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1. Introduction. Let

P (X1, . . . , Xr) =
∑

α∈Nr0
cαX

α ∈ C[X1, . . . , Xr]

be a polynomial in r variables with <cα > 0 if cα 6= 0 and with degX% P ≥ 1
for each 1 ≤ % ≤ r. Let

%(P ) := max
α
|arg cα|, d(P ) := max{α1 + . . .+ αr | α ∈ Nr0, cα 6= 0}.

Let 0 ≤ Θ < π/2 and %(P ) + d(P )Θ < π/2. Let (λ%n)n≥1, 1 ≤ % ≤ r, be
sequences in

SΘ := {z ∈ C \ R−0 | |arg z| ≤ Θ}
with limn→∞ |λ%n| = ∞ and (a(%)

n )n≥1, 1 ≤ % ≤ r, sequences in C. The
Dirichlet series S(s) is formally defined by

(1.1) S(s) :=
∑

n1,...,nr≥1

a
(1)
n1 . . . a

(r)
nr

P (λ1n1 , . . . , λrnr )s
.

Let σa(T ) ∈ [−∞,∞] be the abscissa of absolute convergence of any Dirich-
let series T . Define the auxiliary Dirichlet series

S%(s) :=
∑

n≥1

a
(%)
n

λs%n
, 1 ≤ % ≤ r.

In this paper the following questions are investigated:

(1) Under what conditions on the S% is σa(S) finite and can the holo-
morphic function S(s) be continued analytically beyond the half plane <s >
σa(S)?

(2) Where are the singularities of S(s) located and of what kind are
they?
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(3) Is there an asymptotic formula for the summatory function of the
coefficients of S(s)?

Let K be the set of all holomorphic functions f : {<s > σf} → C with
the properties: f can be continued meromorphically to C, has only a finite
number of poles in each strip a ≤ <s ≤ b and for each ε > 0,

(1.2) |f(s)| �a,b,ε e
ε|=s| (a ≤ <s ≤ b, |=s| → ∞).

The following two theorems are long since known.

Theorem 1.1. If σa(S%) <∞ and S% ∈ K for 1 ≤ % ≤ r, then σa(S) <∞
and ΓS ∈ K.

Mellin [7], p. 23, proved this only for Θ = 0. The same proof works for
the general situation. In [8], p. 61, Mellin remarks that even the following
theorem holds.

Theorem 1.2. If the coefficients of P are real , σa(S%) <∞ and S% ∈ K
for 1 ≤ % ≤ r, then σa(S) <∞ and S ∈ K.

The proof is the same as for Theorem 1.1 with some obvious changes.
Under the strong assumption of ellipticity of P more precise conclusions

about the location and order of the poles of S(s) can be drawn (Mahler [6]).
In the special case P ∈ R[X1, . . . , Xr], a

(%)
n = ξn% , λ%n = n, with |ξ%| = 1,

ξ% 6= 1 for 1 ≤ % ≤ r, n ∈ N, the function S(s) can be continued to an
entire function and the numbers S(−k), k ∈ N0, can be computed explicitly
(Cassou-Noguès [1]).

In the special case S1 = . . . = Sr = ζ the method of Sargos [9], [10] gives
a much sharper result than the method of Mellin does.

Another class of polynomials for the same S% is investigated by Lichtin
[4], [5]. This class is not defined by a condition on the coefficients of its
members but by a growth condition.

In this paper Sargos’ method is applied to the more general Dirichlet
series (1.1). First the following sharpened version of Theorem 1.1 is obtained.
Let polordw S denote the order of the pole w of S.

Theorem 1.3. Assume %(P ) + d(P )Θ < π/2, α > 0 with
∑
n≥1 |λ%n|−α

< ∞, σa(S%) < ∞ and let S%(w) be meromorphic on C for 1 ≤ % ≤ r.
Assume that S%(w) has only a finite number of poles in each strip

B(σ1, σ2) := {w ∈ C | σ1 ≤ <w ≤ σ2} (−∞ < σ1 < σ2 <∞)

and that for each ε > 0,

|S%(w)| �σ1,σ2,ε e
(Θ+ε)|=w|, w ∈ B(σ1, σ2), |=w| → ∞.

Then σa(S) < ∞, S(w) can be continued meromorphically to C, has only
a finite number of poles in each vertical strip of finite width and there are
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linear forms

Lm((X%)%∈Im), Im ⊆ {1, . . . , r}, 1 ≤ m ≤M,

with coefficients in N0 which depend effectively on P and effectively com-
putable constants N ∈ N, c1, . . . , c4 > 0 so that the poles of S(w) lie in the
set

(1.3) {N−1(a+ Lm((w%)%∈Im)) | 1 ≤ m ≤M, w% a pole of S% for each

% ∈ Im, a ∈ Z, <(a+ Lm((w%)%∈Im)) ≤ c1 min{<w% | % ∈ Im}+ c2}.
The order of a pole w0 ∈ C of S(w) can be estimated by

(1.4) r + max
{ ∑

%∈Im
(polordw% S% − 1) | 1 ≤ m ≤M, a ∈ Z,

w% a pole of S% for each % ∈ Im, w0 = N−1(a+ Lm((w%)%∈Im)),

c3<w0 − c4 ≤ min{<w% | % ∈ Im}
}
.

Theorem 7.8 of Jorgenson and Lang [3] states that under certain condi-
tions from an asymptotic development for theta series

∑

k≥1

ake
−λkt and

∑

k′≥1

a′k′e
−λ′k′ t as t→ 0

an asymptotic development for
∑
k,k′≥1 aka

′
k′e
−λkλ′k′ t can be derived. The

following theorem generalizes this situation. From [3] the following axioms
for Dirichlet series

∑
k≥1 akλ

−s
k and theta functions Θ(t) =

∑
k≥1 ake

−λkt

are taken:

DIR1. <λk > 0 for each k ≥ 1; limk→∞ <λk =∞.
DIR2. (a) There is σ0 > 0 with

∑
k≥1 |ak| · |λk|−σ0 <∞.

(b) There is σ1 > 0 with
∑
k≥1 |λk|−σ1 <∞.

DIR3. There is ε > 0 with λk ∈ S(π/2− ε) for each k ≥ 1.
AS1. For each C, t0 > 0 there are N ∈ N and K > 0 with

|Θ(t)−QN (t)| ≤ Ke−Ct for t ≥ t0 (QN (t) :=
∑N−1
k=1 ake

−λkt).
AS2. There are sequences P = (pn)n≥0 in C and (Bpn)n≥0 in C[X]

with the properties:

• <pn ↑ ∞ as n→∞,
• for each q ∈ P,

Θ(t)−
∑

p:<p<<q
Bp(log t)tp = Oq(t<q|log t|m(q))

as t→ 0 (m(q) := maxp:<p=<q degBp).
AS3. For each δ > 0 there are α,C > 0 with |Θ(t) − QN (t)| ≤ Ct−α

for each N ∈ N, 0 < t ≤ δ.
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As an application of Theorem 1.3 one derives

Theorem 1.4. Assume cα ∈ R for each α ∈ Nr0 and d(P )Θ < π/2.
For 1 ≤ % ≤ r let S% satisfy axiom DIR2. Let the theta series Θ%(t) :=∑
k≥1 a

(%)
k e−λ%kt, t > 0, satisfy the axioms AS1–AS3. Then S% can be con-

tinued meromorphically to C. Assume that in each vertical strip B(σ1, σ2)
and for each ε > 0 we have the estimate

|S%(w)| �σ1,σ2,ε e
ε|=w| as |=w| → ∞.

Then the theta series Θ(t) :=
∑
k1,...,kr≥1 a

(1)
k1
. . . a

(r)
kr
e−P (λ1k1 ,...,λrkr )t, t > 0,

satisfies the axioms AS1–AS3. If Θ%(t) ∼
∑
p∈P% B

(%)
p (log t)tp is the asymp-

totic development of Θ% at 0 according to AS2 then the asymptotic develop-
ment Θ(t) ∼∑p∈P Bp(log t)tp satisfies

(1.5) P ⊆ {N−1(a+ Lm((p%)%∈Im)) | 1 ≤ m ≤M,

p% ∈ P% for each % ∈ Im, a ∈ Z,
<(a+ Lm((p%)%∈Im)) ≥ c1 max{<p% | % ∈ Im} − c2},

(1.6) degBp ≤ r − 1 + ε(p) + max
{ ∑

%∈Im
(degB(%)

p% − ε(p%))
∣∣∣ 1 ≤ m ≤M,

p% ∈ P% and degB(%)
p% ≥ ε(p%) for each % ∈ Im, a ∈ Z,

p = N−1(a+ Lm((p%)%∈Im)), c3<p+ c4 ≥ max{<p% | % ∈ Im}
}

with ε(p) = 1 for p ∈ N0 and ε(p) = 0 otherwise. The L% are as in Theo-
rem 1.3 and c1, . . . , c4 > 0.

In contrast to Mellin’s method the method of Sargos can also be applied
to situations in which the Dirichlet series S%(s) have an infinite number of
poles in a vertical strip of finite width. Then maybe S(s) cannot be continued
analytically beyond its half plane of absolute convergence but the behaviour
of S(s) when s approaches its boundary can be analyzed and therefore a
Tauberian theorem can be applied. An example for this situation is

Theorem 1.5. Assume cα ∈ R for each α ∈ Nr0. Then
∑

(n1,...,nr)∈Nr :
P (n1,...,nr)≤x

Λ(n1) . . . Λ(nr) = (C+O((log log x)−1))xσa(log x)ω (x→∞)

with constants C, σa > 0, ω ∈ N0, 0 ≤ ω ≤ r − 1.

Let c > 1. In [7], p. 24, Mellin mentioned the series

(1.7) S(s) =
∑

n1,...,nr≥0

P (cn1 , . . . , cnr )−s,
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about which he explicitly stated that his method cannot be applied to it.
But Sargos’ method can be applied and gives

Theorem 1.6. The holomorphic function which is defined by (1.7) in the
right half plane <s > 0 can be continued meromorphically to C. Its poles lie
in N−1(−N0 + 2πi(log c)−1Z) for a suitable N ∈ N and have order ≤ r.

Corollary 1.7. Assume cα ∈ R for each α ∈ Nr0 and c > 1. Then there
are constants C > 0 and ω ∈ N, ω ≤ r, so that as x→∞,

#{(n1, . . . , nr) ∈ Nr0 | P (cn1 , . . . , cnr ) ≤ x} = (C +O((log log x)−1)) logω x.

In this case the meromorphic continuation to C is possible because the
integral linear combinations of the poles 2πin(log c)−1, n ∈ Z, of S%(w) =
(1 − c−w)−1 have no accumulation point in C. For the same reason the
following theorem holds.

Theorem 1.8. The holomorphic function which is defined by

S(s) :=
∑

n1,...,nr≥1

Λ(n1)
P (n1, . . . , nr)s

in a right half plane can be continued meromorphically to C. Its poles lie in

{N−1(k + cm%) | k ∈ Z, k ≤ c, % a nontrivial zero of ζ(s), 1 ≤ m ≤M}
for suitable N, c ∈ N, c1, . . . , cM ∈ N0, and have order ≤ r.

2. Some auxiliary theorems. The following transformations are an
essential tool in [9]: For λ = (λjk) ∈ Nr×r0 with detλ 6= 0 define ω =
ω(λ) : (1,∞)r → (1,∞)r by ωx := (xλ1j

1 . . . x
λrj
r )1≤j≤r. It is a C∞-function

and has the functional determinant Jω(x) = detλ
∏r
j=1 x

−1
j

∏r
k=1 x

λkj
k . Let

Ω := {ω(λ) | λ ∈ Nr×r0 , detλ 6= 0}. If Q(X) =
∑
α dαX

α ∈ C[X], then
Qω(X) :=

∑
α dαX

λα is a polynomial with Qω(x) = Q(ω(x)) for each

x ∈ (1,∞)r. One says that Q has a greatest monomial dβX
β if dβ 6= 0 and

α ≤ β for each α with dα 6= 0. Here α ≤ β is shorthand for αj ≤ βj for each
1 ≤ j ≤ r.

The following theorem is crucial for Sargos’ method.

Theorem 2.1 ([9], Theorem 2.1). For each P ∈C[X] there are ω1, . . . , ωm
∈ Ω with the following properties:

(1) (1,∞)r is up to sets of Lebesgue measure zero the disjoint union of
the sets ωµ((1,∞)r), 1 ≤ µ ≤ m.

(2) Pωµ has a greatest monomial for each 1 ≤ µ ≤ m.
(3) ω1, . . . , ωm depend only upon suppP := {α ∈ Nr0 | Xα appears in P}.
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As in [9], S(s) is represented as an integral with the help of the residue
theorem. Therefore functions G%(z), 1 ≤ % ≤ r, on SΘ are needed which
have poles of order 1 and residues (a(%)

n )n≥1 exactly at the points (λ%n)n≥1

and for which the asymptotic behaviour as |z| → ∞ is known on each ray
z = reiφ, Θ < |φ| < π/2. In [9], G%(z) = (e(z)−1)−1 with e(z) := exp(2πiz)
is used; in this paper G%(z) is constructed by a Mittag–Leffler series. The
asymptotic development is obtained with a method of Mellin.

Lemma 2.2. Assume 0 ≤ Θ < π and let (λn)n≥1 be a sequence in SΘ
with limn→∞ |λn| = ∞, (an)n≥1 a sequence in C and p ∈ N0. Assume
that the Dirichlet series T (w) :=

∑
n≥1 anλ

−w
n is absolutely convergent for

<w ≥ p+ 1. Then the series

MT (z) :=
∑

n≥1

an

(
(z + λn)−1 −

p−1∑

k=0

λ−(k+1)
n (−z)k

)

is uniformly convergent on each compact subset of C after omitting finitely
many summands. For each z ∈ C \R−0 with |arg z| < π−Θ and p+ 1 < a <
p+ 2, we have the identity

MT (z) = (−z)pT (p+ 1) +
1

2πi

a+i∞\
a−i∞

π

sinπw
T (w)zw−1 dw.

P r o o f. The following is a slight adaptation of the proof in [7], §1. The
first part of the theorem is standard for Mittag–Leffler series. For each a ∈
R+ \ N and z ∈ C \ R−0 , define

I(a, z) :=
1

2πi

a+i∞\
a−i∞

π

sinπw
zw−1 dw.

For each w ∈ C with |=w| ≥ δ > 0, the estimate (sinπw)−1 �δ e
−π|=w|

holds. Therefore the integral is absolutely and uniformly convergent with
respect to z on each compact subset of C \ R−0 . So it is holomorphic with
respect to z. From the residue theorem it follows that

(2.1) I(a, z) = I(a+ 1, z) + (−1)[a]z[a].

If z ∈ C \ R−0 , a ∈ R+, minn∈Z |a − n| ≥ δ > 0, then |I(a, z)| �z,δ |z|a−1

uniformly in a. For fixed z ∈ C \ R−0 with |z| < 1, and 0 < a < 1, it follows
from (2.1) that

I(a, z) =
q−1∑
n=0

(−1)nzn + I(a+ q, z)→
∑

n≥0

(−1)nzn = (1 + z)−1 as q →∞,

and therefore I(a, z) = (1 + z)−1. From (2.1) it follows by holomorphic
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continuation that for z ∈ C \ R−0 and a ∈ R+ \ N the identity

(2.2) (1 + z)−1 +
[a]∑
n=1

(−1)nzn−1 =
1

2πi

a+i∞\
a−i∞

π

sinπw
zw−1 dw

holds. For z ∈ C \R−0 with |arg z| < π −Θ, and p+ 1 < a < p+ 2, we have
|arg z|+ |arg λn| < π and therefore zλ−1

n ∈ C \ R−0 for each n ∈ N. By (2.2)
the nth summand in MT (z) is therefore equal to

anλ
−1
n

(
(1 + zλ−1

n )−1 +
p∑

k=1

(−1)k(zλ−1
n )k−1

)

= anλ
−1
n

(
(−1)p(zλ−1

n )p +
1

2πi

a+i∞\
a−i∞

π

sinπw
(zλ−1

n )w−1 dw

)

= (−z)panλ−(p+1)
n +

1
2πi

a+i∞\
a−i∞

π

sinπw
zw−1anλ

−w
n dw.

Summation over n gives the representation of MT (z) after interchanging
integration and summation. This is allowed because for w = a+ it,

∣∣∣∣
π

sinπw
zw−1anλ

−w
n

∣∣∣∣� e−π|t||z|a−1e|t|·|arg z||an| · |λn|−ae|t|Θ

�z,a |an| · |λn|−(p+1)e−|t|(π−|arg z|−Θ).

Under certain meromorphy conditions on T (w) an asymptotic develop-
ment of MT (w) can be proved which is a generalization of Stirling’s formula
for Γ ′/Γ (w).

Theorem 2.3. Assume 0 ≤ Θ < π and let (λn)n≥1 be a sequence in
SΘ with limn→∞ |λn| = ∞ and (an)n≥1 a sequence in C. Assume that the
Dirichlet series T (w) :=

∑
n≥1 anλ

−w
n has the following properties:

(1) There is p ∈ N0 so that T (w) converges absolutely for <w ≥ p+ 1.
(2) T (w) can be continued meromorphically to C.
(3) For each −∞ < σ1 < σ2 <∞ only finitely many poles of T (w) lie in

B(σ1, σ2) and for each ε > 0,

|T (w)| �σ1,σ2,ε e
(Θ+ε)|=w|, w ∈ B(σ1, σ2), |=w| → ∞.

Then for each b ∈ (−∞, p+1)\Z for which T (w) has no poles on <w = b
and for each ε > 0 and z ∈ Sπ−Θ−ε with |z| ≥ 1,

MT (z) =
∑

b<<w0<p+1

Resw0

(
π

sinπw
T (w)zw−1

)
+Ob,ε(|z|b−1).
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P r o o f. If −∞ < σ1 < σ2 < ∞, z ∈ Sπ−Θ−ε, |z| ≥ 1 then for w ∈
B(σ1, σ2), |=w| → ∞, we have

∣∣∣∣
π

sinπw
T (w)zw−1

∣∣∣∣�σ1,σ2,ε e
−π|=w|+(Θ+ε/2)|=w||z|σ2−1e|=w|·|arg z|

�σ1,σ2,ε e
−ε|=w|/2|z|σ2−1.

Choose a = p+ 3/2. From Lemma 2.2 and the residue theorem,

MT (z) = (−z)pT (p+ 1) +
1

2πi

b+i∞\
b−i∞

π

sinπw
T (w)zw−1 dw(2.3)

+
∑

b<<w0<a

Resw0

(
π

sinπw
T (w)zw−1

)
.

In {p + 1 ≤ <w < a} the only pole of π(sinπw)−1T (w)zw−1 lies at p + 1
and has residue (−1)p+1T (p+ 1)zp. The integral in (2.3) is

�b,ε

∞\
−∞

e−π|t|+(Θ+ε/2)|t||z|b−1e|t|·|arg z| dt�b,ε |z|b−1.

From this the statement of the theorem follows.

Lemma 2.4. Let the sequences (λ%n)n≥1 and (a(%)
n )n≥1 fulfil the assump-

tions of Lemma 2.2 for 1 ≤ % ≤ r with a common Θ and p and assume
α > 0 with

∑
n≥1 |λ%n|−α < ∞ for 1 ≤ % ≤ r. Then there is a sequence

(Rm)m≥1 which tends monotonically to infinity and has the property:

|MT%(z)| � Rp+αm for each |z| = Rm, m ≥ 1, 1 ≤ % ≤ r.
P r o o f. With C% :=

∑
n≥1 |λ%n|−α it follows that for each R ≥ 1,

#{n ≥ 1 | |λ%n| ≤ R} ≤
∑

n≥1

(
R

|λ%n|
)α

= C%R
α.

Consequently, for each R ≥ 1 there is an R′ ∈ [R, 2R] with |R′ − |λ%n|| �
R′1−α for each n ∈ N, 1 ≤ % ≤ r, with a �-constant which is independent
of R, %, n. For z ∈ C with |z| = R′ and 1 ≤ % ≤ r it follows that

|MT%(z)| ≤
( ∑

|λ%n|≤R′/2
+

∑

R′/2≤|λ%n|≤2R′

)
|a(%)
n |
(

1
|z| − |λ%n| +

p−1∑

k=0

|z|k
|λ%n|k+1

)

+
∑

|λ%n|≥2R′
|a(%)
n |
∣∣∣∣

1
λ%n

∑

k≥p

( −z
λ%n

)k∣∣∣∣
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�
∑

|λ%n|≤R′/2
|a(%)
n |
(

1
R′

+
1
R′

p−1∑

k=0

(
R′

|λ%n|
)k+1)

+
∑

R′/2≤|λ%n|≤2R′
|a(%)
n |
(
R′α−1 +

p−1∑

k=0

R′k

(R′/2)k+1

)

+
∑

|λ%n|≥2R′
|a(%)
n |

|z|p
|λ%n|p+1 ·

1
1− |z/λ%n|

�
∑

|λ%n|≤R′/2
|a(%)
n |

R′p−1

|λ%n|p ·
R′

|λ%n|

+
∑

R′/2≤|λ%n|≤2R′

|a(%)
n |

|λ%n|p+1 (2R′)p+1R′α−1 +R′p � R′α+p.

Lemma 2.5. Let k ∈ N0. There are polynomials Pkκ ∈ C[x] with degPkκ
≤ k−κ and with the property : If h(z) is holomorphic on an open neighbour-
hood U of [0, 1] in C which contains the closed disk around 0 with radius
ε > 0 and α ∈ C \ Z, <α > −1, then

1\
0

xαh(x) logk x dx =
k∑
κ=0

Pkκ(e(α))
(e(α)− 1)k+1−κ

\
Iε

zαh(z) logκ z dz.

Here a slit is made in the complex plane along the positive real axis and log z
is defined on C \ R+

0 where arg z takes values from 0 to 2π. Iε consists of
the path from 1 to ε above the slit , the circle around 0 with radius ε which
starts at ε and is run through in the positive direction and the path from ε
to 1 below the slit.

P r o o f. The case k = 0 is contained in Lemma 4.1 of [9]. The general
case follows by taking the kth derivative with respect to α.

Lemma 2.6. The series

G(z) :=
∑

n≥1

(
Λ(n)
z + n

− Λ(n)
n

)

defines a meromorphic function on C whose poles are at −n, n ∈ N, are
simple and have the respective residues Λ(n). For each b ∈ R−\Z, z ∈ C\R−0
with |z| ≥ 1 and |arg z| ≤ π − ε, ε > 0, we have the asymptotic formula

(2.4) G(z) = −
∑
%

π

sinπ%
z%−1+

∑

[b]+1≤n≤1

zn−1(an Log z+bn)+Ob,ε(|z|b−1)
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where % runs through the nontrivial zeros of ζ(s), an, bn are complex con-
stants and Log z is the principal branch of the logarithm. Furthermore, for
z ∈ C \ R−0 with |arg z| ≤ π − ε, ε > 0, |z| ≥ e2, we have

(2.5) G(z) = a1 Log z + b1 +R(z), R(z) = Oε(e−c log |z|/log log |z|)

with a constant c > 0. For z ∈ C with minn∈N |z + n| ≥ 1/2,

G(z)� log2(|z|+ 2).

P r o o f. According to Lemma 2.2 with Θ = 0, p = 1 and T (w) =
−ζ ′/ζ(w) the first part of the statement holds for G = M(−ζ ′/ζ). For
z ∈ C \ R−0 and a = 5/2,

G(z) = z
ζ ′

ζ
(2)− 1

2πi

a+i∞\
a−i∞

π

sinπw
· ζ
′

ζ
(w)zw−1 dw.

Let b ∈ R− \ Z and in addition |z| ≥ 1, |arg z| ≤ π − ε. Choose a sequence
(Tm)m≥1 which converges monotonically to infinity so that for each b ≤
<w ≤ a, =w = ±Tm, the estimate |ζ ′/ζ(w)| �a,b log2 Tm holds (Davenport
[2], p. 112, and the functional equation). From the residue theorem it follows
that

G(z) = z
ζ ′

ζ
(2)− 1

2πi

b+iTm\
b−iTm

π

sinπw
· ζ
′

ζ
(w)zw−1 dw

+Oε(e−πTm log2 Tm|z|a−1eTm|arg z|)−
∑

%:|=%|<Tm

π

sinπ%
z%−1

−
∑

[b]+1≤n≤2

Resw=n

(
π

sinπw
· ζ
′

ζ
(w)zw−1

)
.

For each fixed z the O-term converges towards 0 as m → ∞. For each
nontrivial zero % of ζ,∣∣∣∣

π

sinπ%
z%−1

∣∣∣∣� e−|=%|(π−|arg z|)|z|<%−1,

and consequently the sum over % is absolutely convergent as m → ∞. By
letting m→∞, (2.4) follows with error term

− 1
2πi

b+i∞\
b−i∞

π

sinπw
· ζ
′

ζ
(w)zw−1 dw

�b

∞\
−∞

e−π|t| log(|t|+ 2)|z|b−1e|arg z|·|t| dt�b,ε |z|b−1.

If |arg z| ≤ π − ε and |z| ≥ e2, then choose b = −1/2. For each % it follows
from Davenport [2], p. 89, that <% ≤ 1− c log−1(|=%|+ 2) with a constant
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c > 0. With R := log(|z|+ 2) ≥ 2 we have
∣∣∣∣
∑
%

π

sinπ%
z%−1

∣∣∣∣�
∑
%

exp
(
−|=%|(π − (π − ε))− cR

log(|=%|+ 2)

)

�
∑

|=%|≤R
exp
(
−|=%|ε− cR

logR

)

+
∑

|=%|>R
exp
(
−ε

2
|=%| − ε

2
R

)

�ε exp
(
− cR

logR

)
.

Substituting into (2.4) gives (2.5).
For the last part of the statement assume |z| ≥ 2 with minn∈N |z + n| ≥

1/2. Then

|G(z)| ≤ |z|
∑

n≥1

Λ(n)(|z + n|n)−1.

On the intervals [1, |z|/2], (|z|/2, |z|−1], (|z|−1, |z|+1], (|z|+1, 2|z|], (2|z|,∞)
the summands can be estimated by O(Λ(n)(n|z|)−1), O(Λ(n)(n(|z|−n))−1),
O(Λ(n)n−1), O(Λ(n)(n(n− |z|))−1), O(Λ(n)n−2) respectively. Partial sum-
mation ends the proof of the lemma.

Lemma 2.7. For each 1 ≤ % ≤ r let (λ%n)n≥1 be a sequence in R+ which
converges monotonically towards infinity , (a(%)

n )n≥1 be a sequence in R+
0 ,

and σ(%) > 0 with
∑

y≤λ%n<2y

a(%)
n � yσ

(%)
as y →∞.

Let P ∈ R[X] have nonnegative coefficients and degX% P ≥ 1 for each 1 ≤
% ≤ r. Then

S(s) =
∑

n1,...,nr≥1

a
(1)
n1 . . . a

(r)
nr

P (λ1n1 , . . . , λrnr )s

has the abscissa of (absolute) convergence

σa(S) = min{σ > 0 | P (x)σ �σ x
σ(1)

1 . . . xσ
(r)

r for x ∈ (1,∞)r}
and S(s) is divergent for s = σa(S).

P r o o f. Let y1, . . . , yr ≥ 1 and σ > 0. Then for y% ≤ x% ≤ 2y%, 1 ≤ % ≤ r,
P (y1, . . . , yr) ≤ P (x1, . . . , xr) ≤ P (2y1, . . . , 2yr) ≤ 2d(P )P (y1, . . . , yr)
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and therefore
∑

y%≤λ%n%<2y%
1≤%≤r

a
(1)
n1 . . . a

(r)
nr

P (λ1n1 , . . . , λrnr )σ
�σ P (y1, . . . , yr)−σyσ

(1)

1 . . . yσ
(r)

r

�σ
2y1\
y1

. . .

2yr\
yr

xσ
(1)−1

1 . . . xσ
(r)−1
r

P (x1, . . . , xr)σ
dx1 . . . dxr.

Summation over y% = 2l% , l% ∈ N0, 1 ≤ % ≤ r, gives

∑

n1,...,nr≥1

a
(1)
n1 . . . a

(r)
nr

P (λ1n1 , . . . , λrnr )σ
�σ
∞\
1

. . .

∞\
1

xσ
(1)−1

1 . . . xσ
(r)−1
r

P (x1, . . . , xr)σ
dx1 . . . dxr.

Hence the left hand side is finite if and only if the right hand side is finite.
The right hand side is Y (P, σ(1) − 1, . . . , σ(r) − 1;σ) in the notation of [9].
From Theorem 3.1 and Lemma 3.2 in that paper the statement follows.

Lemma 2.8. Let c > 1. Then G(z) :=
∑
n≥0(z+ cn)−1 is a meromorphic

function on C with simple poles at −cn, n ∈ N0, and residue 1 respectively.
For z ∈ C \R−0 with |z| ≥ 1, |arg z| ≤ π− ε, ε > 0, and b ∈ R− \Z, we have
the asymptotic formula

G(z) =
Log z
z log c

+
1
2z

+
∑

[b]+1≤m≤−1

(−1)m(1− c−m)−1zm−1

+
π

z log c

∑

0 6=n∈Z
sin
(

2π2in

log c

)−1

exp
(

2πinLog z
log c

)
+Ob,ε(|z|b−1).

The nth summand is � exp(−2π|n|ε/log c). For each n0 ∈ N and |z| =
(1 + c)cn0/2,

|G(z)| � |z|−1 log(|z|+ 2).

P r o o f. For <w > 0 define T (w) :=
∑
n≥0 c

−nw = (1−c−w)−1. Choosing
p = 0, Θ = 0, a = 3/2 in Lemma 2.2 it follows that for each z ∈ C \ R−0
with |arg z| ≤ π − ε and |z| ≥ 1,

G(z) = T (1) +
1

2πi

a+i∞\
a−i∞

π

sinπw
· zw−1

1− c−w dw.

Let b ∈ R− \ Z and Tk := 2π(2k + 1)(2 log c)−1, k ∈ N. For σ ∈ R, we have
|1 − c−(σ±iTk)| ≥ 1. Applying the residue theorem to the rectangle with
vertices a± iTk, b± iTk and letting k →∞ gives

G(z) = T (1) +
1

2πi

b+i∞\
b−i∞

π

sinπw
· zw−1

1− c−w dw
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+
∑

[b]+1≤m≤1

Resm

(
π

sinπw
· zw−1

1− c−w
)

+
∑

0 6=n∈Z
Res 2πin

log c

(
π

sinπw
· zw−1

1− c−w
)
.

The integral is �b

T∞
−∞ e−π|t||z|b−1e|t|(π−ε) dt �b,ε |z|b−1. For [b] + 1 ≤

m ≤ 1, m 6= 0, the mth summand is (−1)mzm−1(1 − c−m)−1. For m =
0 it is Log z(z log c)−1 + (2z)−1. For 0 6= n ∈ Z the nth summand is
π(z log c)−1 exp(2πinLog z/log c)(sin(2π2in/log c))−1. From this the asym-
ptotic formula follows. The nth summand without the factor π(z log c)−1

is � exp(2π|n|(π − ε)/log c) exp(−2π2|n|/log c). Finally, assume n0 ∈ N,
|z| = (1 + c)cn0/2. For n ≥ n0 + 1 we have

|z + cn| ≥ cn − |z| ≥ cn − 1 + c

2
cn−1 =

c− 1
2c

cn �c c
n.

For 0 ≤ n ≤ n0,

|z + cn| ≥ |z| − cn ≥ |z| − cn0 = |z| − 2|z|
c+ 1

=
c− 1
c+ 1

|z| �c |z|.

From this it follows that

|G(z)| �
∑

0≤n≤n0

|z|−1 +
∑

n≥n0+1

c−n

�c (n0 + 1)|z|−1 + c−n0 �c |z|−1 log(|z|+ 2).

3. Proof of Theorem 1.3. Choose Θ < Θ′ < π/2 with %0 := %(P ) +
d(P )Θ′ < π/2 and 0 < a < min%,n<λ%n. Let γ±1(R) respectively γ±1 be
the paths which are parameterised by z = re±iΘ

′
, r ∈ [a/cosΘ′, R] respec-

tively r ∈ [a/cosΘ′,∞), and γ0 the path from aeiΘ
′
/cosΘ′ to ae−iΘ

′
/cosΘ′.

Choose p ∈ N0 so that S%(w), 1 ≤ % ≤ r, converge absolutely for <w ≥ p+1.
Let b ∈ R− \ Z so that none of the S%(w), 1 ≤ % ≤ r, has poles on

<w = b. From Theorem 2.3 it follows that for z ∈ Trace(γ1) ∪ Trace(γ−1),
1 ≤ % ≤ r,
(3.1) MS%(−z) =

∑

1≤l≤L%
0≤ν≤a%l−1

c%lν(−z)w%l−1 Logν(−z) +R%(z)

with |R%(z)| �b,Θ′ |z|b−1. The numbers w%l, 1 ≤ l ≤ L%, are the poles of
(sinπw)−1S%(w) in the vertical strip B(b, p+ 1) and a%l is the order of the
pole w%l. The asymptotics (3.1) hold trivially also for z ∈ Trace(γ0). Then
R%(z) is continuous on Trace(γ1)∪Trace(γ0)∪Trace(γ−1) with the exception
of the point a where R%(z) may have a discontinuity. As a special case it
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follows that

(3.2) |MS%(−z)| � |z|p logK |z| for z ∈ Trace(γ1) ∪ Trace(γ−1)

with some K > 0. Let g be holomorphic on an open neighbourhood of

SΘ′,a := {w ∈ C | <w ≥ a, |argw| ≤ Θ′}
and assume the estimate |g(z)| � |z|−p−α−1−δ on SΘ′,a with δ > 0. Choose
(Rm)m≥1 according to Lemma 2.4 and let Km be the positively oriented arc
of the circle around 0 with radius Rm which lies inside SΘ′ . The residue
theorem gives

1
2πi

\
−γ1(Rm)+γ0+γ−1(Rm)+Km

g(z)MS%(−z) dz =
∑

n:|λ%n|<Rm
−a(%)

n g(λ%n).

The integral along Km is� R1−p−α−1−δ+p+α
m = R−δm . Letting m→∞ gives

(3.3)
∑

n≥1

−a(%)
n g(λ%n) =

1
2πi

\
−γ1+γ0+γ−1

g(z)MS%(−z) dz.

The integral is absolutely convergent because of (3.2). For w ∈ C with
<w < p, and ν ∈ N0, Cauchy’s theorem gives

(3.4)
\

−γ1+γ0+γ−1

g(z)(−z)w Logν(−z) dz

=
a\
∞
g(t)ew(log t−iπ)(log t− iπ)ν dt

+
∞\
a

g(t)ew(log t+iπ)(log t+ iπ)ν dt

=
∞\
a

g(t)tw(eiπw(log t+ iπ)ν − e−iπw(log t− iπ)ν) dt

=
ν∑
µ=0

(
ν

µ

)
(iπ)ν−µ

∞\
a

g(t)tw logµ t dt(eiπw − e−iπw(−1)ν−µ).

Let σ∗a > 0 be the abscissa of absolute convergence of the Dirichlet series∑
n∈Nr P (n)−s. According to [9], Lemmas 3.2 and 4.2, the estimate

(3.5) |P (z)| � |z1 . . . zr|1/σ
∗
a

holds for z ∈ SrΘ′,a. It follows that σa(S) ≤ σ∗a(p+1). For <s > σ∗a(p+α+1)
it follows that with δ(s) > 0,

|P (z)−s| �s e
%0|=s||z1 . . . zr|−<s/σ

∗
a �s |z1 . . . zr|−(p+α+1+δ(s))
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for z ∈ SrΘ′,a. r-fold application of (3.3) gives

(3.6) (−1)rS(s) =
1

(2πi)r

\
(−γ1+γ0+γ−1)r

P (z)−s
r∏
%=1

MS%(−z%) dz.

Here integrations and summations may be interchanged because of the
choice of p and (3.2). Substituting (3.1) into (3.6) shows that S(s) is a
linear combination of the parameter integrals\

(−γ1+γ0+γ−1)r

P (z)−s
∏

%∈K1

(−z%)w%l%−1 Logν%(−z%)
∏

%∈K2

R%(z%) dz

where K1 runs through all subsets of {1, . . . , r}, (l%)%∈K1 runs through∏
%∈K1

{1, . . . , L%}, (ν%)%∈K1 runs through
∏
%∈K1

{0, . . . , a%l%−1} and K2 :=
{1, . . . , r} \K1. With (3.4) one sees that each of these integrals is a linear
combination of the integrals

(3.7)
\

(−γ1+γ0+γ−1)|K2|

d(z%)%∈K2

∏

%∈K2

R%(z%)
\

[a,∞)|K1|

P ((z%)%∈K2 , (t%)%∈K1)−s

×
∏

%∈K1

t
w%l%−1
% logµ% t% d(t%)%∈K1

where for each % ∈ K1 the parameter µ% runs through {0, . . . , ν%}. If w%l% ∈
Z then µ% only runs through {0, . . . , ν% − 1}. S(s) is therefore a linear
combination of the integrals (3.7) where K1 runs through all subsets of
{1, . . . , r}, (l%)%∈K1 runs through

∏
%∈K1

{1, . . . , L%}, (µ%)%∈K1 runs through∏
%∈K1

{0, . . . , polordw%l% (S%)−1} andK2 := {1, . . . , r}\K1. If polordw%l%(S%)
= 0 for a % ∈ K1 then the corresponding integral does not appear.

The absolute convergence of the integrals (3.7) can be checked using
<s > σ∗a(p+α+ 1). In the following they will be written as linear combina-
tions of other integrals by decomposing the sets of integration and by the
transformation formula. Therefore the subsequent integrals are absolutely
convergent.

Decomposing the paths −γ1 + γ0 + γ−1 and parameterizing γ±1 show
that (3.7) is a linear combination of the integrals

(3.8)
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R%(z%)
\

[1,∞)|K22|+|K1|

Pj(z
′, (t%)%∈K1∪K22)−s

×
∏

%∈K1

t
w%l%−1
% logµ%(at%)

∏

%∈K22

R%

(
t%

a

cosΘ′
eij%Θ

′
)
d(t%)%∈K1∪K22

with

Pj(Z
′, (T%)%∈K1∪K22) := P

(
(Z%)%∈K21 ,

(
T%

a

cosΘ′
eij%Θ

′
)

%∈K22

, (aT%)%∈K1

)
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where z′ = (z%)%∈K21 , K21 runs through all subsets of K2, K22 := K2 \K21

and j = (j%)%∈K22 runs through {±1}|K22|. We have

Pj(Z
′, (T%)%∈K1∪K22) =

∑

β∈N|K1|+|K22|
0

aj β(Z ′)
∏

%∈K1∪K22

T β%%

with

aj β(Z ′) =
∑

β′∈N|K21|
0

c(β,β′)

∏

%∈K1

aβ%
∏

%∈K22

(
a

cosΘ′
eij%Θ

′
)β% ∏

%∈K21

Z
β′%
% .

From this it follows that <aj β(z′) > 0 for each z′ ∈ γ
|K21|
0 if there is a

β′ ∈ N|K21|
0 with c(β,β′) 6= 0. Theorem 2.1 yields the existence of ω(λ) ∈ Ω,

λ ∈ Λ(K1,K21), which depend only upon K1, K21 with the properties:
(1,∞)|K1|+|K22| is up to sets of measure zero the disjoint union of the sets
Imgω(λ) and for each λ ∈ Λ(K1,K21),

Qj λ((Z%)%∈K21 , (T%)%∈K1∪K22) = Pj ω(λ)(3.9)

=
∑

γ≤γ′
b
j λ

γ
(Z ′)

∏

%∈K1∪K22

T γ%% .

Here b
j λ

γ
(Z ′) ∈ C[Z ′] with <bj λ

γ
(z′) > 0 if z′ ∈ γ|K21|

0 and b
j λ

γ
6≡ 0; γ′ = γ′(λ)

depends on λ. Furthermore, b
j λ

γ′
6≡ 0.

Decomposing the region of integration in the innermost integral in (3.8)
and applying the transformation formula show that (3.7) is a linear combi-
nation of integrals

(3.10)
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R%(z%)
\

(1,∞)|K1|+|K22|

d(τ%)%∈K1∪K22

×Qj λ((z%)%∈K21 , (τ%)%∈K1∪K22)−s
∏

%∈K22

R%

(
a

cosΘ′
eij%Θ

′ ∏

µ∈K1∪K22

τλµ%µ

)

×
∏

µ∈K1∪K22

ταµµ
∏

µ∈K1∪K22

logκµ τµ

where K21 runs through all subsets of K2, K22 := K2 \K21, j = (j%)%∈K22

runs through {±1}|K22|, λ = (λ%µ) runs through a finite set Λ(K1,K21) of

regular matrices ∈ N(|K1|+|K22|)2

0 , (κ%)%∈K1∪K22 runs through all elements of
N|K1|+|K22|

0 with
∑
%∈K1∪K22

κ% ≤
∑
%∈K1

µ% and Qj λ ∈ C[Z ′, T ] is of the
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form (3.9). Finally,

αµ :=
∑

%∈K1

λµ%(w%l% − 1)− 1 +
∑

%∈K1∪K22

λµ%, µ ∈ K1 ∪K22.

From degX% P ≥ 1 for each 1 ≤ % ≤ r it follows that

lim
z∈SrΘ′,a
|z|→∞

|P (z)| =∞.

Therefore,

lim
τ∈(1,∞)|K1|+|K22|

|τ |→∞

|Qj λ((a)%∈K21 , τ)| =∞

and thus γ′µ ≥ 1 for each µ ∈ K1 ∪K22.
Define U = U(λ) := {µ ∈ K1 ∪ K22 | λµ% ≥ 1 for a % ∈ K22} and

V = V (λ) := (K1 ∪K22) \ U . After substitution of τ−1
µ for τµ the integral

(3.10) is

±
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R%(z%)
\

(0,1)|U|

d(τµ)µ∈UR((τµ)µ∈U )

×
∏

µ∈U
τ−αµ−2
µ logκµ τµ

\
(0,1)|V |

Qj λ((z%)%∈K21 , (τ
−1
µ )µ∈K1∪K22)−s

×
∏

µ∈V
τ−αµ−2
µ logκµ τµ d(τµ)µ∈V

with

R((τµ)µ∈U ) = Rj,λ :=
∏

%∈K22

R%

(
a

cosΘ′
eij%Θ

′ ∏

µ∈U
τ−λµ%µ

)
.

Therefore

R((τµ)µ∈U )�
∏

%∈K22

( ∏

µ∈U
τ−λµ%µ

)b−1
=
∏

µ∈U
τ

(1−b)∑%∈K22
λµ%

µ(3.11)

�
∏

µ∈U
τ1−b
µ .

For z′ = (z%)%∈K21 ∈ γ|K21|
0 and τ = (τµ)µ∈K1∪K22 ∈ [0, 1]|K1|+|K22| we have

<(
∑
γ≤γ′ b

j λ

γ
(z′)τγ

′−γ) > 0. With a continuity argument it follows from the

compactness of γ|K21|
0 × [0, 1]|K1|+|K22| ⊆ Cr that there are ε, c > 0 with the

property: For each z′ ∈ γ|K21|
0 , (τµ)µ∈U ∈ [0, 1]|U | and (vµ)µ∈V ∈ {w ∈ C |
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−ε ≤ <w ≤ 1 + ε, |=w| ≤ ε}|V |,

(3.12) <
( ∑

γ≤γ′
b
j λ

γ
(z′)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)
≥ c > 0.

It follows from Lemma 2.5 for <s > max{σ∗a(p+α+ 1), (<αµ + 1)/γ′µ | µ ∈
K1 ∪K22}, sγ′µ −αµ 6∈ Z for each µ ∈ V , that (3.10) has the representation

(3.13) ±
∑

0≤λµ≤κµ
µ∈V

∏

µ∈V

Pκµλµ(e(sγ′µ − αµ − 2))

(e(sγ′µ − αµ − 2)− 1)κµ+1−λµ

×
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R%(z%)

×
\

(0,1)|U|

d(τµ)µ∈UR((τµ)µ∈U )
∏

µ∈U
τ
sγ′µ−αµ−2
µ logκµ τµ

×
\

I
|V |
ε

( ∑

γ≤γ′
b
j λ

γ
((z%)%∈K21)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s

×
∏

µ∈V
v
sγ′µ−αµ−2
µ logλµ vµ d(vµ)µ∈V .

In fact, it is possible to deduce from (3.5) and (3.9) that

σ∗aγ
′
µ ≥

∑

%∈K1∪K22

λµ%

for µ ∈ K1 ∪ K22. Therefore σ∗a(p + α + 1) > (<αµ + 1)/γ′µ for each µ ∈
K1 ∪K22 but this fact will not be used in the sequel.

From (3.11) it follows that each of the integrals in (3.13) defines a holo-
morphic function with respect to s as long as <(sγ′µ −αµ − 2) + 1− b > −1
for each µ ∈ U . From

max
µ∈U

γ′−1
µ (b+ <αµ) ≤ max

µ∈U
γ′−1
µ

(
b+

∑

%∈K1

λµ%p− 1 +
∑

%∈K1∪K22

λµ%

)

the existence of constants c1, c2 > 0 can be deduced so that (3.10) can be
continued meromorphically to <s > c1b+c2. For µ ∈ V define Lλµ((Y%)%∈K1)
:=
∑
%∈K1

λµ%Y%. Then the poles of (3.10) which are contained in <s >
c1b+ c2 lie in the set

⋃

µ∈V
γ′−1
µ (L

λ

µ((w%l%)%∈K1) + Z).
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The order of a pole w0 with <w0 > c1b+ c2 is

≤
∑

µ∈V
(κµ + 1) ≤

∑

%∈K1

µ% + |V | ≤
∑

%∈K1

(polordw%l% (S%)− 1) + r.

w0 can be a pole of (3.10) only if there are µ ∈ V and a ∈ Z with w0 =
γ′−1
µ (a+ L

λ

µ((w%l%)%∈K1)). Let

N := lcm{γ′µ(λ) | µ ∈ V (λ), λ ∈ Λ(K1,K21), K1 ⊆ {1, . . . , r},
K21 ⊆ {1, . . . , r} \K1},

L(K1,K21, λ) := {Nγ′µ(λ)−1L
λ

µ | µ ∈ V (λ)}.
Then (3.7) can be continued meromorphically to <s > c1b + c2, the poles
lie in

{N−1(L((w%l%)%∈K1) + a) | a ∈ Z, L ∈ L(K1,K21, λ),

λ ∈ Λ(K1,K21), K21 ⊆ K2}
and have an order ≤ ∑%∈K1

(polordw%l% (S%) − 1) + r. Taking all together
one sees that S(s) can be continued meromorphically to <s > c1b+ c2 and
that the poles lie in{
N−1(L((w%l%)%∈K1) + a) | a ∈ Z, L ∈ L(K1,K21, λ), λ ∈ Λ(K1,K21),

K21 ⊆ {1, . . . , r} \K1, (l%)%∈K1 ⊆
∏

%∈K1

{1, . . . , L%}, K1 ⊆ {1, . . . , r}
}
.

As b ∈ R− \ Z can be chosen arbitrarily with the restriction that none of
the S%(w) has a pole on <w = b one can continue S(s) meromorphically
to C and it has only a finite number of poles in each vertical strip of finite
width. If w0 ∈ C is a pole of S(s) then <w0 ≤ σa(S). Choose b such that
b < c−1

1 (<w0−|σa(S)|−c2) < b+1. Then c1b+c2 < <w0 and b > c−1
1 <w0−c3

with a constant c3 > 0. There are necessarily K1, (l%)%∈K1 , K21, λ, L, a with
w0 = N−1(L((w%l%)%∈K1) + a) where w%l% is a pole of S% in B(b, p + 1) for
each % ∈ K1. Therefore

<(a+ L((w%l%)%∈K1)) = N<w0 ≤ Nc1(b+ c3)

≤ Nc1c3 +Nc1 min{<w%l% | % ∈ K1}.
This gives (1.3) and (1.4). The inequality in (1.4) makes the set finite and
therefore the maximum is well defined. The inequality in (1.3) ensures that
for the poles of S(s) in a finite strip, only a finite number of w% need to be
taken into consideration.

4. Proof of Theorem 1.4. DIR1 and DIR3 are valid for S% because
of the general assumption λ%n ∈ SΘ. According to Corollary 1.10 of [3] the
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functions ΓS%, 1 ≤ % ≤ r, can be continued meromorphically to C where
they have poles at the points

(4.1) −p, p ∈ P% of order degB(%)
p + 1.

Together with the other assumptions it follows that Theorems 1.3 and 1.2
can be applied. Therefore S ∈ K and the poles of S lie in a set of the form
(1.3). Obviously S(s) fulfils DIR1, DIR2(a) and DIR3. As each S% fulfils
DIR2(b) there is α > 0 with

∑

n≥1

|λ%n|−α <∞ for each 1 ≤ % ≤ r.

From (3.5) it follows that
∑

n1,...,nr≥1

|P (λ1n1 , . . . , λrnr )|−σ
∗
aα �

∑

n1,...,nr≥1

|λ1n1 . . . λrnr |−σ
∗
aα/σ

∗
a <∞

and therefore S(s) fulfils DIR2(b). As S ∈ K the function S(s) lies in
Dom(V ) in the notation of [3], p. 78. According to Theorem 7.5 of [3]
the theta series Θ(t) fulfils AS1–AS3. According to Theorem 7.4 of [3],
P = {−w0 | w0 a pole of Γ (s)S(s)} and therefore P is contained in a
set of the form (1.5). If p ∈ P then it follows from (9), p. 80 of [3] that

degBp = polord−p(Γ (s)S(s))− 1 = polord−p S(s) + ε(p)− 1.

From (4.1) and (1.4) the inequality (1.6) follows.

5. Proof of Theorem 1.5. According to Lemma 2.7 the Dirichlet series

(5.1) S(s) :=
∑

n1,...,nr≥1

Λ(n1) . . . Λ(nr)
P (n1, . . . , nr)s

has the abscissa of (absolute) convergence

(5.2) σa = σa(S) = min{σ > 0 | P (x)σ �σ x1 . . . xr for x ∈ (1,∞)r}.
Choose Θ′ > 0 with %0 := d(P )Θ′ < π/2. Assume <s > σa. According to
Lemma 4.2 of [9] for each z ∈ SrΘ′ with |z1|, . . . , |zr| ≥ 1,

(5.3) |P (z)s| ≥ |P (z)|<se−|=s|%0 �s |z1 . . . zr|<s/σa .

From this it follows by Lemma 2.6 that

(5.4) (−1)rS(s) =
1

2πi

\
(−γ1+γ0+γ−1)r

P (z)−s
r∏
%=1

G(−z%) dz

where a = 1/2 is used in the definition of γ0. The integral is absolutely
convergent for <s > σa. The further transformations are as in the proof of



Dirichlet series 265

Theorem 1.3 where (2.5) takes the role of (3.1). From this it follows that
S(s) is a linear combination of integrals of the form

(5.5)
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R(−z%)
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ−αµ−2
µ

×
\

(0,1)|V |

Q((z%)%∈K21 , (τ
−1
µ )µ∈U∪V )−s

∏

µ∈V
τ−αµ−2
µ d(τµ)µ∈V .

Here U ∪̇ V ∪̇K21 = {1, . . . , r}, αµ ∈ N0 for µ ∈ U ∪ V , Q ∈ C[Z ′, T ] has
the form (3.9) and

R̃((τµ)µ∈U ) =
∏

%∈K22

R

( −1
2 cosΘ′

e±iΘ
′ ∏

µ∈U
τ−λµ%µ

)
(5.6)

�
∏

µ∈U
exp
(
−c′ log(τ−1

µ + 2)

log log(τ−1
µ + 2)

)

for (τµ)µ∈U ∈ (0, 1)|U | with c′ > 0. For (z%)%∈K21 ∈ γ|K21|
0 and (t%)%∈U∪V ∈

(1,∞)|U |+|V | it follows from (5.3) that

(5.7) |Q((z%)%∈K21 , (tµ)µ∈U∪V )−s|

�s

( ∏

%∈U∪V

∏

µ∈U∪V
tλµ%µ

)−<s/σa

=
( ∏

µ∈U∪V
tαµ+1
µ

)−<s/σa

,

and consequently (5.5) is absolutely convergent for <s > σa. From (3.9) and
(5.7) it follows that γ′µ ≥ (αµ + 1)/σa for each µ ∈ U ∪ V . If one chooses a
suitable ε > 0 then it follows by Lemma 2.5 and (3.12) that for each <s > σa

with sγ′µ 6∈ Z for µ ∈ V , (5.5) can be expressed in the form

∏

µ∈V
(e(sγ′µ)− 1)−1

\
γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ
sγ′µ−αµ−2
µ

×
\

I
|V |
ε

( ∑

γ≤γ′
bγ((z%)%∈K21)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
z
γ′µ−γµ
µ

)−s∏

µ∈V
z
sγ′µ−αµ−2
µ d(zµ)µ∈V .

The triple integral I(s) which occurs in this expression is holomorphic in
<s > σa. For each m ∈ N0 the mth derivative I(m)(s) can be represented as
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a linear combination of integrals of the form

(5.8)
\

γ
|K21|
0

d(z%)%∈K21

∏

%∈K21

R(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ
sγ′µ−αµ−2
µ logβµ τµ

×
\

I
|V |
ε

d(zµ)µ∈V
( ∑

γ≤γ′
bγ((z%)%∈K21)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
z
γ′µ−γµ
µ

)−s

× Logβ
( ∑

γ≤γ′
bγ((z%)%∈K21)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
z
γ′µ−γµ
µ

)

×
∏

µ∈V
z
sγ′µ−αµ−2
µ logβµzµ

with βµ, β ∈ N0. From (5.6) it can be seen that these integrals are uniformly
convergent on each compact subset of <s ≥ σa. Therefore I(m)(s) can be
continued to a continuous function on <s ≥ σa.

For z% ∈ γ0, % ∈ K21, τµ ∈ (0, 1), µ ∈ U , zµ ∈ Iε, µ ∈ V ,
∣∣∣
∑

γ≤γ′
bγ((z%)%∈K21)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
z
γ′µ−γµ
µ

∣∣∣ � 1.

Consequently, (5.8) can be estimated for σa ≤ <s ≤ σa+1 byO(exp(|=s|(π/2
+ 2π

∑
µ∈V γ

′
µ))) and so |I(m)(s)| �m exp(c|=s|) for σa ≤ <s ≤ σa + 1,

m ∈ N0 with a constant c > 0.
Taking all together there is a 0 ≤ % ≤ r so that the following holds:

Z(s) := S(s)s−1(s − σa)% is holomorphic on <s > σa, Z(m)(s) can be con-
tinued continuously to <s ≥ σa and |Z(m)(s)| �m exp(c′|=s|) for σa ≤
<s ≤ σa + 1, m ∈ N0 with a constant c′ > 0. Let % ∈ N0 be minimal
with this property. According to Lemma 2.7, S(s) is divergent at s = σa.
Hence limσ→σa+0 S(σ) = ∞. Therefore % ≥ 1. Furthermore, c := Z(σa) =
limσ→σa+0 S(σ)σ−1(σ−σa)% ≥ 0. If <s > σa then hs(t) := Z(ts+ (1− t)σa)
is a C∞-function on (0, 1]. From the existence of the limit

lim
t→0

h(m)
s (t) = (s− σa)m lim

t→0
Z(m)(ts+ (1− t)σa) = (s− σa)mZ(m)(σa)

for m ∈ N0 it follows that h ∈ C∞[0, 1]. Assume c = 0. Then for <s > σa it
would follow that

Z̃(s) :=
Z(s)
s− σa

=
1\
0

h′s(t)
s− σa

dt =
1\
0

Z ′(ts+ (1− t)σa) dt
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and for each m ∈ N0,

Z̃(m)(s) =
1\
0

tmZ(m+1)(ts+ (1− t)σa) dt.

Therefore Z̃(s) would be holomorphic on <s > σa, Z̃(m)(s) would be con-
tinuous on <s ≥ σa and |Z̃(m)(s)| �m exp(c′|=s|) for m ∈ N0, σa ≤ <s ≤
σa +1. This would contradict the minimality of %. Therefore the assumption
is false and c > 0.

Let ω := %−1 and for <s > 0 set H(s) := S(s+σa)(s+σa)−1−cs−ω−1 =
(Z(s+ σa)− Z(σa))s−%. For <s > 0 we have

H ′(s) = (Z ′(s+ σa)s% − (Z(s+ σa)− Z(σa))%s%−1)s−2%.

If % = 1 then by partial integration,

s2H ′(s) = h′s+σa
(1)− (hs+σa(1)− hs+σa(0))

=
1\
0

th′′s+σa
(t) dt = s2

1\
0

tZ ′′(ts+ σa) dt

and therefore

H ′(s) =
1\
0

tZ ′′(ts+ σa) dt� exp(c′|=s|) for 0 < <s ≤ 1.

If % ≥ 2 then

s2%H ′(s) = Z ′(s+ σa)s% − %s%−1
1\
0

h′s+σa
(t) dt

and therefore

|H ′(s)| � 1
|s|2% (|s|%ec′|=s| + |s|%−1|s|ec′|=s|)� 1

|s|% e
c′|=s|

for 0 < <s ≤ 1. We have H(2σ + iτ) −H(σ + iτ) =
T2σ
σ
H ′(α + iτ) dα for

1/2 ≥ σ > 0, τ ∈ R. Consequently, for % = 1,

|H(2σ + iτ)−H(σ + iτ)| � σec
′|τ |

and for % ≥ 2,

|H(2σ + iτ)−H(σ + iτ)| � σ
1

|σ + iτ |% e
c′|τ |.

For 0 < σ ≤ 1/2, T > 0, define

η(σ, T ) := σω
T\
−T
|H(2σ + iτ)−H(σ + iτ)| dτ.
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Then in the case % = 1, η(σ, T )� σ exp(c′T ) and in the case % ≥ 2 it follows
by substitution τ = σu that

η(σ, T )� σω+1ec
′T

T\
−T

1
|σ + iτ |% dτ � σω+1ec

′Tσ1−%
∞\
−∞

du

|1 + iu|% � σec
′T .

Consequently, in both cases, limσ→0 η(σ, T ) = 0 for each T > 0. Assume
without loss of generality that P (1, . . . , 1) > 1. The effective Tauberian
Theorem of Ikehara ([11], Theorem 11, p. 265) yields

∑

P (n1,...,nr)≤ex
Λ(n1) . . . Λ(nr) =

(
c

Γ (ω + 1)
+O(%(x))

)
eσaxxω

as x → ∞. Here %(x) = infT>0(T−1 + η(x−1, T ) + (Tx)−ω−1). Choosing
T = T (x) with T−1 = x−1ec

′T gives T (x) � log x and %(x)� log−1 x. From
this Theorem 1.5 follows.

6. Proof of Theorem 1.6. Choose Θ′ > 0 with %(P ) + d(P )Θ′ < π/2
and a = 1/2. From Lemma 2.8 it follows that |G(−z)| � |z|−1 log(|z| + 2)
for z ∈ Trace(γ1) ∪ Trace(γ−1) or |z| = (1 + c)cn0/2, n0 ∈ N. Consequently,
for <s > 0,

S(s) :=
∑

n1,...,nr≥0

1
P (cn1 , . . . , cnr )s

(6.1)

=
(−1)r

(2πi)r

\
(−γ1+γ0+γ−1)r

P (z)−s
r∏
%=1

G(−z%) dz.

The integral is absolutely convergent. Assume b ∈ R−\Z. For z ∈ Trace(γ1)∪
Trace(γ0) ∪ Trace(γ−1) set

H(z) := G(−z) + (z log c)−1 Log(−z).
Then H(z) is continuous everywhere with the exception of the point a. From
Lemma 2.8 it follows that for z ∈ Trace(γ1) ∪ Trace(γ−1),

H(z) =− 1
2z
−

∑

[b]+1≤m≤−1

(1− c−m)−1zm−1(6.2)

− π

z log c

∑

0 6=n∈Z
sin
(

2π2in

log c

)−1

exp
(

2πinLog(−z)
log c

)
+R(z)

where |R(z)| �b,Θ′ |z|b−1. The nth summand is� exp(−2π|n|Θ′/log c) and
therefore the n-series has a convergent majorant on Trace(γ1) ∪Trace(γ−1)
which is independent of z. Expressing G in (6.1) byH and using an argument
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similar to (3.4) one sees that S(s) is a linear combination of the integrals\
(−γ1+γ0+γ−1)|K0|

d(z%)%∈K0

∏

%∈K0

H(z%)

×
\

[a,∞)|K0|

d(t%)%∈K0

∏

%∈K0

t−1
% P ((t%)%∈K0 , (z%)%∈K0

)−s

where K0 runs through all subsets of {1, . . . , r} and K0 := {1, . . . , r} \K0.
Decomposing the lines of integration −γ1 +γ0 +γ−1 and parameterizing γ±1

shows with (6.2) that S(s) is a linear combination of the integrals

(6.3)
\

γ
|K1|
0

d(z%)%∈K1

∏

%∈K1

H(z%)
\

[1,∞)|K0|

d(t%)%∈K0

∏

%∈K0

t−1
%

×
\

[1,∞)|K2|

d(t%)%∈K2

∏

%∈K2

tm%−1
%

\
[1,∞)|K3|

d(t%)%∈K3

×
∏

%∈K3

t−1
%

( ∑

0 6=n%∈Z
sin
(

2π2in%
log c

)−1

exp
(

2πin%
log c

Log
(
−t% a

cosΘ′
eij%Θ

′
)))

×
\

[1,∞)|K4|

d(t%)%∈K4

∏

%∈K4

R

(
t%

a

cosΘ′
eij%Θ

′
)

× P
(

(z%)%∈K1 ,

(
t%

a

cosΘ′
eij%Θ

′
)

%∈K1

, (at%)%∈K0

)−s

where (K1,K2,K3,K4) runs through all disjoint decompositions K0 = K1 ∪̇
K2 ∪̇K3 ∪̇K4, K1 := K2 ∪K3 ∪K4, (j%)%∈K1

runs through {±1}|K1| and
(m%)%∈K2 runs through {[b] + 1, . . . , 0}|K2|. For <s > 0 it follows from (3.5)
that |P (z)−s| �s |z1 . . . zr|−<s/σ∗a for z ∈ SrΘ′,a. Each of the n%-series in (6.3)
has a convergent majorant which is independent of t% and the other factors

of the integrand are together�∏
%∈K0∪K1

t
−1−<s/σ∗a
% . Therefore integration

and the n%-summations in (6.3) may be interchanged. Theorem 2.1 shows
that each of the integrals (6.3) is a linear combination of the functions

(6.4) I(s) =
∑

0 6=n%∈Z
%∈K3

∏

%∈K3

sin
(

2π2in%
log c

)−1

exp
(

2πn%j%
log c

(π −Θ′)
)

×
(

a

cosΘ′

)2πin%/log c \
γ
|K1|
0

d(z%)%∈K1

∏

%∈K1

H(z%)
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×
\

[1,∞)|K0|+|K1|

d(τµ)µ∈K0∪K1

∏

%∈K0

( ∏

µ∈K0∪K1

τλµ%µ

)−1

×
∏

%∈K2

( ∏

µ∈K0∪K1

τλµ%µ

)m%−1 ∏

%∈K3

( ∏

µ∈K0∪K1

τλµ%µ

)−1+
2πin%
log c

×
∏

%∈K4

R

( ∏

µ∈K0∪K1

τλµ%µ

a

cosΘ′
eij%Θ

′
)

×
∏

%∈K0∪K1

τ−1
%

∏

µ∈K0∪K1

τλµ%µ Q((z%)%∈K1 , (τµ)µ∈K0∪K1
)−s

where λ = (λµ%) ∈ N(|K0|+|K1|)2

0 runs through finitely many regular matrices
and Q runs through finitely many polynomials of the form

Q((Z%)%∈K1 , (Tµ)µ∈K0∪K1
) =

∑

γ≤γ′
bγ(Z)

∏

µ∈K0∪K1

T γµµ .

Here bγ(Z) is a polynomial in Z and <bγ(z) > 0 for bγ 6≡ 0 and z ∈ γ|K1|
0 ;

furthermore, bγ′ 6≡ 0 and γ′µ ≥ 1 for µ ∈ K0 ∪K1. Substitution of τ−1
µ for

τµ with µ ∈ K0 ∪K1 gives

(6.5) I(s)

=
∑

0 6=n%∈Z
%∈K3

∏

%∈K3

sin
(

2π2in%
log c

)−1

exp
(

2πn%j%
log c

(π −Θ′)
)(

a

cosΘ′

)2πin%/log c

×
\

γ
|K1|
0

d(z%)%∈K1

∏

%∈K1

H(z%)
\

(0,1)|U|

d(τµ)µ∈U
∏

µ∈U
τ
αµ+γ′µs
µ R̃((τµ)µ∈U )

×
\

(0,1)|V |

d(τµ)µ∈V
∏

µ∈V
τ
αµ+γ′µs
µ

( ∑

γ≤γ′
bγ((z%)%∈K1)

∏

µ∈K0∪K1

τ
γ′µ−γµ
µ

)−s

where U := {µ ∈ K0∪K1 | λµ% ≥ 1 for a % ∈ K4}, V := (K0∪K1)\U , and
for each µ ∈ K0 ∪K1,

αµ = αµ((n%)%∈K3)

:=
∑

%∈K0

λµ% +
∑

%∈K2

λµ%(1−m%)

+
∑

%∈K3

λµ%

(
1− 2πin%

log c

)
−

∑

%∈K0∪K1

λµ% − 1.
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For (τµ)µ∈U ∈ (0, 1)|U | we have

R̃((τµ)µ∈U ) :=
∏

%∈K4

R

(∏

µ∈U
τ−λµ%µ

a

cosΘ′
eij%Θ

′
)

�b,Θ′
∏

%∈K4

( ∏

µ∈U
τ−λµ%µ

)b−1

�
∏

µ∈U
τ

(1−b)∑%∈K4
λµ%

µ .

For µ ∈ V ,

<αµ ≥
∑

%∈K0∪K2∪K3

λµ% −
∑

%∈K0∪K1

λµ% − 1 = −1.

Furthermore, for (τµ)µ∈U ∈ (0, 1)|U |,
∏

µ∈U
ταµµ R̃((τµ)µ∈U )�

∏

µ∈U
τ

∑
%∈K0∪K2∪K3

λµ%−
∑
%∈K0∪K1

λµ%−1+(1−b)∑%∈K4
λµ%

µ

�
∏

µ∈U
τ−1−b
µ .

Therefore the triple integrals in (6.5) are absolutely convergent for <s > 0.
From Lemma 2.5 it follows with ε > 0 which depends only on Q that the
innermost integral in (6.5) is for <s > 0, γ′µs+ αµ 6∈ Z, µ ∈ V equal to
∏

µ∈V
(e(γ′µs+ αµ)− 1)−1

×
\

I
|V |
ε

∏

µ∈V
v
αµ+γ′µs
µ

( ∑

γ≤γ′
bγ((z%)%∈K1)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
d(vµ)µ∈V .

Substituting this sum into (6.5) gives for <s > 0, γ′µs 6∈ Z + (2πi/log c)Z,
µ ∈ V , the representation

I(s) =
∑

0 6=n%∈Z
%∈K3

A(s; (n%)%∈K3)B(s; (n%)%∈K3)

where

B(s, n)

:=
\

γ
|K1|
0

d(z%)%∈K1

∏

%∈K1

H(z%)
\

(0,1)|U|

d(τµ)µ∈U
∏

µ∈U
τ
αµ+γ′µs
µ R̃((τµ)µ∈U )

×
\

I
|V |
ε

d(vµ)µ∈V
∏

µ∈V
v
αµ+γ′µs
µ

(∑

γ≤γ′
bγ((z%)%∈K1)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
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can be continued holomorphically to <s > σ(b) := bminµ∈U 1/γ′µ. For each
σ(b) < c1 ≤ <s ≤ c2, |=s| ≤ c3, |B(s;n)| �c1,c2,c3 1 uniformly in n.

Furthermore,

A(s, n) :=
∏

%∈K3

sin
(

2π2in%
log c

)−1

exp
(

2πn%j%
log c

(π −Θ′)
)(

a

cosΘ′

)2πin%/log c

×
∏

µ∈V
(e(γ′µs+ αµ)− 1)−1

is meromorphic on C. As αµ +
∑
%∈K3

λµ%2πin%/log c ∈ Z each of the
poles of A(s) lies in N−1Z + 2πi(N log c)−1Z where N := lcm{γ′µ | µ ∈
V } ∈ N. This set is independent of (n%)%∈K3 . Therefore on summation over
(n%)%∈K3 no accumulation of poles in C can occur. For the more general
series

∑
n1,...,nr≥0 P (cn1

1 , . . . , cnrr )−s such an accumulation cannot be ruled
out. Therefore it cannot be continued meromorphically to C with the method
of this paper.

For R ≥ 1 define

FR(s) :=
∏

(k,l)∈Z2:
|k/N+2πil/(N log c)|≤2R

(
s− k

N
− 2πil
N log c

)|V |
∈ C[s].

Then FR(s)A(s, n) has no poles in the disk KR(0) with center 0 and radius
R. For s ∈ KR(0),

(6.6) |FR(s)A(s, n)| �
∏

%∈K3

exp
(
−2π|n%|

log c
Θ′
)

×
∏

µ∈V

{
|e(γ′µs+ αµ)− 1|−1

∏

(k,l)∈Z2:
|k/N+2πil/(N log c)|≤2R

∣∣∣∣s−
k

N
− 2πil
N log c

∣∣∣∣
}
.

Assume µ ∈ V and let the minimum

δ := min
k∈Z

∣∣∣γ′µs−
∑

%∈K3

λµ%2πin%(log c)−1 − k
∣∣∣

be attained at k = k0. If δ ≤ 1/2 then define k1 := k0Nγ
′−1
µ , l1 :=∑

%∈K3
λµ%n%Nγ

′−1
µ ∈ Z. Then |γ′µs − k0 − 2πil1γ′µ/(N log c)| = δ ≤ 1/2

and |k1/N + 2πil1/(N log c)| ≤ |s|+ 1/(2γ′µ) ≤ 2R. The µth factor in (6.6)
is therefore

∏

(k,l)∈Z2\{(k1,l1)}:
|k/N+2πil/(N log c)|≤2R

∣∣∣∣s−
k

N
− 2πil
N log c

∣∣∣∣
|γ′µs− k0 − 2πil1γ′µ/(N log c)|

γ′µ|e(γ′µs− k0 − 2πil1γ′µ/(N log c))− 1|

� (R+ 2R)2RNRN(log c)/πγ′−1
µ �R 1.
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If δ > 1/2 then the µth factor in (6.6) is

� (3R)2RNRN(log c)/π|e(γ′µs+ αµ)− 1|−1 �R 1.

Therefore |FR(s)A(s, n)| �R

∏
%∈K3

exp(−2πΘ′|n%|/log c) for s ∈ KR(0)
where the�-constant is independent of (n%)%∈K3 . Consequently, in the rep-
resentation

FR(s)I(s) =
∑

0 6=n%∈Z
%∈K3

FR(s)A(s, (n%)%∈K3)B(s, (n%)%∈K3)

which is valid on {s ∈ C | <s > 0, |s| < R, s 6∈ N−1Z + 2πi(N log c)−1Z}
each summand is holomorphic on

(6.7) {s ∈ C | <s > σ(b), |s| < R}
and the series is uniformly convergent on each compact subset of (6.7).
FR(s)I(s) can therefore be continued holomorphically to (6.7) and so I(s)
can be continued meromorphically to (6.7) where the poles lie in N−1Z +
(2πi/(N log c))Z and are of order ≤ |V | ≤ r. As R ≥ 1 may be chosen
arbitrarily I(s) can be continued meromorphically to <s > σ(b) with the
same restrictions on the poles as above. As S(s) is a linear combination of
integrals of the type I(s) it follows that S(s) can be continued meromor-
phically to <s > cb with poles lying in (1/N∗)Z + (2πi/(N∗ log c))Z and
order ≤ r. Here c > 0 and N∗ ∈ N depend only on the finitely many integral
matrices λ and the associated maximal exponent vectors γ′. Therefore c and
N∗ depend only on P . As b ∈ R− \ Z can be chosen arbitrarily S(s) can
be continued meromorphically to C with the same restrictions on the poles
as above. For <s > 0, |P (cn1 , . . . , cnr )−s| � e|=s|%(P )c−<s(n1+...+nr)/σ∗a .
Therefore the Dirichlet series S(s) is uniformly convergent on each compact
subset of <s > 0 where it defines a holomorphic function. The poles of S(s)
lie consequently in (−1/N∗)N0 + (2πi/(N∗ log c))Z.

7. Proof of Corollary 1.7. For t ∈ R define A(t) := #{(n1, . . . , nr) ∈
Nr0 | P (cn1 , . . . , cnr ) ≤ et}. Then A(t)≤#{(n1, . . . , nr)∈Nr0 | c(n1+...+nr)/σ∗a

� et} � tr + 1 for t ≥ 0. Assume without loss of generality that P (1, . . . , 1)
> 1. By partial integration and summation it follows that for <s > 0 (1.7)
has the representation

S(s) =
∞\
0

e−st dA(t).

From Theorem 1.6 it follows that S(s) is meromorphic on C. As the Dirichlet
series representation of S(s) is divergent at s = 0 we have limσ→0+0 S(σ) =
∞ and consequently S(s) has a pole at s = 0. Let 1 ≤ ω ≤ r be its order.
Then there is a C ∈ C \ {0} with sωS(s) = C + O(|s|) as s → 0. Hence
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C = limσ→0+0 σ
ωS(σ) ≥ 0 and therefore even C > 0. Application of the

Tauberian theorem with explicit remainder term of Karamata–Freud ([11],
Theorem 9, p. 257, ψ(t) := t) gives

A(x) = (C +O((log x)−1))xω/Γ (ω + 1) as x→∞.

8. Proof of Theorem 1.8. The proof is completely analogous to that
of Theorem 1.6 where (6.2) is substituted by

G1(−z) :=
∑

n≥1

(
Λ(n)
n− z −

Λ(n)
n

)
(8.1)

=
∑

[b]+1≤n≤1

(−z)n−1(an Log(−z) + bn)

−
∑
%

π

sinπ%
(−z)%−1 +R1(z)

with R1(z)�b,Θ′ |z|b−1 for z ∈ Trace(γ1) ∪ Trace(γ−1). These asymptotics
follow from Lemma 2.6. The %th summand is � e−π|=%||z|<%−1e|=%|(π−Θ

′)

� e−Θ
′|=%|. Define H(z) to be the sum of the last two terms in (8.1).

Furthermore, the functions

G%(z) :=
∑

0 6=n∈Z

(
1

z − n +
1
n

)
+

1
z

= π cotπz

= iπ +
2πi

e(z)− 1
= −iπ +

2πi
1− e(−z) , 2 ≤ % ≤ r,

are used for which the asymptotics

G%(−z) = jiπ +R%(z),

R%(z) = O(e−2π|=z|), z ∈ Trace(γj), j = ±1,

hold. As in the proof of Theorem 1.6 one shows that for <s > σ∗a (see (3.5))
the function

S(s) :=
∑

n1,...,nr≥1

Λ(n1)
P (n1, . . . , nr)s

=
(−1)r

(2πi)r

\
(−γ1+γ0+γ−1)r

P (z)−s
r∏
%=1

G%(−z%) dz

can be represented as a linear combination of the following types of func-
tions:
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• Type I:

(8.2)
∏

µ∈V
(e(γ′µs)− 1)−1

\
γ
|K0|+1
0

d(z%)%∈K0∪{1}H(z1)
∏

%∈K0

G%(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ
γ′µs−

∑
%∈K1∪K2

λµ%−1
µ

×
\

I
|V |
ε

∏

µ∈V
v
γ′µs−

∑
%∈K1∪K2

λµ%−1
µ

×
( ∑

γ≤γ′
bγ((z%)%∈K0∪{1})

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
d(vµ)µ∈V ,

where K0 ∪̇ K1 ∪̇ K2 = {2, . . . , r}, λ ∈ N(|K1|+|K2|)2

0 regular, U := {µ ∈
K1 ∪K2 | λµ% ≥ 1 for a % ∈ K2}, V := (K1 ∪K2) \ U , ε > 0 appropriately
chosen and R̃ : (0, 1)|U | → C is continuous and

R̃((τµ)µ∈U )� exp
(
− c

∑

µ∈U
τ−1
µ

)

with a constant c > 0;

• Type II:

(8.3)
∏

µ∈V
(e(γ′µs)− 1)−1

\
γ
|K0|
0

d(z%)%∈K0

∏

%∈K0

G%(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U
∏

µ∈U
τ
γ′µs−λµ1(n−1)−1−∑%∈K1∪K2∪{1} λµ%
µ R̃((τµ)µ∈U )

×
\

I
|V |
ε

d(vµ)µ∈V
∏

µ∈V
v
γ′µs−λµ1(n−1)−1−∑%∈K1∪K2∪{1} λµ%
µ

×
( ∑

γ≤γ′
bγ((z%)%∈K0)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
,

where K0 ∪̇K1 ∪̇K2 = {2, . . . , r}, λ ∈ N(|K1|+|K2|+1)2

0 regular, [b]+1 ≤ n ≤ 1,
U := {µ ∈ K1∪K2∪{1} | λµ% ≥ 1 for a % ∈ K2}, V := (K1∪K2∪{1})\U ,
ε and R̃ as above;
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• Type III:

(8.4)
∏

µ∈V
(e(γ′µs)− 1)−1

\
γ
|K0|
0

d(z%)%∈K0

∏

%∈K0

G%(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ
γ′µs−

∑
%∈K1∪K2∪{1} λµ%−1

µ

×
\

I
|V |
ε

d(vµ)µ∈V
∏

µ∈V
v
γ′µs−

∑
%∈K1∪K2∪{1} λµ%−1

µ

×
( ∑

γ≤γ′
bγ((z%)%∈K0)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
,

where K0 ∪̇ K1 ∪̇ K2 = {2, . . . , r}, λ ∈ N(|K1|+|K2|+1)2

0 regular, U := {µ ∈
K1 ∪ K2 ∪ {1} | λµ% ≥ 1 for a % ∈ K2 ∪ {1}}, V := (K1 ∪ K2 ∪ {1}) \ U ,
ε > 0 is chosen appropriately and R̃ : (0, 1)|U | → C is continuous with
R̃((τµ)µ∈U )�∏

µ∈U τ
1−b
µ ;

• Type IV:

(8.5)
∑
%

π

sinπ%

(
− a

cosΘ′
ejiΘ

′
)%−1 ∏

µ∈V
(e(γ′µs− λµ1%)− 1)−1

×
\

γ
|K0|
0

d(z%)%∈K0

∏

%∈K0

G%(−z%)

×
\

(0,1)|U|

d(τµ)µ∈U R̃((τµ)µ∈U )
∏

µ∈U
τ
γ′µs−

∑
%∈K1∪K2∪{1} λµ%−1−λµ1(%−1)

µ

×
\

I
|V |
ε

d(vµ)µ∈V
∏

µ∈V
v
γ′µs−

∑
%∈K1∪K2∪{1} λµ%−1−λµ1(%−1)

µ

×
( ∑

γ≤γ′
bγ((z%)%∈K0)

∏

µ∈U
τ
γ′µ−γµ
µ

∏

µ∈V
v
γ′µ−γµ
µ

)−s
,

where K0 ∪̇ K1 ∪̇ K2 = {2, . . . , r}, j ∈ {±1}, λ ∈ N(|K1|+|K2|+1)2

0 regular,
U := {µ ∈ K1∪K2∪{1} | λµ% ≥ 1 for a % ∈ K2}, V := (K1∪K2∪{1})\U ,
ε > 0 is chosen appropriately and R̃ : (0, 1)|U | → C is continuous with
R̃((τµ)µ∈U )� exp(−c∑µ∈U τ

−1
µ ) (c > 0).

The functions which are defined by the integrals in (8.2), (8.3) and (8.5)
can be continued to entire functions in s; the function which is defined by
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the integral in (8.4) can be continued holomorphically to the set
{
s ∈ C

∣∣∣ <s > γ′−1
µ

(
b− 1 +

∑

%∈K1∪K2∪{1}
λµ%

)
, µ ∈ U

}

which contains a set of the form {<s > bd1 + d2} where d1, d2 > 0 are
constants which depend only upon the values of λ and therefore only upon
P . The functions of types I, II, III can therefore be continued meromorphi-
cally to <s > bd1 + d2 where the poles lie in N−1Z and have order ≤ r;
here N ∈ N depends only upon P . If R ≥ 1 is chosen arbitrarily then
the integral in (8.5) can be estimated uniformly in % and s ∈ KR(0) by
OR(

∏
µ∈V exp(2πλµ1=%)). Define

FR(s) =
∏

µ∈V

∏
(s− s0)

where s0 runs through the set

{λµ1%/γ
′
µ + k/γ′µ | |=%| ≤ γ′µ2R, k ∈ Z, |k| ≤ γ′µ2R+ λµ1}.

Then FR(s)
∏
µ∈V (e(γ′µs − λµ1%) − 1)−1 has no poles in KR(0) and it can

be estimated uniformly in % and s ∈ KR(0) by
∏

µ∈V

∏
s0

|s− s0| · |e(γ′µs− λµ1%)− 1|−1 �R

∏

µ∈V
exp(−2πλµ1=%).

Therefore after multiplication of (8.5) by FR(s) one gets a series of holo-
morphic functions which converges uniformly on KR(0). (8.5) can therefore
be continued meromorphically to KR(0) where the poles lie in

(8.6) {N−1(k + c1%), . . . , N−1(k + cM%) | k ∈ Z, % a nontrivial zero of ζ}
and are of order ≤ |V | ≤ r. Here N ∈ N and c1, . . . , cM ∈ N0 are constants
which depend only upon P . As R ≥ 1 may be chosen arbitrarily (8.5) can be
continued meromorphically to C with poles of order ≤ r which lie in (8.6).
Consequently, S(s) can be continued meromorphically to <s > bd1 +d2 with
poles of order ≤ r which lie in (8.6). If N−1(k+ cm%) is a pole of S(s) then
its real part is ≤ σ∗a and therefore k ≤ [Nσ∗a ] =: c. As b ∈ R− \ Z can be
chosen arbitrarily the statement of the theorem follows.
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tions rationnelles de plusieurs variables, Ann. Inst. Fourier (Grenoble) 34 (3) (1984),
83–123.
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