilon(x)} \leq \theta \leq 1$, provided that $\delta \geq \max \left(\log \mathcal{L},\left(\log \log z_{1}\right)^{2}\right)$.
We shall prove the first part of Lemma 5 in Section 5 by taking θ "large", whereas the proof of the other estimate is achieved by means of mean-value bounds as described below.
3. The case $k \leq 2$: reduction to mean-value estimates. For brevity we write $s=s(\tau)=1 / 2+i \tau$ throughout this section. By Perron's formula (see Lemma 3.12 of [10]) we have

$$
\begin{align*}
\Sigma(h, t, \theta)= & \frac{1}{2 \pi i} \sum_{m=1}^{N(h)} c_{m, h} \int_{-T_{0}}^{T_{0}} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau \tag{3.1}\\
& +O\left(\sum_{j=0}^{1} \sum_{m=1}^{N(h)}\left|c_{m, h}\right| \sum_{n=N_{1}(m)+1}^{N_{2}(m)}\left|e_{m, h}(n)\right|\left(\frac{x}{n}\right)^{1 / 2}\right. \\
& \left.\times \min \left(1, T_{0}^{-1}\left|\log \frac{t-j \theta t}{n}\right|^{-1}\right)\right)
\end{align*}
$$

The error term is estimated in Section 6 where we prove that

$$
\begin{align*}
\Sigma(h, t, \theta)= & \frac{1}{2 \pi i} \sum_{m=1}^{N(h)} c_{m, h} \int_{-T_{0}}^{T_{0}} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau \tag{3.2}\\
& +O\left(\frac{x}{T_{0}} e^{2 I}\left(\log N_{7}\right)^{3 h}\right)
\end{align*}
$$

where

$$
N_{7}:=\max _{1 \leq m \leq N(h)} N_{2}(m) .
$$

The main term of Σ will come from a short interval: for $|\tau| \leq T_{1}$ we have

$$
\begin{equation*}
\frac{t^{s}-(t-\theta t)^{s}}{s}=\theta t^{s}+O\left(|s| \theta^{2} t^{1 / 2}\right) \tag{3.3}
\end{equation*}
$$

Hence, setting $S_{0}=S_{0}(h):=\sum_{m=1}^{N(h)}\left|c_{m, h}\right|$,

$$
\begin{align*}
& \mathfrak{M}(h, t):=\frac{1}{2 \pi i} \sum_{m=1}^{N(h)} c_{m, h} \int_{-T_{1}}^{T_{1}} W(s(\tau) ; m, h) t^{s} d \tau \\
& J_{0}=J_{0}(h):=\max _{1 \leq m \leq N(h)} \int_{-T_{1}}^{T_{1}}|W(s(\tau) ; m, h)| d \tau \tag{3.4}
\end{align*}
$$

we have

$$
\begin{align*}
& \frac{1}{2 \pi i} \sum_{m=1}^{N(h)} c_{m, h} \int_{-T_{1}}^{T_{1}} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau \tag{3.5}\\
&=\theta \mathfrak{M}(h, t)+O\left(T_{1} J_{0} S_{0} \theta^{2} x^{1 / 2}\right)
\end{align*}
$$

Summing up, from (3.1)-(3.5) we have

$$
\begin{align*}
\Sigma(h, t, \theta)= & \theta \mathfrak{M}(h, t)+\mathfrak{R}_{1}(h, t, \theta) \tag{3.6}\\
& +\frac{1}{2 \pi i} \sum_{m=1}^{N(h)} c_{m, h}\left\{\int_{-T_{0}}^{-T_{1}}+\int_{T_{1}}^{T_{0}}\right\} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau \\
= & \theta \mathfrak{M}(h, t)+\mathfrak{R}_{1}(h, t, \theta)+\mathfrak{R}_{2}(h, t, \theta)
\end{align*}
$$

say, where $\mathfrak{M}(h, t)$ is independent of θ. The ranges $\left[-T_{0},-T_{1}\right]$ and $\left[T_{1}, T_{0}\right]$ are dealt with by means of the following mean-value bound, which will be proved in Section 7.

Lemma 6. There is a constant $C_{0}>0$ with the following property. Let

$$
\begin{equation*}
\eta=\eta(T):=C_{0}(\log T)^{-2 / 3}(\log \log T)^{-1 / 3} \tag{3.7}
\end{equation*}
$$

and

$$
\mathcal{E}:=\exp \left\{\left(\frac{\mathcal{L}}{\log z_{1}}\right)^{2} \log \log z_{1}\right\}
$$

and assume that $z_{1}=z_{1}(x)$ and $\delta=\delta(x)$ are functions of x such that $\delta \geq\left(\log \log z_{1}\right)^{2}, \log z_{1} \geq \mathcal{L}^{2 / 3}, z_{2}=z_{1}^{\delta}=x^{o(1)}$ and $\mathcal{E}=x^{o(1)}$. Then for each fixed $\alpha \in(0,1 / 12)$ there exists $\beta=\beta(\alpha)$ with $\beta \in(0,1 / 42)$ with the following property. Let

$$
x^{1 / 4}<z \leq x^{1 / 3-\alpha} \quad \text { and } \quad 3 \leq T \leq T_{0}=x^{5 / 6+\beta}
$$

Then for $t \in[x, 2 x]$ and $h \leq 2$ we have

$$
\int_{T}^{2 T}|W(s(\tau) ; m, h)|^{2} d \tau \ll x \mathcal{E}^{2 h^{2}}\left(z_{1}^{-\eta / 6}+T^{-1 / 6}\right)
$$

We obviously have

$$
\left.\mathfrak{R}_{2}(h, t, \theta) \ll \sum_{m=1}^{N(h)}\left|c_{m, h}\right| \int_{T_{1}}^{T_{0}} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau \right\rvert\,
$$

and this means that

$$
\begin{align*}
& \int_{x}^{2 x}\left|\Re_{2}(h, t, \theta)\right|^{2} d t \tag{3.8}\\
& \quad \ll S_{0}^{2} \max _{1 \leq m \leq N(h)} \int_{x}^{2 x}\left|\int_{T_{1}}^{T_{0}} W(s ; m, h) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau\right|^{2} d t
\end{align*}
$$

The next lemma is needed to invert the order of integration.
Lemma 7. Let $F(s)$ be a continuous complex-valued function. Then for $1 \leq T_{1} \leq T_{0} \leq x$ and $s=1 / 2+i \tau$ we have

$$
\int_{x}^{2 x}\left|\int_{T_{1}}^{T_{0}} F(s) \frac{t^{s}-(t-\theta t)^{s}}{s} d \tau\right|^{2} d t \ll x^{2} \theta^{2} \mathcal{L}^{2} \max _{T_{1} \leq T \leq T_{0}} \int_{T}^{2 T}|F(s)|^{2} d \tau
$$

A proof can be easily given by squaring out the integral, performing the integration with respect to t first and then using the elementary inequality $|a b| \leq|a|^{2}+|b|^{2}$ on the remaining double integral. A form of this result appears as Lemma 2 in Harman [2] and elsewhere. We omit the details for brevity.

We remark that $\mathcal{L}^{A} \ll_{A} \mathcal{E}$ for any fixed A, that $N_{7} \ll 2^{2 h+I} x \ll \mathcal{E} x$ and that the definition of W easily implies $J_{0} \ll T_{1} x^{1 / 2}$. The next lemma is proved in Section 6.

Lemma 8. For large enough x we have

$$
\left|S_{0}\right| \ll \exp \left\{h \frac{\mathcal{L}}{\log z_{1}}(\log \mathcal{L})^{2}\right\} .
$$

Hence $\mathcal{L}^{2} S_{0}^{2} \ll \mathcal{E}$. We now choose $k_{0}:=4$ and set

$$
\begin{aligned}
& \mathfrak{M}_{1}(t):=\sum_{k=1}^{2} \sum_{h=0}^{k} \alpha(h, k) \mathfrak{M}(h, t), \\
& \mathfrak{R}_{j}(t, \theta):=\sum_{k=1}^{2} \sum_{h=0}^{k} \alpha(h, k) \mathfrak{R}_{j}(h, t, \theta),
\end{aligned}
$$

for $j=1,2$. Summing up, from Lemmas 4, 6-8, and from (3.2), (3.5)-(3.8) we have

$$
\begin{equation*}
\pi(t)-\pi(t-\theta t)-\frac{1}{3} \sum_{n \in \mathcal{I}(t, \theta)} a_{3}(n)=\theta \mathfrak{M}_{1}(t)+\mathfrak{R}_{1}(t, \theta)+\mathfrak{R}_{2}(t, \theta) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
\mathfrak{R}_{1}(t, \theta) & \ll x \mathcal{E} T_{0}^{-1}+x \theta^{2} \mathcal{E} T_{1}^{2} \tag{3.10}\\
\int_{x}^{2 x}\left|\Re_{2}(t, \theta)\right|^{2} d t & \ll x^{3} \theta^{2} \mathcal{E}^{9}\left(z_{1}^{-\xi / 6}+T_{1}^{-1 / 6}\right), \tag{3.11}
\end{align*}
$$

and $\xi:=\eta\left(T_{1}\right)$. We finally choose our parameters as follows. First we choose $\delta:=(\log \mathcal{L})^{2}$ so that $\delta \geq \max \left(\log \mathcal{L},\left(\log \log z_{1}\right)^{2}\right)$ if $z_{1} \leq x$, and $z_{2}=x^{o(1)}$ provided that $\log z_{1}=o\left(\mathcal{L}(\log \mathcal{L})^{-2}\right)$. Next, we choose $T_{1}:=\mathcal{E}^{55}$ and observe that T_{1} tends to infinity with x. The choice

$$
z_{1}:=\exp \left\{\mathcal{L}^{8 / 9} \log \mathcal{L}\right\}
$$

implies

$$
z_{1}^{-\xi} \ll{ }_{A} \mathcal{E}^{-A}
$$

for any fixed A. We now see that the hypotheses of Lemma 6 are satisfied and (3.9)-(3.11) finally yield

Lemma 9. Let α, β and z be as in Lemma 6. For $t \in[x, 2 x]$ there exist functions $\mathfrak{M}_{1}(t)$ and $\mathfrak{R}^{\prime}(t, \theta)$ such that

$$
\pi(t)-\pi(t-\theta t)-\frac{1}{3} \sum_{n \in \mathcal{I}(t, \theta)} a_{3}(n)=\theta \mathfrak{M}_{1}(t)+\mathfrak{R}^{\prime}(t, \theta)
$$

where $\mathfrak{M}_{1}(t)$ is independent of θ and

$$
\int_{x}^{2 x}\left|\mathfrak{R}^{\prime}(t, \theta)\right|^{2} d t<_{A} x^{3} \theta^{2} \mathcal{L}^{-A}
$$

for any fixed A, provided that

$$
\begin{equation*}
x^{-5 / 6-\beta} \leq \theta \leq \exp \left\{-100 \mathcal{L}^{2 / 9}\right\} \tag{3.12}
\end{equation*}
$$

4. The case $k=3$: reduction to mean-value estimates. The analysis of the case $k=3$ is quite similar to the previous one, but we have to be slightly more careful in order to obtain a good error term. We exploit the fact that each Dirichlet polynomial we use is the product of only 3 factors, as opposed to Section 3 where the number of factors was $2 h+I$. Define

$$
P(s):=\sum_{z \leq p \leq 2 x} \frac{1}{p^{s}} \text { and } P^{*}(s):=\sum_{z_{3} \leq p \leq 2 x} \frac{1}{p^{s}}
$$

where z_{3} is a new parameter satisfying $z \leq z_{3} \leq x^{1 / 3}$. Note that if $n \leq 2 x$ then $a_{3}(n)$ is precisely the coefficient of n^{-s} in $P(s)^{3}$. Let $b_{3}(n)$ be the coefficient of n^{-s} in $P^{*}(s)^{3}$. We write $P_{1}(s)=P(s)-P^{*}(s)$ so that $a_{3}(n)-$
$b_{3}(n)$ is the coefficient of n^{-s} in

$$
P(s)^{3}-P^{*}(s)^{3}=\sum_{j=1}^{3}\binom{3}{j} P_{1}(s)^{j} P^{*}(s)^{3-j}
$$

if $n \leq t$. We write

$$
P_{1}(s)=\sum_{-E \leq e \leq 0} P_{e}(s) \quad \text { and } \quad P^{*}(s)=\sum_{1 \leq e \leq F} P_{e}(s)
$$

where E and F are integers satisfying $2^{-E-1} z_{3} \leq z<2^{-E} z_{3}$ and $2^{F-1} z_{3} \leq$ $2 x<2^{F} z_{3}$, and

$$
P_{e}(s):=\sum_{\substack{2^{e-1} z_{3} \leq p<2^{e} z_{3} \\ z \leq p \leq 2 x}} \frac{1}{p^{s}}
$$

Since $E, F \ll \mathcal{L}$, for some $M \ll \mathcal{L}^{3}$ and $c_{m} \ll 1$ we have

$$
P(s)^{3}-P^{*}(s)^{3}=\sum_{m=1}^{M} c_{m} P(s ; m) \quad \text { where } \quad P(s ; m):=\prod_{j=1}^{3} P_{e_{j}}(s)
$$

with $e_{1} \leq 0$. Write $V_{j}:=2^{e_{j}-1} z_{3}$ so that

$$
P(s ; m)=\sum_{N_{8} \leq n \leq N_{9}} \frac{f_{m}(n)}{n^{s}}
$$

say, where $N_{8}:=\prod_{j} V_{j}$ and $N_{9}:=2^{3} N_{8}$. As above, we discard those $P(s ; m)$ having either $N_{8} \geq t$ or $N_{9} \leq t / 2$ and relabel the remaining ones so that for some $N \leq M$ we have

$$
\begin{equation*}
\sum_{n \in \mathcal{I}(t, \theta)} a_{3}(n)=\sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)+\sum_{m=1}^{N} \sum_{n \in \mathcal{I}(t, \theta)} f_{m}(n) \tag{4.1}
\end{equation*}
$$

The same analysis of Section 3, with the bound $\left|f_{m}(n)\right| \leq 3$!, yields

$$
\sum_{n \in \mathcal{I}(t, \theta)} f_{m}(n)=\frac{1}{2 \pi i} \int_{1 / 2-i T_{2}}^{1 / 2+i T_{2}} P(s ; m) \frac{t^{s}-(t-\theta t)^{s}}{s} d s+O\left(\frac{x \mathcal{L}}{T_{2}}\right)
$$

for $T_{2} \leq x$. The ranges $\left[-T_{2},-T_{3}\right]$ and $\left[T_{3}, T_{2}\right]$ are treated by means of the following mean-value bound, which will be proved in Section 8.

LEMMA 10. Let $x^{19 / 60} \leq z \leq x^{1 / 3}$ and $x^{5 / 6} \leq T_{2} \leq x^{11 / 12}$. Then, if $P(s ; m)$ is as above with $V_{3} \geq V_{2} \geq V_{1} \geq z / 2$, we have

$$
\int_{T}^{2 T}\left|P\left(\frac{1}{2}+i \tau ; m\right)\right|^{2} d \tau \ll x \mathcal{L}^{62}\left(z_{1}^{-\eta / 6}+T^{-1 / 6}+\left(T_{2} V_{3}^{-5 / 2}\right)^{1 / 9}\right)
$$

uniformly for $3 \leq T \leq T_{2}$, where η is given by (3.7).

We proceed precisely as in Section 3, using Lemma 7 again with $F(s)=$ $P(s ; m)$ and (3.3) for the range $\left[-T_{3}, T_{3}\right]$, obtaining
(4.2) $\sum_{n \in \mathcal{I}(t, \theta)} f_{m}(n)=\theta \frac{1}{2 \pi i} \int_{1 / 2}^{1 / 2+i T_{3}} P(s ; m) t^{s} d s+\mathfrak{R}_{1}(3, t, \theta)+\mathfrak{R}_{2}(3, t, \theta)$,
where

$$
\begin{gather*}
\Re_{1}(3, t, \theta) \ll x \mathcal{L} T_{2}^{-1}+x \theta^{2} T_{3}^{2} \tag{4.3}\\
\int_{x}^{2 x}\left|\Re_{2}(3, t, \theta)\right|^{2} d t \ll x^{3} \theta^{2}\left(z_{1}^{-\varrho / 3}+T_{3}^{-1 / 3}+\left(T_{2} V_{3}^{-5 / 2}\right)^{1 / 9}\right) \mathcal{L}^{62} \tag{4.4}
\end{gather*}
$$

and $\varrho=\eta\left(T_{2}\right)$. Since $V_{3}^{2} \geq x z_{3}^{-1}$ we have $T_{2} V_{3}^{-5 / 2} \ll T_{2} z_{3}^{5 / 4} x^{-5 / 4}$. We finally choose the parameters: Let ν be a sufficiently large positive constant and set $T_{2}:=\mathcal{L}^{\nu} \max \left(\theta^{-1}, x^{5 / 6}\right), T_{3}:=\mathcal{L}^{\nu}$ and also $x^{19 / 60} \leq z_{3} \leq$ $\mathcal{L}^{-\nu} \min \left(\theta^{4 / 5} x, x^{1 / 3}\right)$. Then (4.1)-(4.4) imply

$$
\begin{equation*}
\sum_{n \in \mathcal{I}(t, \theta)} a_{3}(n)=\sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)+\theta \mathfrak{M}_{3}\left(t, z_{3}\right)+\mathfrak{R}^{\prime \prime}\left(t, \theta, z_{3}\right) \tag{4.5}
\end{equation*}
$$

say, where $\mathfrak{M}_{3}\left(t, z_{3}\right)$ is independent of θ and

$$
\begin{equation*}
\int_{x}^{2 x}\left|\Re^{\prime \prime}\left(t, \theta, z_{3}\right)\right|^{2} d t \ll x^{3} \theta^{2} \mathcal{L}^{60-\nu / 18} \tag{4.6}
\end{equation*}
$$

provided that θ satisfies (3.12). Now choose $z:=x^{19 / 60}$, so that the hypotheses of both Lemmas 6 and 10 are satisfied, and take $\nu:=1500$. Hence, from Lemma 9, (4.5) and (4.6) we deduce

Lemma 11. There exists a small positive constant λ such that if

$$
x^{-5 / 6-\lambda} \leq \theta \leq \exp \left\{-100 \mathcal{L}^{2 / 9}\right\}
$$

and

$$
\begin{equation*}
x^{19 / 60} \leq w \leq \mathcal{L}^{-1500} \min \left(\theta^{4 / 5} x, x^{1 / 3}\right) \tag{4.7}
\end{equation*}
$$

then for $t \in[x, 2 x]$ there exists a function $\mathfrak{M}(t, w)$ independent of θ such that

$$
\begin{equation*}
\pi(t)-\pi(t-\theta t)-\frac{1}{3} \sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)=\theta \mathfrak{M}(t, w)+\mathfrak{R}(t, \theta, w) \tag{4.8}
\end{equation*}
$$

where

$$
\int_{x}^{2 x}|\Re(t, \theta, w)|^{2} d t \ll x^{3} \theta^{2} \mathcal{L}^{-20}
$$

It now remains to estimate the contribution of $b_{3}(n)$. First we remark that

$$
\begin{equation*}
\int_{x}^{2 x}\left|\sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)\right|^{2} d t \ll\left(\sup _{t \in[x, 2 x]} \sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)\right) \int_{x}^{2 x} \sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n) d t, \tag{4.9}
\end{equation*}
$$

and that a simple argument based on the Brun-Titchmarsh inequality gives

$$
\begin{align*}
\int_{x}^{2 x} \sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n) d t & \ll \sum_{x-\theta x<n \leq 2 x} b_{3}(n) \int_{\max (x, n)}^{\min \left(2 x, n(1-\theta)^{-1}\right)} d t \tag{4.10}\\
& \ll \theta x \sum_{n \leq 2 x} b_{3}(n) \ll \theta x \sum_{w \leq p, q \leq 2 x / w^{2}} \sum_{r \leq 2 x /(p q)} 1 \\
& \ll \frac{\theta x^{2}}{\mathcal{L}}\left(\sum_{w \leq p \leq 2 x / w^{2}} \frac{1}{p}\right)^{2} \ll \frac{\theta x^{2}}{\mathcal{L}}\left(\frac{\log \left(x w^{-3}\right)}{\mathcal{L}}\right)^{2} .
\end{align*}
$$

The same argument leading to (4.10) shows that the expected order of magnitude for the supremum over t in (4.9) is $\theta x \mathcal{L}^{-1}\left(\log \left(x w^{-3}\right) / \mathcal{L}\right)^{2}$, and this would imply the Theorem with the exponent 2 attached to the last factor replaced by 4 . But we are unable to prove such a good bound. By Theorem 3.4 of Halberstam-Richert [1] we find

$$
\sup _{t \in[x, 2 x]} \sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n) \ll \frac{\theta x}{\mathcal{L}},
$$

the lower bound in (4.7) ensuring that we save a \log factor over the trivial estimate. We collect these results in the form of

Lemma 12. Let θ and w be as in the statement of Lemma 11. Then

$$
\int_{x}^{2 x}\left|\sum_{n \in \mathcal{I}(t, \theta)} b_{3}(n)\right|^{2} d t \ll \frac{\theta^{2} x^{3}}{\mathcal{L}^{2}}\left(\frac{\log \left(x w^{-3}\right)}{\mathcal{L}}\right)^{2} .
$$

5. Conclusion of the proof: the main term. Here we choose θ as large as possible, i.e. $\theta=\theta_{0}:=\exp \left(-100 \mathcal{L}^{2 / 9}\right)$, and any w satisfying (4.7). The Prime Number Theorem gives

$$
\pi(t)-\pi\left(t-\theta_{0} t\right)=\frac{\theta_{0} t}{\log t}+O\left(\frac{x \theta_{0}^{2}}{\mathcal{L}^{2}}\right)
$$

Hence (4.8) yields

$$
\theta_{0}\left(\mathfrak{M}(t, w)-\frac{t}{\log t}\right)=-\frac{1}{3} \sum_{n \in \mathcal{I}\left(t, \theta_{0}\right)} b_{3}(n)-\mathfrak{R}\left(t, \theta_{0}, w\right)+O\left(\frac{x \theta_{0}^{2}}{\mathcal{L}^{2}}\right),
$$

so that by Lemmas 11 and 12 we have

$$
\begin{equation*}
\theta_{0}^{2} \int_{x}^{2 x}\left(\mathfrak{M}(t, w)-\frac{t}{\log t}\right)^{2} d t \ll \frac{x^{3} \theta_{0}^{2}}{\mathcal{L}^{2}}\left(\frac{\log \left(x w^{-3}\right)}{\mathcal{L}}\right)^{2}+\frac{x^{3} \theta_{0}^{2}}{\mathcal{L}^{20}}+\frac{x^{3} \theta_{0}^{4}}{\mathcal{L}^{4}} . \tag{5.1}
\end{equation*}
$$

We finally take

$$
w:=\mathcal{L}^{-1500} \min \left(\theta^{4 / 5} x, x^{1 / 3}\right) .
$$

This choice of w implies that the left hand side of (5.1) is

$$
\ll \frac{x^{3} \theta_{0}^{2}}{\mathcal{L}^{2}}\left(\varepsilon(x)+\frac{\log \log x}{\log x}\right)^{2}
$$

and the first estimate of Lemma 5 follows. The second part of Lemma 5 is a consequence of Lemmas 11 and 12 and our choice of w. The proof of the Theorem is therefore complete.
6. Proofs of (3.2) and Lemma 8. In order to prove (3.2) we first need the bound

$$
\sum_{m}\left|c_{m, h}\right| \cdot\left|e_{m, h}(n)\right| \leq d_{3 h}(n) .
$$

By (2.6) this sum is bounded by the coefficient of n^{-s} occurring in

$$
\zeta(s)^{2 h} \prod_{m=1}^{L} \exp \left(\frac{h}{m} \Sigma_{m}(s)\right)
$$

which, in its turn, is bounded by the one in

$$
\zeta(s)^{2 h} \prod_{m \geq 1} \exp \left(\frac{h}{m} \Sigma_{m}(s)\right)
$$

and the latter is a partial product of $\zeta(s)^{h}$.
We recall that we chose $N_{2} \geq t / 2$ and that $N_{1}=2^{-2 h-I} N_{2}$ by (2.11). Setting

$$
N_{7}^{\prime}:=\min _{1 \leq m \leq N(h)} N_{1}(m),
$$

the error term with $j=0$ in (3.1) is

$$
\begin{equation*}
\ll 2^{I / 2} \sum_{N_{7}^{\prime}<n \leq N_{7}} d_{3 h}(n) \min \left(1, T_{0}^{-1}\left|\log \frac{t}{n}\right|^{-1}\right), \tag{6.1}
\end{equation*}
$$

since each n counted in (3.1) is $\geq N_{1}(m) \geq N_{7}^{\prime} \gg x 2^{-I}$. For the sake of brevity, for $r \in \mathbb{N}$ let

$$
H_{r}=\left\{n \in\left(N_{7}^{\prime}, N_{7}\right]: r T_{0}^{-1} \leq|\log (t / n)|<(r+1) T_{0}^{-1}\right\} .
$$

Observe that $H_{r} \neq \emptyset$ only for $0 \leq r \leq M$, say, with $M \ll I T_{0}$. Then the
sum in (6.1) is

$$
\begin{aligned}
& \ll \sum_{n \in H_{0}} d_{3 h}(n)+\sum_{r=1}^{M} \sum_{n \in H_{r}} T_{0}^{-1} d_{3 h}(n)\left|\log \frac{t}{n}\right|^{-1} \\
& \ll \sum_{n \in H_{0}} d_{3 h}(n)+\sum_{r=1}^{M} \sum_{n \in H_{r}} T_{0}^{-1} d_{3 h}(n)\left(r T_{0}^{-1}\right)^{-1} \\
& \ll \sum_{r=0}^{M} \frac{1}{r+1} \sum_{n \in H_{r}} d_{3 h}(n) .
\end{aligned}
$$

Furthermore $t T_{0}^{-1} \exp \left(-r T_{0}^{-1}\right) \ll\left|H_{r}\right| \ll t T_{0}^{-1} \exp \left(r T_{0}^{-1}\right)$ for all $r \leq M$, and (3.2) follows using Lemma 3 . The term with $j=1$ in (3.1) is dealt with in the same way.

For Lemma 8 we need the following elementary inequality which is easily proved by induction: For any integer $A \geq 2$ and real number $B \geq 3$ we have

$$
\sum_{n=0}^{A} \frac{B^{n}}{n!} \leq B^{A}
$$

Arguing as in Section 5 of [4] we find, after a simple computation,

$$
\begin{aligned}
S_{0} & \leq(B+1)^{h}(C+1)^{h} \exp \left\{h \sum_{m=1}^{L / 2} \frac{L}{m} \log \frac{D+1}{m}+h \frac{L}{2} \log \frac{2 D}{L}\right\} \\
& \leq \exp \left\{h \frac{\mathcal{L}}{\log z_{1}}(\log \mathcal{L})^{2}\right\},
\end{aligned}
$$

for large enough x, since $B, C, D \ll \mathcal{L}$ and $z_{1}=x^{o(1)}$, and Lemma 8 follows.

7. Proof of Lemma 6

Preliminaries. The proof is quite similar to the proof of Lemma 8 in [4]. For the sake of brevity we do not duplicate the whole argument, but merely give the needed modifications. We say that a set \mathcal{S} of points $\tau_{n} \in[T, 2 T]$ is well spaced if $\left|\tau_{m}-\tau_{n}\right| \geq 1$ for every $\tau_{m}, \tau_{n} \in \mathcal{S}$ with $n \neq m$. We write $s=1 / 2+i \tau$ and $s_{n}=1 / 2+i \tau_{n}$ throughout this section. We need an estimate for

$$
J_{1}(T):=\int_{T}^{2 T}|W(s)|^{2} d \tau
$$

We first write W as the product of W_{1}, W_{2} and W_{3}, where

$$
\begin{aligned}
& W_{1}(s):=\prod_{X_{i} \geq z_{1}} X_{b_{i}}(s) \prod_{i=1}^{I_{1}} Z_{d_{i}}^{(1)}(s), \quad W_{2}(s):=\prod_{X_{i}<z_{1}} X_{b_{i}}(s) \prod_{i=1}^{h} Y_{c_{i}}(s), \\
& W_{3}(s):=W(s)\left(W_{1}(s) W_{2}(s)\right)^{-1} .
\end{aligned}
$$

We also set

$$
x_{1}:=\prod_{X_{i} \geq z_{1}} X_{i} \prod_{i=1}^{I_{1}} Z_{i}, \quad x_{2}:=\prod_{X_{i}<z_{1}} X_{i} \prod_{i=1}^{h} Y_{i}, \quad x_{3}:=\prod_{m=2}^{L} \prod_{i=1}^{I_{m}} Z_{i}
$$

so that $x_{1} x_{2} x_{3}=N_{1} \leq x$. We observe that $\left|Z_{d_{i}}^{(m)}(s)\right| \leq Z_{i}^{1-m / 2}$ for $m \geq 2$ and large enough x, whence $\left|W_{3}(s)\right| \leq 1$.

The main tool to obtain mean-value estimates such as our Lemmas 6 and 10 is a combination of Montgomery's mean-value bound (see Theorem 7.3 of [7]) and the Halász method. These are summarized in the following

Lemma 13. Let $K(s)$ be the Dirichlet polynomial

$$
K(s)=\sum_{n \leq K} \frac{k(n)}{n^{s}}
$$

where $K \geq 2$ and $|k(n)| \leq 1$ for every $n \leq K$. Assume that $\left|K\left(1 / 2+i \tau_{n}\right)\right| \geq$ \mathcal{K} for a set \mathcal{S} of well-spaced points $\tau_{n} \in[T, 2 T]$. Then, uniformly for $g \in \mathbb{N}$, we have

$$
|\mathcal{S}| \ll\left\{\mathcal{K}^{-2 g} K^{g}+T \min \left(\mathcal{K}^{-2 g}, \mathcal{K}^{-6 g} K^{g}\right)\right\} \exp \left\{6 g^{2} \log \log K\right\}(\log T K)^{5}
$$

This is (8.4) and the following is Lemma 19 of [4].
Lemma 14. For every factor $K(s)$ of $W_{1}(s)$ we have

$$
K(s) \ll K^{1 / 2}\left(z_{1}^{-\eta}+T^{-1}\right) \mathcal{L}^{2}
$$

uniformly for $\tau \in[T, 2 T]$, where $\eta=\eta(T)$ is given by (3.7).
Actually, if x_{3} is large enough, $x_{3} \geq z_{1}$, say, we see that Lemma 6 follows directly from Montgomery's mean-value bound. In fact, we have

$$
J_{1} \ll \sup _{\tau \in[T, 2 T]}\left|W_{3}(s)\right|^{2} \int_{T}^{2 T}\left|W_{1}(s) W_{2}(s)\right|^{2} d \tau \ll\left(T+x_{1} x_{2}\right) \sum_{n \leq x_{1} x_{2}} \frac{\left|c_{n}\right|^{2}}{n}
$$

for suitable coefficients c_{n}. The same argument leading to Lemma 13 above implies that the last sum is $\ll \mathcal{E}^{2 h^{2}}$, and the hypothesis on x_{3} ensures that $T+x_{1} x_{2} \ll x z_{1}^{-1}$, which is more than enough for Lemma 6 . Hence we may assume in what follows that $x_{3} \leq z_{1}$. We remark that from the definitions above and (2.11) we have $x_{2}=x^{o(1)}$ and $x_{1}=x^{1+o(1)}$. We do not rule out the possibility that W_{1} consists of a single factor $X_{b_{i}}$. We use Lemma 14 in conjunction with Montgomery's mean-value theorem if W_{1} has at least one factor $X_{b_{i}}(s)$ or $Z_{d_{i}}^{(1)}(s)$ with $X_{i} \leq x^{1 / 6-\alpha}$ or $Z_{i} \leq x^{1 / 6-\alpha}$, respectively. In fact, setting $K(s)=X_{b_{i}}(s), K=X_{i}\left(\right.$ resp. $\left.K(s)=Z_{d_{i}}^{(1)}(s), K=Z_{i}\right)$,
$W_{1}(s)=K(s) W_{4}(s), x_{4}=x_{1} / K$, in this case we have

$$
\begin{aligned}
J_{1} & \ll \sup _{\tau \in[T, 2 T]}\left|W_{2}(s) W_{3}(s)\right|^{2} \int_{T}^{2 T}\left|W_{1}(s)\right|^{2} d \tau \\
& \ll x_{2} K\left(z_{1}^{-2 \eta}+T^{-2}\right) \int_{T}^{2 T}\left|W_{4}(s)\right|^{2} d \tau
\end{aligned}
$$

and the last integral is estimated by means of Montgomery's theorem, giving

$$
J_{1} \ll x_{2} K\left(z_{1}^{-2 \eta}+T^{-2}\right)\left(T+x_{4}\right) \sum_{n \leq x_{4}} \frac{\left|c_{n}^{\prime}\right|^{2}}{n}
$$

for suitable coefficients c_{n}^{\prime}. As above, the last sum is $\ll \mathcal{E}^{2 h^{2}}$, and the hypothesis on K ensures that Lemma 6 follows in this case, with $\beta=\alpha / 2$.

From now on we may assume that every factor $K(s)$ of $W_{1}(s)$ has $K \geq$ $x^{1 / 6-\alpha}$. Thus we have $I_{1} \leq 12$ and there exists a set \mathcal{S} of $\ll T$ well-spaced points $\tau_{n} \in[T, 2 T]$ such that

$$
J_{1} \ll \sum_{\tau_{n} \in \mathcal{S}}\left|W\left(s_{n}\right)\right|^{2}
$$

The contribution to the sum of the points τ_{n} for which some factor of W_{1} is $\leq x^{-1}$ is easily seen to be $\ll T$. We discard these points, and from now on assume that each factor of W_{1} is $\geq x^{-1}$. Then we split the range for each factor of $W_{1}(s)$ into dyadic intervals $\left[D_{j}, 2 D_{j}\right)$ (if the factor is an $X_{b_{i}}(s)$) or $\left[E_{j}, 2 E_{j}\right.$) (if the factor is a $\left.Z_{d_{i}}^{(1)}(s)\right)$, where

$$
x^{-1} \ll D_{j}=2^{d} \ll X_{i}^{1 / 2} \quad \text { and } \quad x^{-1} \ll E_{j}=2^{e} \ll Z_{i}^{1 / 2}
$$

for some integers d and e. We observe that our hypothesis that each factor of $W_{1}(s)$ is not too small ensures that the number of ranges (that is, the number of values taken by d and e above) is $\leq C_{2} \mathcal{L}$ in each case, for some absolute constant C_{2}. For brevity we write $\mathcal{L}_{0}=2 C_{2} \mathcal{L}$. We may divide the remaining points into at most $\left(\mathcal{L}_{0} / 2\right)^{h+I_{1}}$ classes $\mathcal{S}(\mathbf{D}, \mathbf{E})$ where $\mathbf{D}=\left(D_{1}, \ldots, D_{h}\right)$ and $\mathbf{E}=\left(E_{1}, \ldots, E_{I_{1}}\right)$, for which

$$
\begin{equation*}
\left|X_{b_{i}}\left(s_{n}\right)\right| \in\left[D_{i}, 2 D_{i}\right) \quad \text { and } \quad\left|Z_{d_{i}}^{(1)}\left(s_{n}\right)\right| \in\left[E_{i}, 2 E_{i}\right) \tag{7.1}
\end{equation*}
$$

We write

$$
\mathcal{P}(\mathbf{D}, \mathbf{E}):=\prod_{i} D_{i} \prod_{i} E_{i}
$$

As above, we estimate $W_{2}(s)$ trivially and conclude that
Lemma 15. There exists a set $\mathcal{S}(\mathbf{D}, \mathbf{E})$ of well-spaced points $\tau_{n} \in[T, 2 T]$ satisfying (7.1) and such that

$$
J_{1} \ll T+x_{2} \mathcal{P}(\mathbf{D}, \mathbf{E})^{2}|\mathcal{S}(\mathbf{D}, \mathbf{E})| \mathcal{L}_{0}^{h+I_{1}}
$$

We shall give upper bounds for $|\mathcal{S}|$ by means of Lemmas 13 and 14. Since these bounds are essentially the same as in [4] we simply quote the results.

Lemma 16. If the hypotheses of Lemma 13 hold for $K(s)=X_{i}(s)$ with $K=2 X_{i} \geq T^{1 / 2}$ then either

$$
\begin{equation*}
\mathcal{K} \ll K^{1 / 2} T^{-1}(\log K)^{3} \tag{7.2}
\end{equation*}
$$

or

$$
|\mathcal{S}| \ll \mathcal{K}^{-4} T(\log K)^{9}
$$

This is Lemma 18 of [4].
If (7.2) holds, the trivial bound $|\mathcal{S}| \ll T$ and Lemmas 15 and 16 imply
Lemma 17. If $X_{i} \geq \frac{1}{2} T^{1 / 2}$ for some i then either

$$
\begin{equation*}
|\mathcal{S}| \ll \mathcal{K}^{-4} T(\log K)^{9} \tag{7.3}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{1} \ll T+x_{1} x_{2} T^{-1} \mathcal{L}_{0}^{3+h+I_{1}} \tag{7.4}
\end{equation*}
$$

The second estimate is proved taking $\mathcal{K}=D_{i}$ in (7.2) and observing that the definition implies that $\mathcal{P} \ll\left|W_{1}\left(s_{n}\right)\right|$. Since $\mathcal{L}_{0}^{3+h+I_{1}} \ll \mathcal{E}$ and $x_{1} x_{2} \leq x$, (7.4) yields the conclusion of Lemma 6 and more.

Large factors of $W_{1}(s)$. The argument here is essentially the same as in Section 8 of [4], and Lemma 6 follows precisely in the same way, since the results in that section are bounds for $|\mathcal{S}|$. We take a factor of $W_{1}(s)$, $K(s)=X_{b_{i}}(s)$ or $Z_{d_{i}}^{(1)}(s)$, and let $K=2 X_{i}$ or $2 Z_{i}, \mathcal{K}=D_{i}$ or E_{i} accordingly. We define σ by means of $\mathcal{K}=K^{\sigma-1 / 2}$. The argument in Section 8 of [4] is as follows: if φ is the maximum value of a σ occurring above then

$$
\begin{equation*}
\mathcal{P}(\mathbf{D}, \mathbf{E})^{2} \leq \prod_{i} D_{i}^{2 \varphi-1} \prod_{i} E_{i}^{2 \varphi-1} \leq x_{1}^{2 \varphi-1} \tag{7.5}
\end{equation*}
$$

and by Lemma 15 we have

$$
\begin{equation*}
J_{1} \ll T+x x_{1}^{2 \varphi-2} \mathcal{L}_{0}^{h+I_{1}}|\mathcal{S}(\mathbf{D}, \mathbf{E})| \tag{7.6}
\end{equation*}
$$

If $\varphi \geq 5 / 6$ then suitable choices of g in Lemma 13 yield

$$
|\mathcal{S}(\mathbf{D}, \mathbf{E})| \ll\left(T^{2-2 \varphi}+z^{4-4 \varphi}\right) \mathcal{L}^{29} \mathcal{E}^{3 / 2}
$$

and the upper bounds for T and z in the hypothesis of Lemma 6 together with (7.5) and (7.6) yield

$$
J_{1} \ll T+x x_{1}^{(\varphi-1) / 6} \mathcal{L}_{0}^{29+h+I_{1}} \mathcal{E}^{3 / 2}
$$

The upper bound for $x_{1}^{\varphi-1}$ which we need is provided by Lemma 14 and the inequality $K \ll x$. In conclusion, since $\mathcal{L}_{0}^{A} \ll_{A} \mathcal{E}$, we see that Lemma 6 follows if $\varphi \geq 5 / 6$.

Conclusion of the proof of Lemma 6. In the remaining case, HeathBrown's argument leads to the stronger inequality

$$
\begin{equation*}
J_{1} \ll x^{1-\gamma} \tag{7.7}
\end{equation*}
$$

for some $\gamma>0$. This follows from several bounds for $|\mathcal{S}|$ which are essentially the same as in our case. We very briefly sketch the argument, without entering into the details. First the hypotheses of Lemma 6 ensure that

$$
J_{1} \ll T+x^{o(1)} \mathcal{P}^{2}|\mathcal{S}| .
$$

By means of Lemma 13 we prove the following bounds: If $K(s)=X_{b_{i}}(s)$ then

$$
|\mathcal{S}| \ll \begin{cases}T^{12(1-\sigma) / 5} x^{o(1)} & \text { in any case }, \\ \left(T / X_{i}\right)^{4-4 \sigma} x^{o(1)} & \text { if } T^{2 / 5} \leq X_{i} \leq T^{1 / 2}, \\ T^{2-2 \sigma} x^{o(1)} & \text { if } X_{i} \geq T^{1 / 2},\end{cases}
$$

and if $K(s)=Z_{d_{i}}^{(1)}(s)$ then

$$
|\mathcal{S}| \ll T^{12(1-\sigma) / 5} x^{o(1)} .
$$

Using these bounds we see that (7.7) holds provided that the following conditions hold.

First case. If $X_{i} \geq x^{1 / 3+\delta}$ for some $\delta \geq \beta$ and $\sigma \geq \varphi-\varepsilon$ we need to have

$$
\gamma<\min \left(\frac{1}{6}-\beta, \frac{1}{18}-\frac{1}{3} \beta-2 \varepsilon, \frac{2}{3} \delta-\frac{2}{3} \beta-2 \varepsilon\right) .
$$

Second case. If $X_{i} \geq x^{1 / 3+\delta}$ for some $\delta \geq \beta$ and $\sigma \leq \varphi-\varepsilon$ we need to have

$$
\gamma<\min \left(\frac{1}{6}-\beta, \frac{2}{3} \varepsilon-\beta\right) .
$$

Third case. If $X_{i} \leq x^{1 / 3+\delta}$ for all i we need

$$
\gamma<\min \left(\frac{1}{6}-\beta, \frac{2}{3} \varepsilon-\beta-4 \delta \varepsilon, \frac{1}{6} \alpha-\frac{1}{3} \beta-2 \varepsilon\right) .
$$

Now, we easily see that the choices

$$
\delta=\frac{1}{30}, \quad \beta=\frac{1}{30} \alpha, \quad \varepsilon=\frac{1}{15} \alpha
$$

allow the choice $\gamma=\alpha / 50$ and satisfy the hypotheses of Lemma 6 .
8. Proof of Lemma 10. This lemma is proved in a similar fashion to Lemma 11 in [4] and we simply sketch the argument, with the necessary changes. As in Section 10 of [4], let $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ and $\mathcal{S}(\mathbf{F})$ be a set of well-spaced points $\tau_{n} \in[T, 2 T]$ such that

$$
F_{i} \leq\left|P_{e_{i}}\left(1 / 2+i \tau_{n}\right)\right|<2 F_{i} \quad \text { for } i=1,2,3 .
$$

The same argument of Section 7 gives

$$
\begin{equation*}
\int_{T}^{2 T}|P(1 / 2+i \tau)|^{2} d \tau \ll T_{2}+\mathcal{L}^{3}|\mathcal{S}(\mathbf{F})| \prod_{i=1}^{3} F_{i}^{2} \tag{8.1}
\end{equation*}
$$

for some \mathbf{F}. Fix an index i and set $\mathcal{K}=F_{i}=V_{i}^{\sigma-1 / 2}$ and $K=2 V_{i}$. We remark that our choice of parameters implies that

$$
\begin{equation*}
T_{2}^{1 / 3} \ll K \ll T_{2}^{1 / 2} \tag{8.2}
\end{equation*}
$$

We use Lemma 13 with several different values of g. First, if $\varphi=\max \sigma \geq$ $5 / 6$, we choose $g=2$ and (8.2) implies that

$$
|\mathcal{S}(\mathbf{F})| \ll T_{2}^{2-2 \varphi} \mathcal{L}^{29},
$$

and Lemma 10 easily follows as in [4], on substituting into (8.1), since $\Pi F_{i}^{2} \leq \prod V_{i}^{2 \varphi-1} \leq x^{2 \varphi-1}$. An upper bound for $x^{\varphi-1}$ is provided by Lemma 14. In the other case, choose $g=3$ to obtain

$$
\begin{equation*}
|\mathcal{S}(\mathbf{F})| \ll K^{6-6 \sigma} \mathcal{L}^{59} \tag{8.3}
\end{equation*}
$$

or g in such a way that $T_{2} K^{-1 / 2} \leq K^{g} \leq T_{2} K^{1 / 2}$. In the latter case we have

$$
\begin{equation*}
|\mathcal{S}(\mathbf{F})| \ll\left(T K^{1 / 2}\right)^{2-2 \sigma} \mathcal{L}^{59} \tag{8.4}
\end{equation*}
$$

since $g \leq 3$ anyway. Since now $\sigma \leq 5 / 6$, (8.3) and (8.4) imply

$$
|\mathcal{S}(\mathbf{F})| \ll K^{6-6 \sigma}\left(T_{2} K^{-5 / 2}\right)^{1 / 3} \mathcal{L}^{59}
$$

when $K \leq T_{2}^{2 / 5}$ and when $K \geq T_{2}^{2 / 5}$ respectively. This means that

$$
\begin{aligned}
& F_{i}^{6}|\mathcal{S}(\mathbf{F})| \ll\left(K^{\sigma-1 / 2}\right)^{6} K^{6-6 \sigma} \mathcal{L}^{59}=K^{3} \mathcal{L}^{59}, \\
& F_{i}^{6}|\mathcal{S}(\mathbf{F})| \ll\left(K^{\sigma-1 / 2}\right)^{6} K^{6-6 \sigma}\left(T_{2} K^{-5 / 2}\right)^{1 / 3} \mathcal{L}^{59}=K^{3}\left(T_{2} K^{-5 / 2}\right)^{1 / 3} \mathcal{L}^{59}
\end{aligned}
$$

We use the former for $i=1,2$, and the latter for $i=3$, take their geometric mean, and from (8.1) we obtain Lemma 10 in this case too, since $F_{i}^{2} \leq$ $V_{i}^{2 \sigma-1} \leq V_{i}$.
9. Some comments. The knowledgeable reader sees at once that we had to make a different choice for the Dirichlet polynomials from Heath-Brown [4]. Indeed, the choice therein leads to too large error terms in Lemma 4 since we have a larger z than Heath-Brown and a much smaller h. This is due to the fact that we need z to be almost $x^{1 / 3}$, since we have the same problems he encounters in Section 9 when the product W has 6 factors, but already with only 3 factors. The slight additional difficulty is more than compensated by the fact that we only have to save a little over the estimate given by Montgomery's theorem, since our problem leads naturally to estimating the mean-square of a Dirichlet polynomial.

We did not use Watt's mean-value bound (Theorem 2 of [12]) in proving Lemma 6 , because the hypothesis $T \geq K^{4}$ (in our notation) limits the former's usefulness in this problem to a subrange of the values of the parameters in Lemma 6. In particular, the case when some function $X_{b_{i}}(s)$ or $Z_{d_{i}}(s)$ has length K ($=X_{i}$ or Z_{i} resp.) bounded by $x^{1 / 6-\alpha}$ can be more
easily handled by means of Montgomery's theorem alone. Compare the comment following the proof of Proposition 2.2 in [12] with the hypothesis of our Lemma 17. Even the more general Theorem 1 of Watt's paper [11] has, essentially, the same disadvantage.

References

[1] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974.
[2] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348.
[3] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377.
[4] -, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63.
[5] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
[6] C. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.
[7] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971.
[8] B. Saffari and R. C. Vaughan, On the fractional parts of x / n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (2) (1977), 1-30.
[9] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170.
[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986.
[11] N. W att, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory 53 (1995), 179-210.
[12] -, Short intervals almost all containing primes, Acta Arith. 72 (1995), 131-167.
[13] A. Zaccagnini, On the Selberg integral via Heath-Brown's identity, Riv. Mat. Univ. Parma 5 (1996), 205-212.

Dipartimento di Matematica
Università di Parma
via Massimo d'Azeglio 85/a
43100 Parma, Italy
E-mail: zaccagnini@prmat.math.unipr.it

[^0]: 1991 Mathematics Subject Classification: Primary 11N05.

