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1. Introduction. Let
P(X1,...,X,)= > caX*€C[Xy,...,X,]
a€Ng
be a polynomial in r variables with Rc, > 0 if ¢, # 0 and with degx, P =1
for each 1 < p <r. Let

o(P) := max |argcy|, d(P):=max{as+...+a, |a €N, ¢, # 0}.
P a o

Let 0 < © < w/2 and o(P) + d(P)O < 7/2. Let (Apn)n>1, 1 < 0 < 1, be
sequences in

So :={z€ C\R, | |argz| < O}
with lim, o [Agn| = o0 and (a,(f))nzl, 1 < o < r, sequences in C. The
Dirichlet series S(s) is formally defined by

al) .. .al)

CPOnys s A, )t

(1.1) S(s) =
MY yenny n,.>
Let 0,(T) € [—00, 0] be the abscissa of absolute convergence of any Dirich-
let series T'. Define the auxiliary Dirichlet series
a%@)

Se(s) =) ~oy 1<o<rm

)\5
n>1"@n

In this paper the following questions are investigated:

(1) Under what conditions on the S, is 0,(S) finite and can the holo-
morphic function S(s) be continued analytically beyond the half plane Rs >
0a(9)?

(2) Where are the singularities of S(s) located and of what kind are
they?
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(3) Is there an asymptotic formula for the summatory function of the
coefficients of S(s)?

Let K be the set of all holomorphic functions f : {Rs > oy} — C with
the properties: f can be continued meromorphically to C, has only a finite
number of poles in each strip a < s < b and for each € > 0,

(1.2) 1£(5)] Kape ¥ (a < Rs < b, |Fs| — o0).
The following two theorems are long since known.

THEOREM 1.1. If 0,(S,) < 00 and S, € K for1 < o <r, then 0,(5) < o0
and I'S € K.

Mellin [7], p. 23, proved this only for © = 0. The same proof works for
the general situation. In [8], p. 61, Mellin remarks that even the following
theorem holds.

THEOREM 1.2. If the coefficients of P are real, 0,(S,) < oo and S, € K
for 1 < o<, then 0,(S) < o0 and S € K.

The proof is the same as for Theorem 1.1 with some obvious changes.
Under the strong assumption of ellipticity of P more precise conclusions
about the location and order of the poles of S(s) can be drawn (Mahler [6]).

In the special case P € R[X71,..., X,], al® = b Aon =, With |§,| =1,
€ # 1 for 1 < p < r, n e N, the function S(s) can be continued to an
entire function and the numbers S(—k), k € Ny, can be computed explicitly
(Cassou-Nogues [1]).

In the special case S; = ... = S, = { the method of Sargos [9], [10] gives
a much sharper result than the method of Mellin does.

Another class of polynomials for the same S, is investigated by Lichtin
[4], [5]. This class is not defined by a condition on the coefficients of its
members but by a growth condition.

In this paper Sargos’ method is applied to the more general Dirichlet
series (1.1). First the following sharpened version of Theorem 1.1 is obtained.
Let polord,, S denote the order of the pole w of S.

THEOREM 1.3. Assume o(P) +d(P)O < 7/2, a >0 with Y, <, [A\on|™*
< 00, 0a(S,) < oo and let S,(w) be meromorphic on C for 1 < o < r.
Assume that S,(w) has only a finite number of poles in each strip

B(o1,02) :={w e C|o1 <Rw <02} (—00<o01 <02 <00)
and that for each € > 0,
|Sg(w)| <<G'1,O'27€ e(@+s)|%w\’ w e B(Gla02)7 ‘%w| — O0.

Then 0,(S) < oo, S(w) can be continued meromorphically to C, has only
a finite number of poles in each vertical strip of finite width and there are
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linear forms
L, ((Xp)oer,)s Im C€{1,...,7}, 1<m < M,

with coefficients in Ng which depend effectively on P and effectively com-
putable constants N € N, ¢q,...,c4 > 0 so that the poles of S(w) lie in the
set

(1.3)  {N"Ya+ Ln((wp)eer,)) | 1 <m < M, w, a pole of S, for each
0€ Ly, a€Z, R(a+ Ly ((wy)per,,)) < cimin{Rw, | 0 € I, } + c2}.
The order of a pole wy € C of S(w) can be estimated by

(1.4) r—{—max{ Z (polord,, S, —1)|1<m <M, a€Z,
o€lm
w, a pole of S, for each o € I, wo = N_l(a + L, ((wy) per,,)),

csRwo — ¢4 < min{Rw, | o € Im}}.

Theorem 7.8 of Jorgenson and Lang [3] states that under certain condi-
tions from an asymptotic development for theta series

’
E are™ " and g aj e Mt ast — 0
k>1 k'>1

an asymptotic development for zk,k/>1 aka;,e_’\“;c’t can be derived. The
following theorem generalizes this situation. From [3] the following axioms
for Dirichlet series Y, ax\; ° and theta functions O(t) = Y, o, age™ !
are taken:

DIR1. RA > 0 for each k > 1; limy oo RAL = 0.
DIR2. (a) There is o9 > 0 with >, |ak| - |Ak]77° < 0.
(b) There is o1 > 0 with Zk;l | Ak~ < oo.
DIR3. There is € > 0 with A\ € S(7/2 — €) for each k > 1.
AS1. For each C,ty > 0 there are N € N and K > 0 with
6(t) — Qn ()] < Ke=Ct for t >ty (Qn(t) := Sp 1 ape ).
AS2. There are sequences P = (pn)n>0 in C and (B, )n>0 in C[X]
with the properties:

e Rp, T oo as n — o0,
e for each q € P,
Ot) — > By(logt)t? = Oy(t™[logt|™))
p:Rp<RNq

as t — 0 (m(q) := maxy.pp=nq deg Bp).
AS3. For each § > 0 there are o, C > 0 with |O(t) — Qn(t)| < Ct™¢
for each N € N, 0 <t <.
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As an application of Theorem 1.3 one derives

THEOREM 1.4. Assume ¢, € R for each o € Nj and d(P)© < m/2.
For 1 < o < r let S, satisfy axiom DIR2. Let the theta series O,(t) =

Y k> agf)e_A@kt, t > 0, satisfy the arioms AS1-AS3. Then S, can be con-
tinued meromorphically to C. Assume that in each vertical strip B(oy,02)
and for each € > 0 we have the estimate

1S, (W) Koy .o €5 as |Sw| — oco.
Then the theta series O(t) :== 3, 1 5 a&) . ag;)e_P(A”“l""’Arkr)t, t>0,
satisfies the avioms AS1-AS3. If Oy(t) ~ > cp B,()Q) (logt)tP is the asymp-
totic development of ©, at 0 according to AS2 then the asymptotic develop-
ment O(t) ~ > p By(logt)t? satisfies
(1.5) P CAN" a+ Lin((pe)eer,,)) | 1 <m < M,
Do € Py for each o € I,,,, a € Z,
R(a+ L ((pe)eer,,)) = cxmax{Rp, | 0 € I} — 2},
(1.6) degB, <r—1+¢(p)+ max{ Z (deg Bzgi) —e(po)) ‘ 1<m< M,
0€lm

Do € P, and deg BI(,‘;) > e(py) for each o € Iy, a € Z,
p=N"at Lu((pe)oer,))s esRp+ 1 = max{Rp, | 0 € In}}

with e(p) = 1 for p € Ny and e(p) = 0 otherwise. The L, are as in Theo-
rem 1.3 and c1,...,cq4 > 0.

In contrast to Mellin’s method the method of Sargos can also be applied
to situations in which the Dirichlet series S,(s) have an infinite number of
poles in a vertical strip of finite width. Then maybe S(s) cannot be continued
analytically beyond its half plane of absolute convergence but the behaviour
of S(s) when s approaches its boundary can be analyzed and therefore a
Tauberian theorem can be applied. An example for this situation is

THEOREM 1.5. Assume co € R for each a € Ni. Then
Y A(m)...A(n,) = (C+O((loglogx) "))z (log z)*  (x — o)
(n1,..., n,)EN":
P(ni,...,n.)<z

with constants C, 0, >0, w € Ng, 0 <w <7 —1.

Let ¢ > 1. In [7], p. 24, Mellin mentioned the series

(1.7) S(s)= Y  P(c™,....c")7,

ni,...,np->0
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about which he explicitly stated that his method cannot be applied to it.
But Sargos’ method can be applied and gives

THEOREM 1.6. The holomorphic function which is defined by (1.7) in the
right half plane Rs > 0 can be continued meromorphically to C. Its poles lie
in N1 (=N + 27i(log ¢) ~1Z) for a suitable N € N and have order < r.

COROLLARY 1.7. Assume ¢, € R for each o € Nj and ¢ > 1. Then there
are constants C' >0 and w € N, w < r, so that as x — 00,

#{(n1,...,n.) €Ny | P(c™,...,c") <z} = (C+ O((loglogz) 1)) log* x.

In this case the meromorphic continuation to C is possible because the
integral linear combinations of the poles 2rin(loge)™!, n € Z, of S,(w) =
(1 — ¢*)~! have no accumulation point in C. For the same reason the
following theorem holds.

THEOREM 1.8. The holomorphic function which is defined by

in a right half plane can be continued meromorphically to C. Its poles lie in
{NYk+cno) |k €Z, k<ec, oanontrivial zero of ((s), 1 < m < M}

for suitable N,c € N, ¢q,...,cpr € Nog, and have order < r.

2. Some auxiliary theorems. The following transformations are an
essential tool in [9]: For A = (A\;5) € N{*" with det\ # 0 define w =
w(A) : (1,00)" = (1,00)" by wz := (mi\” . .xi‘"j)lngT. It is a C*°-function
and has the functional determinant Jw(z) = det A[];_, l'j_l [T, xz’“j. Let

2= {wA) | A e NpX7, detA # 0}. If Q(X) = Y, doX® € C[X], then

Qu(X) = )N daX2% is a polynomial with Q(z) = Q(w(z)) for each
z € (1,00)". One says that @ has a greatest monomial dﬂXg if dy # 0 and
a < B for each a with d, % 0. Here a < B is shorthand for a; < 3] for each
1<j<r

The following theorem is crucial for Sargos’ method.

THEOREM 2.1 (][9], Theorem 2.1). For each P € C[X] there are wq, ... ,wn
€ (2 with the following properties:

(1) (1,00)" is up to sets of Lebesque measure zero the disjoint union of
the sets w,((1,00)"), 1 < p < m.

(2) P,, has a greatest monomial for each 1 < p < m.

(3) wi,...,wn depend only upon supp P := {a € Nj | X< appears in P}.
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As in [9], S(s) is represented as an integral with the help of the residue

theorem. Therefore functions G,(2),1 < o < r, on Se are needed which

have poles of order 1 and residues (a %’))nzl exactly at the points (Ayp)n>1

and for which the asymptotic behaviour as |z| — oo is known on each ray
z=re"? O < || <7/2.In[9], G,(2) = (e(2) — 1)~ with e(z) := exp(2miz2)
is used; in this paper G,(z) is constructed by a Mittag—Leffler series. The
asymptotic development is obtained with a method of Mellin.

LEMMA 2.2. Assume 0 < @ < m and let (A\,)n>1 be a sequence in So
with lim, oo [An| = 00, (an)n>1 a sequence in C and p € Ny. Assume
that the Dirichlet series T'(w) 1= Y < anA, " is absolutely convergent for
Rw > p+ 1. Then the series

MT(z) ::Z (z+)\ Z)\ (k1) (. )

n>1

is uniformly convergent on each compact subset of C after omitting finitely
many summands. For each z € C\ Ry with |largz| <7 — 60 andp+1<a <
P+ 2, we have the identity
a+1i00
MT(:) = (~2PT(p+1) + 5= |
2mi

a—100

- T(w)z*"! dw.
sin Tw

Proof. The following is a slight adaptation of the proof in [7], §1. The
first part of the theorem is standard for Mittag—LefHler series. For each a €
RT\Nand z € C\ R, define
a+100
I(a,z):= — S T w1 g,

| sin 7w
a—100
For each w € C with |Sw| > § > 0, the estimate (sin7w)™ ' <5 e~ ™ISl
holds. Therefore the integral is absolutely and uniformly convergent with
respect to z on each compact subset of C \ R, . So it is holomorphic with
respect to z. From the residue theorem it follows that

(2.1) I(a,2) =I(a+1,z2) + (1)l 2],

If z€ C\Ry, a € RY, minyez|a —n| > 8§ > 0, then |[I(a,2)| <. |2|*!
uniformly in a. For fixed z € C\ R, with |2| < 1, and 0 < a < 1, it follows
from (2.1) that

I(a,z) Z "+Ia+q,z) — Z(—l)”z”:(l—i—z)*l as ¢ — 0o,

n=0 n>0

and therefore I(a,z) = (1 + 2)~'. From (2.1) it follows by holomorphic
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continuation that for z € C\ Ry and a € RT \ N the identity

[a]
(2.2) L4277 4> (~D)me" = 2i

i
n=1 a—1i00

a+100 .
S — vl dw
sin 7w
holds. For z € C\ Ry with |argz| <7 —©, and p+1 < a < p+ 2, we have

larg z| + |arg A,,| < 7 and therefore z\,,;! € C\ Ry for each n € N. By (2.2)
the nth summand in MT(z) is therefore equal to

andt((L+ 20 )7 + fj(—l)‘“(zAﬁ)’“)
k=1

a+100
1
:an)\n1<(—1)p(z)\n1)p—|—2, | = (z)\nl)wldw)

T sin Tw
a—1100
1 a+i00
_ ™ _ _
= (—2)PapA; P 4 — S - 2" ta, A dw.
211 sin Tw
a—100

Summation over n gives the representation of MT(z) after interchanging
integration and summation. This is allowed because for w = a + it,

™

Zw—lan)\;w < e—fr\t||Z|a—16|t|-|argz||an| . |>\n’—a€|t\6

sin Tw

S fan] PV,

Under certain meromorphy conditions on 7'(w) an asymptotic develop-
ment of MT(w) can be proved which is a generalization of Stirling’s formula
for I'"/T"(w).

THEOREM 2.3. Assume 0 < O < 7 and let (\,)n>1 be a sequence in
So with lim,_,o [A,| = 00 and (an)n>1 a sequence in C. Assume that the
Dirichlet series T(w) := Y, <1 anA," has the following properties:

(1) There is p € Ny so that T'(w) converges absolutely for ®w > p+ 1.

(2) T(w) can be continued meromorphically to C.

(3) For each —o0 < 01 < 09 < 00 only finitely many poles of T'(w) lie in
B(o1,02) and for each € > 0,

IT(w)| Koy.0p.e €8T w e Bloy,09), |Sw| — co.

Then for each b € (—oo,p+1)\Z for which T'(w) has no poles on Rw = b
and for each e > 0 and z € S;_o_. with |z] > 1,

7r _ _
MT(z) = Z Resy, <sin7er(w)zw 1) + Opc(2|°71).
b<Rwo<p+1
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Proof If —co < 01 < 02 < 00, 2 € Sp_o—c, 2| > 1 then for w €
B(oy,03), |Sw| — oo, we have

™

— oS oY o Ceanl.
. T(w)zw 1 Loroge € n\\sw|+(@+a/2)\\sw||2’ag 1e|\yw\ larg z|
sin Tw

—e|Swl|/2 ~1
Lorape € T2 []2

Choose a = p + 3/2. From Lemma 2.2 and the residue theorem,

b+ico
2. MT(z) = PT 1)+ — T(w)z*"1d
(23) &= CPTO+ D+ o | T d
+ Z Res,, i T(w)z""1).
°\ sin 7w

b<Rwp<a

In {p+1 < Rw < a} the only pole of 7(sin7w) 1T (w)z*~? lies at p + 1
and has residue (—1)PT1T(p + 1)2P. The integral in (2.3) is
<pe S e—7r|t|+(@+e/2)|t||Z|b—16|t|'|argz\ dt <p.. |Z|b_1.

— 00

From this the statement of the theorem follows. m

LEMMA 2.4. Let the sequences (Apn)n>1 and (a %9))@1 fulfil the assump-
tions of Lemma 2.2 for 1 < o < r with a common © and p and assume
a > 0 with 32,5 [Aen|™® < 00 for 1 < o < r. Then there is a sequence
(R )m>1 which tends monotonically to infinity and has the property:

|MT,(2)| < REF™  for each |2| = Ry, m>1,1<o<.
Proof. With Cy:=3_ o, [A\en|™® it follows that for each R > 1,

R (3
#{nzu|/\Qn|§R}§Z<A ) = C,R".

=i\ Aen]

Consequently, for each R > 1 there is an R’ € [R,2R] with |R' — [Ap|| >
R~ for each n € N, 1 < p < r, with a >-constant which is independent
of R, p,n. For z € C with |z| = R’ and 1 < p < r it follows that

M@ X o+ 3 >‘“§5)’<||—|Agn|+Z!A@\k+1>

[Aon|<R'/2  R'/2<| A on|<2R!

k
+ Z | - Z()\_Z)‘
Aon ksp \7on

on|>2R’
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1 123/ R\
(o)
< 2l '(R’+R' (M) )

[Aon|<R'/2

(o) L~ RY
Joe—
+ E |a,? |<R + E (R’/Z)k“)
=0

R’ /2<| X on |<2R/

@ l#F 1
Y '“"'\Agnrw T /e

[Aon|>2R/
p—1 /
R
< T
|AQTL|§R//2 | Qn‘ |>\Qn|
|a(0)|

(2R/)p+1R/a—1 +R/p < R/a—}—p' -

DY

| n|p+1
R’ /2<|Agn|<2R’ '€

LEMMA 2.5. Let k € Ng. There are polynomials Py, € C[x] with deg Py,
< k—k and with the property: If h(z) is holomorphic on an open neighbour-
hood U of [0,1] in C which contains the closed disk around 0 with radius
e>0and a € C\Z, Ra > —1, then

1 k

{ah(z)loghwde =) P (€(2)) | z2h(2) 1og" 2 dz.

) ] (e(ar) — 1)k+1-r pl

Here a slit is made in the complex plane along the positive real axis and log z
is defined on C \ Ry where arg z takes values from O to 2m. I. consists of
the path from 1 to € above the slit, the circle around 0 with radius € which
starts at € and is run through in the positive direction and the path from e
to 1 below the slit.

Proof. The case k = 0 is contained in Lemma 4.1 of [9]. The general
case follows by taking the kth derivative with respect to .. m

LEMMA 2.6. The series
, A(n)  A(n)
6o = 3o (2 - 2
n>1

defines a meromorphic function on C whose poles are at —n, n € N, are
simple and have the respective residues A(n). For eachb € R™\Z, z € C\Ry
with |z > 1 and |arg z| < 7 — ¢, € > 0, we have the asymptotic formula

(2.4) G(z):—z ety N 2" Na, Log b))+ 0y (127

z
sin 7
¢ [b]+1<n<1



254 M. Peter

where o runs through the nontrivial zeros of ((s), an,b, are complex con-
stants and Log z is the principal branch of the logarithm. Furthermore, for
z € C\ Ry with |argz| <7 —¢, >0, |z| > €2, we have
(2.5) G(z) = a1 Logz + by + R(2), R(z) = O (e ¢l lzl/loglog 2]
with a constant ¢ > 0. For z € C with min,ey |2 +n| > 1/2,
G(2) < log*(|z| + 2).

Proof. According to Lemma 2.2 with ©® = 0, p = 1 and T'(w) =
—('/{(w) the first part of the statement holds for G = M(—('/(). For
z€ C\Ry and a =5/2,

a+100

Gl = S 2) - L | < ()21 du.

¢ 27 ooy SILTW ¢

Let b € R~ \ Z and in addition |z| > 1, |arg z| < m — . Choose a sequence
(Tyn)m>1 which converges monotonically to infinity so that for each b <
Rw < a, Sw = +T,, the estimate |¢'/C(w)| <a.p log® Ty, holds (Davenport
[2], p. 112, and the functional equation). From the residue theorem it follows
that

b4iTom

Ge) =25 2) - o < (w)zm 1
2) =22(2) — — -2 (w)z w
¢ 27 S sinTw ¢
b—iThm
+Oe(e*’rTmlog2Tm|z]afleTm|argz‘)— Z .7T 2071
sin o
o:|Sol<Tm
/
- Y Rewn (G S,
sinTw ¢
[bl+1<n<2

For each fixed z the O-term converges towards 0 as m — oo. For each
nontrivial zero g of (,

2071

x _ 1
i < e~ |Sel(m \argZI)‘ZPRQ ,
SIn 7o

and consequently the sum over g is absolutely convergent as m — oo. By
letting m — oo, (2.4) follows with error term

b+ioco
1 !
e~ S - -g—(w)zw_ldw
2mi po, SITW ¢
< S e ™M og (|t 4 2)|z|P Ll = dr <, . |20

If |arg z| < m — ¢ and |z| > €2, then choose b = —1/2. For each p it follows
from Davenport [2], p. 89, that Ro < 1 — clog™'(|S¢| + 2) with a constant



Dirichlet series 255

¢ > 0. With R :=log(|z| +2) > 2 we have

R
S e« Cew(—eln - (-2 - i)
— sinmg -

- log(ISe| +2)

el cR
< Z exp< |Sole logR>

|Sel<R

S0l - &
+ Z exp< 2|\SQ] 2R>

|Se|>R

cR
<<€ exp —@ .

Substituting into (2.4) gives (2.5).
For the last part of the statement assume |z| > 2 with min, ey |z + n| >
1/2. Then

G| < 1215 A(m)(z + nln) .
n>1
On the intervals [1,|z]/2], (|2]/2, |z|—1], (|z| =1, |z|+1], (|z|+1, 2|2]], (2] 2], o0)
the summands can be estimated by O(A(n)(n|z])~1), O(A(n)(n(]z] —n))~1),
O(A(n)n=1), O(A(n)(n(n —|2]))~1), O(A(n)n=2) respectively. Partial sum-
mation ends the proof of the lemma. =

LEMMA 2.7. For each 1 < o <1 let (Agn)n>1 be a sequence in RT which

converges monotonically towards infinity, (agf))nzl be a sequence in R{f,

and (@ > 0 with

(e)
g al® = g7 as y — oo.
yS/\gn<2y

Let P € R[X] have nonnegative coefficients and deng P >1 for each 1 <
o<r. Then

al) ... al)

PAnyy -y Arn,)®

has the abscissa of (absolute) convergence

0a(S) =min{o > 0| P(x)? >, x‘l’m .

.:c;fm forz € (1,00)"}
and S(s) is divergent for s = 0,(S5).
Proof. Let y1,...,y, > 1and 0 > 0. Then for y, <z, <2y,,1 <o <,

P(ys,...,yr) < P(x1,... ) < PRy, ..., 2y0) < 2P Pyy,. . y,)
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and therefore
(1) (r

Any ... Qp, _ (1) (r
. =o P(y1,...,yr)" %y) ...yl
2 PMngs- s Arn,)? ( n)

)

yQSAgnQ<2yQ
1<e<r
2y1 2y, xo.(l),l :L‘G(T'),l
=, SS L T —dxy ... dx,.
P(xy,...,2.)
Y1 Yr

Summation over y, = 2le 1, €Ny, 1 < o <, gives

(1) (r) ') [’ (1) _q (r)_1
any ... an, _ S S x] cead dx g
s 1...0T.
P()\lnlv---,)\rn,«yj i P(Sﬂl,...,IEr)o

MY yeeeypr 1
Hence the left hand side is finite if and only if the right hand side is finite.
The right hand side is Y/(P,0c™") —1,...,0(" — 1;0) in the notation of [9].
From Theorem 3.1 and Lemma 3.2 in that paper the statement follows. m

LEMMA 2.8. Let ¢ > 1. Then G(2) := Y, <o(z+ )~ is a meromorphic

function on C with simple poles at —c™, n € Ny, and residue 1 respectively.
For z € C\Ry with |z| > 1, largz| <7 —¢, e >0, and b € R~ \ Z, we have
the asymptotic formula

Gla)= =82 L Ly S Cym1— eyt

zlogec 2z
[b]+1<m<—1

T C (2r%in\ 2min Log z b—1
+ Z Sin exp\ ————— + Ob,6(|2| )
zloge omez logc logc

The nth summand is < exp(—2w|n|e/logc). For each ng € N and |z| =
(1+)em /2,
|G(2)] < |2| tlog(|2] + 2).

Proof. For Rw > 0 define T'(w) := 3 o c™ "™ = (1—c=%)~1. Choosing
p=20,60=0,a=3/2in Lemma 2.2 it follows that for each z € C\ R,
with |argz| <7 —¢ and |z| > 1,

1 a+i00 w—1

T z
=T(1 — . .
G(2) (1) + 211 a_Swo sinTw 1—c % duw

Let b€ R\ Z and T}, := 2n(2k + 1)(2loge) ™!, k € N. For ¢ € R, we have
|1 — ¢~ (@*T)| > 1. Applying the residue theorem to the rectangle with
vertices a + T}, b + T} and letting k — oo gives
b+ioco 1
1 w
Giz)=TQ1)+ — S i z dw

27 X sinTtw 1—c¢cw
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T Zw—l
R .
* Z Com <sin Tw 1-— cw>

[b]+1<m<1
-1
T 2%
+ ReS 2win N ° .
bge \ sSinTw 1—c¢™ %

The integral is <, Siooo etz teltlm =) gt <. [2|P7L For [b] +1 <
m < 1, m # 0, the mth summand is (=1)m2™" (1 — ¢™™)~!. For m =
0 it is Logz(zlogc)™ + (22)7L. For 0 # n € Z the nth summand is
7(zlog )t exp(2min Log z/log c)(sin(27%in /log ¢)) . From this the asym-
ptotic formula follows. The nth summand without the factor m(zlogc)™?
is < exp(2n|n|(7 — €)/logc) exp(—272|n|/logc). Finally, assume ng € N,
|z| = (1 +¢)c™ /2. For n > ng + 1 we have

l14+c,; c—1
s -

24" > —|z] > — 5 =2 ">
For 0 < n < nyg,
2 —1
R R < Bt P

From this it follows that

G < Y e+ DY e

0<n<ng n>ng+1
<o (o + 1)+ ™ <, [2] L log(l2] +2). =

3. Proof of Theorem 1.3. Choose © < O’ < 7/2 with gy := o(P) +
d(P)®" < /2 and 0 < a < min,,, RA,,. Let v11(R) respectively 11 be
the paths which are parameterised by z = re=®©’ r € [a/cos @, R] respec-
tively r € [a/cos @', 00), and 7o the path from ae® /cos @ to ae~© /cos @',
Choose p € Ny so that S,(w), 1 < p < r, converge absolutely for Rw > p+1.

Let b € R™ \ Z so that none of the S,(w), 1 < p < r, has poles on
Rw = b. From Theorem 2.3 it follows that for z € Trace(y;) U Trace(y-1),
I<o<m,

(3.1) MSy(—z) = Z CglU(_Z)leil Log"(—z) + R,()
1<I<L,
0<v<a, —1
with |R,(2)| <p.e |2/°7. The numbers wy, 1 < 1 < L,, are the poles of
(sinTw) 1S, (w) in the vertical strip B(b,p + 1) and a, is the order of the
pole wy;. The asymptotics (3.1) hold trivially also for z € Trace(p). Then
R, (z) is continuous on Trace(~; ) UTrace(yy)UTrace(y—1) with the exception
of the point a where R,(z) may have a discontinuity. As a special case it



258 M. Peter

follows that

(3.2) |MS,(—2)] < |2[Plog" |z|  for z € Trace(y1) U Trace(y_;)

with some K > 0. Let g be holomorphic on an open neighbourhood of
Sorq ={weC|Rw > a, largw| <O}

and assume the estimate |g(2)| < |2|7?~*"'7% on S, with § > 0. Choose
(R )m>1 according to Lemma 2.4 and let ICp,, be the positively oriented arc
of the circle around 0 with radius R,, which lies inside Sg.. The residue
theorem gives

1
o S g(2)MSy(—2)dz= Y —a@g(A\m).
=71 (Rm)+70+7-1(Rm)+Km n: Aon|<Rom

The integral along KC,, is < RL-P~a~1=0+p+a — R—0 Tetting m — oo gives

33 Y -a@0w) = | g(:)MSu(~2)d-.

21
n>1 —71+7v0+7-1

The integral is absolutely convergent because of (3.2). For w € C with
Rw < p, and v € Ny, Cauchy’s theorem gives

(34) | 9(@)(=2)"Log"(—2)d=
—Y1+Y0+v-1

= X g(t)e? 108t =) (Jog t — i)V dt
o0
+ S g(t)e? (o8t (log ¢ 1 i)V dt
a
= g gt (€™ (logt + im)” — e ™ (logt — im)") dt
v v o0
= Z < )(iﬂ)”_” S g(t)t* logh tdt(e'™ — e T (=1)"TH).
pn=0 a
Let o > 0 be the abscissa of absolute convergence of the Dirichlet series
> nenr P(n) 7% According to [9], Lemmas 3.2 and 4.2, the estimate

(3.5) |P(2)| > |21 ... 2|1

holds for z € Sg, ,. It follows that 0,(S) < o5 (p+1). For Rs > o (p+a+1)
it follows that with d(s) > 0,

|P(2)7%] < e8|y 2 | TR0« 2y Ly | T (PHAHIHIE)
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for z € Sg/ .. r-fold application of (3.3) gives

6O VS =G | PET [ M
(=v1+v0+7v-1)" o=1

Here integrations and summations may be interchanged because of the
choice of p and (3.2). Substituting (3.1) into (3.6) shows that S(s) is a
linear combination of the parameter integrals

P(2)~" ] (—2zo)"ete ' Log"(—z,) [] Ro(2,)dz
(=7 +v0+v-1)" €Ky €K,

where K runs through all subsets of {1,...,7}, (l5)eex, runs through
[,erc, {1, Lo}, (Vo) oek, tuns through [[,c {0, ..., an,—1} and K5 =
{1,...,7} \ K;. With (3.4) one sees that each of these integrals is a linear
combination of the integrals

(3.7) S d(2e) pe K H Ry(20) S P((20) ok (to)oeky) ™"
(—=v1+70+v—1) K2 0€ K> [a,00) K1
X H tz)glgil loghe t, d(ty) oc iy
o€ K1
where for each ¢ € K the parameter p1, runs through {0,...,v,}. If wy, €

Z then pu, only runs through {0,...,v, — 1}. S(s) is therefore a linear
combination of the integrals (3.7) where K; runs through all subsets of
{1,...,7} (lp)oek, runs through [T e {1,..., Lo}, (o)oek, runs through
[Lex, {0, polord,, (Sp)—1}and Ky :={1,...,r}\ K. prolordwglg(SQ)
= 0 for a p € K7 then the corresponding integral does not appear.

The absolute convergence of the integrals (3.7) can be checked using
Rs > oX(p+ a+1). In the following they will be written as linear combina-
tions of other integrals by decomposing the sets of integration and by the
transformation formula. Therefore the subsequent integrals are absolutely
convergent.

Decomposing the paths —y; + v + 7—1 and parameterizing v+, show
that (3.7) is a linear combination of the integrals

(3.8) S d(2¢) e Ky H Ry (2,) S Pj(gc(tQ)QEKlUKéz)is
,Y|K21\ 0€EKa1 [1,00) K22 |+IK1] B
0
Wor,—1 a id ’
X H t.Q N logug(atg) H RQ <tQCOS@/€JQ@ )d(tQ)Q€K1UK22
€K, 0€ K22
with

a .. /
Pj (Z,, (T9)96K1UK22) = P((Zg)gesz <TQ cos @’ ¢'9e® > ) (aTQ)Q€K1>
- o€ K22
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where 2" = (2,) e Ky, » K21 runs through all subsets of Ko, Ko := K3 \ K21
and J = (jQ)QGKQQ runs through {i1}|K22| We haVe

Pj(Z/’ (TQ)Q€K1UK22) = Z ajﬁ(Z/) H ng
- BENLKIHIKQZ‘ o €K 1UK22
with
’ Jé] a i700’ o B
_ Y i )
@)= ¥ e I T (gen) T 2
ﬂ/eNJjKQH 0€EK o€ K22 o€ K21

From this it follows that Ra,4(z") > 0 for each 2’ € fy(‘)Kml if there is a

B e N(lezl‘ with ¢ 5 5 # 0. Theorem 2.1 yields the existence of w(A) € {2,

A € A(Ky, K3;), which depend only upon K;, Ky with the properties:
(1, c0)lKa1+1K221 g up to sets of measure zero the disjoint union of the sets
Imgw()) and for each A € A(Ky, K31),

(3'9) Qzé((ZQ)QGKzu (TQ)QEKlUKzz) = Pzw(é)

_ b;y z) [ 13-

’ Q€K1UK22

j A j A i A
Here bi:(Z’) € C[Z'] with %bi:(g’) > 0if 2 € 4} and bi: 20,7 =+'())

A
depends on A. Furthermore, bi - #0.

Decomposing the region of integration in the innermost integral in (3.8)
and applying the transformation formula show that (3.7) is a linear combi-
nation of integrals

(310) S d(ZQ)QGKzl H RQ(ZQ) S d(TQ)Q€K1UK22

,Y(\)Km\ 0€Koy (17OO)IK1I+IK22\

— a 5,0’ A
XQjé((ZQ)Q€K217(TQ)Q€K1UK22) ° H RQ<COS@/€Z]Q H T,LLMQ>

€K pEK1UKoo

« Ky
X H " H log™* 7,
pEK1UK22 peEK1UKa2

where K1 runs through all subsets of Ky, Koz := K3 \ Ka1, j = (J,) € Kon

runs through {+1}/5221 X\ = (),,) runs through a finite set A(K;, Ka1) of

- (1K1 |+ K22))?
regular matrices € N , (Ko) ek, UK,y Tuns through all elements of

Nl)K1|+|K22\ with deKluKm Ko < deKl Mo and Q]é € C[Z/,I] is of the
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form (3.9). Finally,
= Y Applwa, = 1) =1+ D> Ay p€ KUKy
€Ky e€EK1UKa22
From deng P > 1 for each 1 < p < r it follows that
lim |P(z)| = oc.

éesg/
|z|—o0

a

Therefore,

I€(1700)1|£I(11|+|K22\ Qz‘é((a)QEKzlJﬂ =00

|7|—o0
and thus "yL > 1 for each p € K1 U Kos.
Define U = U()A) = {p € K1 UKy | A\yp > 1forap € Ki} and

V =V(}) := (K1 UKa) \ U. After substitution of 7,7! for 7, the integral

(3.10) is

+ S d(2p) 0 Koy H Ry(20) S (1) pev R((Tu) pev)

,y(‘JK21‘ 0€Koq (071)\U|

X H TM_QH_2 log“*‘ Tw S Qjé((ZQ)QGKm? (T;:l)MEKlUKzz)_S

net (0,1)IV1
X H T#_O‘M_Q log™ 7, d(7) pev
nev
with
_ _ 17,60 A
R((TM)MEU) = RZé = Ré’(COS@/ T H T M)
0€ K22 pnet
Therefore

(10) T g regy A

(611 R < [] (T175%) =1~

0€Ka2 peU nelU
1-b
< H Ty -
pnel
K
For 2" = (2p) e ks € '7(|) 2l and 7 = (To) perk UKy, € [0, 11Kz e have
JjA 1 . . .
%(2151' b:” (/)72 72) > 0. With a continuity argument it follows from the
compactness of 7(|)K21‘ x [0, 1]/EK1l+1K22] € C7 that there are €, ¢ > 0 with the

property: For each 2’ € ’y(l)K“I, (7)) e € 0,119 and (v,),ev € {w € C |



262 M. Peter

—e<Rw<1+e, |Sw| < e}Vl

A — [
(3.12) ( > CaEon | B | B 7“) > > 0.

Ny T pnel pnev

It follows from Lemma 2.5 for %s > max{o;(p+a+1), (Ra, +1)/v, | n €
Ky UKas}, S'yL — oy, & Z for each p € V, that (3.10) has the representation

57# Qy — 2))
(3.13)  + > H 87 o =9~
0<N, <kp uev s

pnev

X S d(2z,) pe Ky H Ry (20)

K. K.
’y(‘) 211 eE K21

s o, —2 K
X S d(u) pev R((74) pev) H TMV“ log"™* T,

(071)IU\ pnel

Z JA V=V V=) " °
S ( b:y ((ZQ)QEKm) H TMM H vl/
V< T neu nev

’
5y, —a,—2 A
X H vt log™* v, d(vy) pev -

In fact, it is possible to deduce from (3.5) and (3.9) that

U;’Y,/L > Z Ao

€K 1UK>3

for 4 € Ky U Kay. Therefore o;(p + a + 1) > (Ray, + 1)/v,, for each u €
K1 U Ky but this fact will not be used in the sequel.

From (3.11) it follows that each of the integrals in (3.13) defines a holo-
morphic function with respect to s as long as R(svy), —a, —2) +1-b> —1
for each p € U. From

max 0+ Ra) Smaxr (b4 D Mep =14+ D Auo)

e

€K, 0€K1UK22
the existence of constants c1,c2 > 0 can be deduced so that (3.10) can be
continued meromorphically to s > c1b+c2. For p € V' define L%((Yg)ge Ky)

= > ,ek, MuoYp- Then the poles of (3.10) which are contained in Rs >
c1b + ¢o lie in the set

U M le )Q€K1)+Z)'
pnev
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The order of a pole wg with Rwg > ¢1b + ¢3 is
< Z(/ﬁu +1) < Z o + V| < Z (polordwglg (Sp) — 1)+
HEV €K, o€ K
wg can be a pole of (3.10) only if there are p € V and a € Z with wy =
7 @+ I (wa, )eerc,))- Let
N :=lem{y,(A) [ p € V(A), A€ A(Ky,Kan), K1 €{1,...,7},
Koy CH{1,...,r} \ K1},

eV}

L(K1, K21, )) = {N’ylll(é)’lL%

Then (3.7) can be continued meromorphically to Rs > ¢1b + co, the poles
lie in
{N_l(L((leg)QEKl) + a) | ac Z? L S E(K17K217 >\))

A€ A(Ky, Ka), Ko C K}

and have an order < 3 g (polordwglg (Sp) — 1) + r. Taking all together

one sees that S(s) can be continued meromorphically to Rs > ¢1b + ¢o and
that the poles lie in

Kot € {1, r}\ K1, ()oers € [[AL--- Lok Ko g{l,...,r}}.
€K

[N E(wa,)oer)) +0) | a € Z, L€ LKy, Kar,)), A€ (K, Ka),

As b € R™ \ Z can be chosen arbitrarily with the restriction that none of
the S,(w) has a pole on Rw = b one can continue S(s) meromorphically
to C and it has only a finite number of poles in each vertical strip of finite
width. If wy € C is a pole of S(s) then Rwy < 0,(S5). Choose b such that
b < e (Rwo—|oa(S)|—c2) < b41. Then c1b+co < Rwp and b > ¢ ' Rwg—c3
with a constant ¢z > 0. There are necessarily K1, (I,),ek,, K21, A, L, a with
wo = N"YL((wei,)eeck, ) + a) where wy, is a pole of S, in B(b,p+ 1) for
each ¢ € K;. Therefore

%(CL + L((wglg)g€K1)) = N§R’w0 S Nq (b + C3)
< Nejez + Neymin{Rwy, | 0 € K1}
This gives (1.3) and (1.4). The inequality in (1.4) makes the set finite and
therefore the maximum is well defined. The inequality in (1.3) ensures that

for the poles of S(s) in a finite strip, only a finite number of w, need to be
taken into consideration. m

4. Proof of Theorem 1.4. DIR1 and DIR3 are valid for S, because
of the general assumption A,,, € Se. According to Corollary 1.10 of [3] the
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functions I'S,, 1 < p < r, can be continued meromorphically to C where
they have poles at the points

(4.1) —p,p € P, oforder deg B]g@) + 1.

Together with the other assumptions it follows that Theorems 1.3 and 1.2
can be applied. Therefore S € K and the poles of S lie in a set of the form
(1.3). Obviously S(s) fulfils DIR1, DIR2(a) and DIR3. As each S, fulfils
DIR2(Db) there is a > 0 with

Z [Aon| * < oo foreach 1 <p <.
n>1

From (3.5) it follows that

Do PO A )T Y Py A [T < 0o

and therefore S(s) fulfils DIR2(b). As S € K the function S(s) lies in
Dom(V) in the notation of [3], p. 78. According to Theorem 7.5 of [3]
the theta series O(t) fulfils AS1-AS3. According to Theorem 7.4 of [3],
P = {—wo | wo a pole of I'(s)S(s)} and therefore P is contained in a
set of the form (1.5). If p € P then it follows from (9), p. 80 of [3] that

deg B, = polord_,(I'(s)S(s)) — 1 = polord_, S(s) +&(p) — 1.
From (4.1) and (1.4) the inequality (1.6) follows. m

5. Proof of Theorem 1.5. According to Lemma 2.7 the Dirichlet series

(5.1) S = Y Alna) ... A(ny)

o P(ny,...,n.)s
has the abscissa of (absolute) convergence
(5.2)  0a=0a(S) =min{oc > 0| P(2)? >, x1...2, for z € (1,00)"}.
Choose @' > 0 with gy := d(P)O’ < m/2. Assume Rs > 0,. According to
Lemma 4.2 of [9] for each z € S5, with |z1],...,|2| > 1,
(53) IP(2)°] 2 |P(2) e 195000 5 [2y .z B/
From this it follows by Lemma 2.6 that

T

P(2)~ [] G(=2,) dz

(=m1+v0+7-1)" o=1

1

" 2mi

(5-4) (=1)"S(s)

where a = 1/2 is used in the definition of ~y. The integral is absolutely
convergent for s > o,. The further transformations are as in the proof of
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Theorem 1.3 where (2.5) takes the role of (3.1). From this it follows that
S(s) is a linear combination of integrals of the form

(5.5) S d(2g) g€ Kan H R(—z,) S d(Tu)ﬂeUE((Tu)ueU)HT,IOC‘F2
,y(\)Kzll 0€EKo (0,1)IUl nel

X S Q((Z.Q)QGKzl)( " MEUUV H T 7_/1, pnev .
(0,1)IVI pnev
Here UUV UKoy = {1,...,7}, ay € Ng for p e UUV, Q € C[Z',T] has
the form (3.9) and

(5.6) E((TM),&U) = H R<2C0s19/6ii@/ H TM—AHQ>

0€Ka2 net
log(7,; 1 +2
< H exp(—c’ 87 ) )
LeU loglog(ru +2)
for (7,)uer € (0, )V with ¢ > 0. For (2,) ek, € ’y(l) 21l and (to)ocvuv €
(1,00)IY | | it follows from (5.3) that

(5.7 1Q((20) 0K+ (tp)pevuv) "
Rs/oa

<<S< H H tl);ug> :< H tﬁqul)_ g

0EUUV peliuv peUUV

—Rs/oa

and consequently (5.5) is absolutely convergent for Rs > o,. From (3.9) and
(5.7) it follows that v;, > (v, + 1)/0a for each p € U U V. If one chooses a
suitable € > 0 then it follows by Lemma 2.5 and (3.12) that for each s > o,
with sv;, & Z for p € V, (5.5) can be expressed in the form

[Teetsv) -0 | doeern [ Rl-20)

pev |K21\ 0€K21
sy, —a,—2
X S d(Tu)ueUR<(Tu)ueU HT‘
(0,1)IUl nel
S
(T § AT 52
b (z H " i ) " d(z,)
Q €K21 Em w)peV -
I\V\ ~<Ay! nelU pnev pnev

The triple integral I(s) which occurs in this expression is holomorphic in
Rs > 0,. For each m € Ny the mth derivative I(™)(s) can be represented as
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a linear combination of integrals of the form

(58) S d(zg)QGKm H R<_z0)

,Y(|]K21\ 0€Koy
5V~ —2 B
<\ d(r)uev R((T)ev) T " log™ 7,,
(0,1)IUl pnel
Vi Vu Y=\ " °
I "
X S d(%)gg\/( § b'y((ZQ)QGK21) HTH H Zp )
v <y nev nev
V5= ’Y -
XLOg ( E b ZQ 0EK o1 H F H u u)
~<~! pnel pnev
sy —a,—2
X H 2T gz,
pev

with 5, 5 € Ny. From (5.6) it can be seen that these integrals are uniformly
convergent on each compact subset of ®s > o,. Therefore I(™(s) can be
continued to a continuous function on s > o,.

For z, € v0, 0 € Ko1, 7, € (0,1), pe U, z, €I, peV,

Y~V 7 Y
‘E:b ZQQ€K21 ]‘_[7—M M

<y pnel pnev

= 1.

Consequently, (5.8) can be estimated for o, < Rs < o,+1 by O(exp(|Ss|(7/2
+27) v 7,))) and so 110 (8)| <pm exp(c|Ss|) for o, < Rs < 0, + 1,
m € Ny with a constant ¢ > 0.

Taking all together there is a 0 < p < r so that the following holds:
Z(s) := S(s)s™ (s — 0,)? is holomorphic on Rs > o,, Z(™)(s) can be con-
tinued continuously to Rs > o, and |Z0™(s)] <, exp(d|Ss|) for o, <
RNs < 0, +1, m € Ng with a constant ¢ > 0. Let ¢ € Ny be minimal
with this property. According to Lemma 2.7, S(s) is divergent at s = o,.
Hence lim,_.,,4+0 S(0) = oo. Therefore ¢ > 1. Furthermore, ¢ := Z(0,) =
limy, o, 10S(0)o (0 —0,)2 > 0. If Rs > 0, then hy(t) := Z(ts+ (1 —t)o,)
is a C*°-function on (0, 1]. From the existence of the limit

lim h{™ (1) = (s — 0a)™ lim Z0™) (ts + (1~ t)0a) = (s — 0a)" 2" (04)

for m € Ny it follows that h € C*|[0, 1]. Assume ¢ = 0. Then for Rs > o, it
would follow that

- Z(s) ¢ hL(t) :
Z . = dt =
]

Z'(t 1—t)o,)dt
s (ts + (1 =)o)
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and for each m € Ny,

1

Zm)(s) = Sth(m“)(ts + (1 = t)o,) dt.

0
Therefore Z(s) would be holomorphic on Rs > 7., Z(™(s) would be con-
tinuous on Rs > o, and [Z(™)(s)| < exp(¢|Ss|) for m € Ny, 04 < Rs <
0+ 1. This would contradict the minimality of o. Therefore the assumption
is false and ¢ > 0.

Let w := g—1 and for Rs > 0 set H(s) := S(s+0,)(s+0,) L —cs771 =

(Z(s+ 0,) — Z(0a))s™ 2. For Rs > 0 we have

H'(s) = (Z'(s + 04)s% — (Z(s 4+ 0a) — Z(04))0s? )s72¢.
If o = 1 then by partial integration,

s"H'(s) = Ny, (1) = (hsto, (1) = hsto,(0))

— Sth//

1
Y, (t)dt = s StZ”(ts + 0,) dt
0 0

and therefore
1

H'(s) = StZ”(ts +0.) dt < exp(c|Ss])  for 0 < Rs < 1.
0
If o > 2 then
1

s?H'(s) = Z'(s + 0,)8% — 052" Sh’

s+o, (t) dt
0

and therefore

1 s e 1 ey
|H'(s)| <« ’8’—29(|S|Qec ISl 4 |s|e™1|sec |Js|) < Wec |55

for 0 < Rs < 1. We have H(20 + it) — H(o + i) = SiUH’(oz—i—iT)da for
1/2 > 0 > 0, 7 € R. Consequently, for o =1,

|H(20 + it) — H(o + i1)| < oec 17!
and for o > 2,

|H(2O' + ZT) - H(U + 27_)| < Omed'ﬂ.
For 0 <o <1/2,T > 0, define
T
n(o,T) = o* S |H (20 + it) — H(o +iT)| dr.
-T
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Then in the case o = 1, (0, T) < o exp(¢’T) and in the case p > 2 it follows

by substitution 7 = ou that

T o]

S ————dr < ¥ TlefTglme S
lo +it|e

_T —o0

du
|1+ dule

T

’ ’
w41 _c'T <<0'68 .

n(o,T) < o“" e

Consequently, in both cases, lim,_.on(o,T) = 0 for each T" > 0. Assume
without loss of generality that P(1,...,1) > 1. The effective Tauberian
Theorem of Ikehara ([11], Theorem 11, p. 265) yields

C

Y Am).. An,) = <F(w+1) + O(Q(;p))>eaax$w

P(ny,...,n,)<e®

as * — oo. Here o(z) = infrso(T~! + n(z=1,T) + (Tz)"“~1). Choosing
T = T(z) with T~' = 27T gives T(z) = logx and o(z) < log™ " z. From
this Theorem 1.5 follows. m

6. Proof of Theorem 1.6. Choose @’ > 0 with o(P) + d(P)0’ < m/2
and a = 1/2. From Lemma 2.8 it follows that |G(—z2)| < |z|~!log(|z] + 2)
for z € Trace(y1) U Trace(y—1) or |z| = (1 + ¢)c™ /2, ng € N. Consequently,
for Ks > 0,

(6.1) S(s)i= Y Bl .1_.67%)8

ni,...,np >0

_ e
= (2m)r P(2)~* [ G(=20) dz.

(—=v1+v0+7=1)" o=1

The integral is absolutely convergent. Assume b € R™\Z. For z € Trace(y;)U
Trace(yo) U Trace(y_1) set

H(z) := G(—2) + (zlogc) ! Log(—=2).

Then H (z) is continuous everywhere with the exception of the point a. From
Lemma 2.8 it follows that for z € Trace(y;) U Trace(vy_1),

(62 Ho=—2— 3 (1-cmiem

2z
[b]+1<m<—1

T 272in\ 7" 2min Log(—=z)
. 2min Log(—z) R
zlogec Z sm( logc ) exp< log c ) +R(z)

0#n€Z

where |R(z)| <p.e/ |2|°~t. The nth summand is < exp(—27|n|©’/log c) and
therefore the n-series has a convergent majorant on Trace(vy;) U Trace(y-1)
which is independent of z. Expressing G in (6.1) by H and using an argument
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similar to (3.4) one sees that S(s) is a linear combination of the integrals

| deer, [T HG)
(=71 +70+7-1) Kol 0€Ko

X S d(ty) ek H tglp((tg)geKo’(Zg)gel?o)_s

[a,00)! Kol o€ Ko

where Ky runs through all subsets of {1,...,r} and K¢ := {1,...,7} \ K.
Decomposing the lines of integration —vy; +7o+7_1 and parameterizing v+
shows with (6.2) that S(s) is a linear combination of the integrals

6.3) | dzoeers [[ Hz) | dlto)eexo ] 12"

7(IJK1I 0eEK, [1,00)! o0l €Ky

X S d(to)ock, H tZ“’_l S d(to)ocks

[1,00)! %2 0K [1,00)! Kl

2r2in,\ omin a o
til . o QL —t 1jo®
<1+ <07626281n< log e > eXp( log e Og( 2c0s 0"
To

0€K3

a i ’
X S d(tg)gEK4 H R<tQCOS@/e Jg@)

[1,00) K4l 0€K,y

—s
a ey
X P<(Z.Q)QEK17 <t9 cos O el ) N »(atg)geKo>
€K

where (K1, Ko, K3, K4) runs through all disjoint decompositions Ky = K; U
Ko UKs UKy, Ki := Ko UK3 UKy, (Jo) pe iz, TUDS through {£1}151] and
(M) pexc, Tuns through {[b] +1,...,0} ¥zl For Rs > 0 it follows from (3.5)
that |P(2) ™% < |21 ... 2| 7%%/% for z € S%, . Each of the n,-series in (6.3)
has a convergent majorant which is indepencient of t, and the other factors
of the integrand are together < [] 0EKoURS t;l_%s/ ?2 . Therefore integration
and the n,-summations in (6.3) may be interchanged. Theorem 2.1 shows
that each of the integrals (6.3) is a linear combination of the functions

(6.4) I(s)= Z H sin<2§;zg>lexp(2i?;cjg(7r — @’))

0#n,€Z o€ K3
a 2ming/logc
X (cos@’) S d(2) pe K H H(z,)

0€EKs3
K
,y(\) 1l 0€EK,y
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X S Ad(T) pe KoUK, H( H TI/L\HQ)_I

[l,oo)‘K0‘+u?1| 0€Ko MeK()UI?l
2min
A\ me—1 A\ —14 logcg
(I ) I I
0€K> e KoUK, 0€Ks pueKoUK;

% H R( H T‘i\wcoge’e%@/)

0€EK,y MEKouf?l

< I =" T =Qze)eck:s (Ti)perour,)”

0€KoUK nEKUK

i7d 2
where A = (X,,) € Nél KolH1K2D™ pyns through finitely many regular matrices
and @ runs through finitely many polynomials of the form

Q((ZQ)QEKU (T ueKouKl Z b H TJH'
1<1 MEK()UI?l

Here b_(Z) is a polynomial in Z and Rb_(z) > 0 for b, # 0 and z € lell,

furthe;more, b’l/ Z0and v, > 1 for p c Ko UK,. Substitution of T, ~! for
7, with p € Ko U K, gives
(6.5) I(s)
2 2. —1 2 .
E H sin [ e exp M(7r—@') a
log ¢ log ¢ cos @'

OanEZ QEKg
0€EK3

) 27in, [log ¢

< | doeer, [T Hezo) | dmiuer [T 7 R()uer)

’Y(‘)Kll 0eK; (0,1)\U\ pnel
auty,s Y=\ ?
X S d(Tu) pev H ( E bfy((ZQ)QEKI) H Tu
(0,1)1VI nev vy nEKQUK

where U := {p € KoUK, | Ay >1forape Ky}, V= (KoUK,;)\U, and
for each p € Ko U K1,

ap = au((ng)eers)

Z Ao + Z Aug(l —my)

o€ Ko 0€K>

2ming
+ > A,w<1— logc>_ > N1

0€K3 QEK()UI?l
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For (7,)uev € (0,1)!Y! we have

Rier) = T R(T] v ot )

0EK, netu

<p,0/ H ( H T;A“ﬂ)bil

€Ky ,uGU

<<HTN Loexy e,

For p eV,
Ro, > Y M= D> Ape—1l=-L
€ KoUK3UK3 0€EK UK,
Furthermore, for (1,),cv € (0,1)Y1,

~ > PYPESS — Auo—14+(1-b) % A
a 0€EKgUKoUKg "\He 0EKQUK, "\He eEK, KO
||T"’R(<T> )<<||T 0=
M w/pnet JZ
pel pnel
—1-b
< | | T, .
pnelU

Therefore the triple integrals in (6.5) are absolutely convergent for Rs > 0.
From Lemma 2.5 it follows with € > 0 which depends only on @) that the
innermost integral in (6.5) is for Rs > 0, v, s + o, € Z, p € V equal to

[Its+a) -1

nev

oc;ﬁw V=V S A
X S : ( E :b ((2¢)eexy) H " U ) d(vy) pev -

IL,V‘ nev <y’ el nev

Substituting this sum into (6.5) gives for Rs > 0, 7,5 ¢ Z + (27i/log ¢)Z
w €V, the representation

= 3 Al (ng)ger)B(s; () gexca)

0#n,€Z
0€K3
where
B(s,n)
a,+ ;Ls’v
S d(zp) ok H H(z,) X d(Tu)ueUHTu K R((Tu)pev)
%\)Kl\ €K, (0,1)IU1 pneu

S

Tt} V=V Y=Y\~
XSdUNMGVH “(E b ((2¢)eexy) H . HUMH

IgV\ pev y<y’ pnel pev
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can be continued holomorphically to s > o(b) := bmin,er 1/7,,. For each
o(b) <1 < Rs < e, |Ss| < c3, |B(s;n)| <eyyen,e5 1 uniformly in n.

Furthermore,
2r2in,\ 2mn,j a 2mine/log e
A(s,n) == H sin(g> exp(“(w — @’)) ( />
e ks log ¢ log c cos ©
X H (e(y)s + o) — 1)
pnev

is meromorphic on C. As ay + > ,c ., Auo2ming/loge € Z each of the
poles of A(s) lies in N™'Z 4 2ni(Nlogc)~'Z where N := lem{~, | p €
V} € N. This set is independent of (n,),cx,. Therefore on summation over
(np) ek, no accumulation of poles in C can occur. For the more general
series >, 5o P(cf, ..., ") 7% such an accumulation cannot be ruled
out. Therefore it cannot be continued meromorphically to C with the method
of this paper.
For R > 1 define

e Vi
Fr(s) := 11 <3 - % - z\/210é0> € C[s].

(k,1)ez?:
|k/N+2mil /(N log ¢)|<2R

Then Fr(s)A(s,n) has no poles in the disk Kz(0) with center 0 and radius
R. For s € Kg(0),

60) Fa(AGm] < ] ew(-Treler)

log ¢
0€K3 S

_ k 2mil
o | (27T R ) (R - 7

nev (k,1)€Z?:
|k/N+2mil /(N log c)|<2R

Assume p € V' and let the minimum

§:= 1%1612 )7;3 - Z Auo2ming(loge) ™ — k’
0€K3
be attained at k = ko. If § < 1/2 then define k; := kON'yL_l, I =
> ocks MueeNY € Z. Then |v,s — ko — 2milyy,,/(Nloge)| = 6 < 1/2
and |k1 /N + 2mily /(N logc)| < [s[ +1/(2v,) < 2R. The uth factor in (6.6)
is therefore

S_N_ Nlogc
(kD) EZ2\{(k1,01)}:
|k/N+2mil /(N logc)|<2R

17,8 — ko — 2milyy, /(N log )|
vy le(v,s — ko — 2m’l17L/(Nlog c)) — 1]

< (R+2R)2RNRN(IOE;C)/W’YL_1 <R 1.
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If 6 > 1/2 then the uth factor in (6.6) is
< (3R)2RNRN(logC)/7T|€(,yLS +ay,) - 1’—1 <p 1.

Therefore |Fr(s)A(s,n)| <gr [],ck, exp(—270'|n,|/logc) for s € Kr(0)
where the <-constant is independent of (n,),cx,. Consequently, in the rep-
resentation

Fr(s)I(s) = Z Fr(s)A(s, (ne)ocks) B(5, (o) ocks)
0#n,€Z
0€EK3
which is valid on {s € C | Rs > 0, |s| < R, s ¢ N'Z + 27i(N log c) " Z}
each summand is holomorphic on

(6.7) {s € C|Rs > o(b), |s| < R}

and the series is uniformly convergent on each compact subset of (6.7).
Fr(s)I(s) can therefore be continued holomorphically to (6.7) and so I(s)
can be continued meromorphically to (6.7) where the poles lie in N~!Z +
(2mi/(Nlogc))Z and are of order < |[V| < r. As R > 1 may be chosen
arbitrarily I(s) can be continued meromorphically to Rs > o(b) with the
same restrictions on the poles as above. As S(s) is a linear combination of
integrals of the type I(s) it follows that S(s) can be continued meromor-
phically to Rs > ¢b with poles lying in (1/N*)Z + (27i/(N*logc))Z and
order < r. Here ¢ > 0 and N* € N depend only on the finitely many integral
matrices \ and the associated maximal exponent vectors 7'. Therefore ¢ and
N* depend only on P. As b € R~ \ Z can be chosen arbitrarily S(s) can
be continued meromorphically to C with the same restrictions on the poles
as above. For ®s > 0, |P(c™,...,c") 7% < elSsleP)e=Rs(nit.A4nr)/og
Therefore the Dirichlet series S(s) is uniformly convergent on each compact
subset of Rs > 0 where it defines a holomorphic function. The poles of S(s)
lie consequently in (—1/N*)Ngy + (27i/(N*logc))Z. =

7. Proof of Corollary 1.7. For ¢t € R define A(t) := #{(n1,...,n,) €
Nj | P(c™,...,c") < et} Then A(t) <#{(ni,...,n,) €N} | ctmittnr)/og
< e'} < t"+1 for t > 0. Assume without loss of generality that P(1,...,1)
> 1. By partial integration and summation it follows that for fts > 0 (1.7)
has the representation

S(s) = gefst dA(t).
0
From Theorem 1.6 it follows that S(s) is meromorphic on C. As the Dirichlet
series representation of S(s) is divergent at s = 0 we have lim,_ 10 S(0) =
oo and consequently S(s) has a pole at s = 0. Let 1 < w < r be its order.
Then there is a C € C\ {0} with s*S(s) = C' 4+ O(]s|) as s — 0. Hence
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C = limy_0190“S(0) > 0 and therefore even C' > 0. Application of the
Tauberian theorem with explicit remainder term of Karamata—Freud ([11],
Theorem 9, p. 257, ¥(t) :=t) gives

A(z) = (C+O((logz) )a*/T(w+1) asz—oo. m

8. Proof of Theorem 1.8. The proof is completely analogous to that
of Theorem 1.6 where (6.2) is substituted by

(8.1) Gi(—2) = 3 (;1(_”1 _ /1521))

n>1
= > (2" "(anLog(—2) + bn)
[b]+1<n<1
_ 4 _.\e—1
Zg:sinﬂ'g( ?) + 1 (2)

with R1(2) <p.er |2|°7F for z € Trace(vy;1) U Trace(y—1). These asymptotics
follow from Lemma 2.6. The oth summand is < e~ 7I1S¢l|z|Re~1¢lSel(—6")
< e 913l Define H(z) to be the sum of the last two terms in (8.1).
Furthermore, the functions

1 1 1
Go(z) = Z (z—n + n) + = mcotmz

0#nEZ

271 " 271
1—e(—2)’

=T+ 2<p<r,
e

@17
are used for which the asymptotics
Go(—2) = jim + Ry(2),

R,(z) = O(e™21921) " 2 € Trace(y;), j=+1,

hold. As in the proof of Theorem 1.6 one shows that for Rs > o (see (3.5))
the function

_ A(n1)
S(s) = Zl P(ny,...,n.)s

G0 e Tea

(=71t+v0+v-1)" o=1

can be represented as a linear combination of the following types of func-
tions:
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o Type I:

82) (et -n7 S d(z) e ouiy H(z1) [ Gol=2,)

pnev ,y(\)Ko\-H €Ky
’
53 7M87296K1UK2 Ape—1
X S d(TM)MGUR((T#)#EU) H Tu
(0,1)IU] pEU
< S /UZL.S_ZQEKlLJKQ Apg—1
Y= Y=\ ?
I I Iz H
X ( E bry(<29>g€KoU{1}) H Tp H Up > d(vp)pev
,.YS,Y/ - HEU HEV

where Ko UK UK, = {2,...,r}, A € N(()IK1|+‘K2|)2 regular, U := {u €
KiUKy | Ay > 1forape Ky}, V= (K UK>y)\U, e > 0 appropriately
chosen and R : (0,1)!Yl — C is continuous and

E((TM)MEU) < exp ( —c Z TM_I)

peu

with a constant ¢ > 0;

e Type II:

(8.3) H(e('YLS)_l)_l S d(z) 0 Ko H Go(—2,)

pnev ,y(\)Ko\ 0€Ky
’
VHS*Aul(nfl)flfzgeKlquu{l} Ape 75
X S d(T,u),ueU H Ti R((TM)MEU)
(0,1)IUl wevu

7
107 S—)\Hl(n_l)_l_deK UKoU{1} Ao
X S d(v,) | | v s
wlpev 12

IE\V\ LLEV
r_ r_ —s
< (D2 b, (Godoero) TT 7 ™ TTew ™)
~<y! pneu pnev

where KgUK UK, ={2,...,r}, A € NglKlHlKQlH)Q regular, [b]+1 <n <1,
U={pe KUKy U{l} |\, >1forape Ky}, V:= (K UK,U{1})\U,
€ and R as above;
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o Type III:
(8.4) H(e('}’;ﬁ) - S d(2,) 0c Ko H Go(—2,)
HEV Kol 0€Ko
0
= ’YIJ,S_Z UKoU Ape—1

X S d(1) pev R((Tu) pev) H s esrnenty

(071)‘U| ,LLEU

! s— Apo—1

% S d(v,u)uev H'UZH ZQGKluKQU{l} ne

v pev

Yy =Y Vo= 70
(3 by (oer) TLme 7 TLo ™)
<y - neu HEV

where Ko UK; UKy = {2,...,r}, A € I\ﬂg‘Kl\JFlK?lH)2 regular, U := {u €
K1UK2U{1}|)\“921fOTaQEK2U{1}},VI:(K1UK2U{1})\U,
e > 0 is chosen appropriately and R : (0,1)lYl — C is continuous with

R((Tu)uEU) < HueU Tﬁ_b§

o Type IV:
™ o e\ / 1
8. — It —A -1)"
(8.5) Z sinmp < cos O ) H (e(7.8 = Auro) = 1)
e pnev
x S d(2,) oe Ko H Go(—2o)
,y(\)Ko\ o€ Ko

- rel Apo—1—Au1(0—1
X S d(TM)MEUR((TM)MGU) HTZHS 2 ee Kk UKpU{1) A ni(e=1)

(0,1)IU1 pev
’
VS pekqUKyU{1) e~ 1= Au1(e—1)
X S d(”#)uev H n
vl peV
Y= S AN
1% I 7 "
X ( E :b'y((’zg),QEKo) H Ty vy ) ,
<y neu HEV

where KoUKy UKy ={2,...,r}, j € {£1}, A € Né'KlHIKzIH)Q regular,
U:={pe KiUKyU{l} | A\yp >1forape Ky}, V:= (K UK, U{1})\U,
e > 0 is chosen appropriately and R : (0, 1)‘U‘ — C is continuous with

R((Tu)pev) < exp(—c X ey 7 t) (¢ > 0).
The functions which are defined by the integrals in (8.2), (8.3) and (8.5)
can be continued to entire functions in s; the function which is defined by
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the integral in (8.4) can be continued holomorphically to the set
{se(c‘%s>fy’1<b—1+ > A#Q>,MGU}

Q€K1UK2U{1}

which contains a set of the form {Rs > bd; + da} where dy,ds > 0 are
constants which depend only upon the values of A and therefore only upon
P. The functions of types I, I, III can therefore be continued meromorphi-
cally to s > bd; + do where the poles liec in N~!'Z and have order < r;
here N € N depends only upon P. If R > 1 is chosen arbitrarily then
the integral in (8.5) can be estimated uniformly in ¢ and s € Kg(0) by
Or(I1,cv exp(2mA,130)). Define

= 1] IT¢s =50

nev

where sg runs through the set
{Aae/v, + /v, 1 1Sel <7,.2R, k€ Z, |k| <7,2R+ A}

Then Fr(s)[[,cy(e(v,s — Auio) — 1)~! has no poles in Kg(0) and it can
be estimated uniformly in ¢ and s € K(0) by

HH\S—SOI e(Y,s — Auo) — 1|7 '<r Hexp (27X ,130).
neV so pev

Therefore after multiplication of (8.5) by Fgr(s) one gets a series of holo-
morphic functions which converges uniformly on Kr(0). (8.5) can therefore
be continued meromorphically to K(0) where the poles lie in

(8.6) {N"Yk+c10),..., N ' (k+cpo) | k € Z, ¢ a nontrivial zero of ¢}

and are of order < |V| <r. Here N € N and ¢y,...,cp € Ny are constants
which depend only upon P. As R > 1 may be chosen arbitrarily (8.5) can be
continued meromorphically to C with poles of order < r which lie in (8.6).
Consequently, S(s) can be continued meromorphically to Rs > bd; + dy with
poles of order < 7 which lie in (8.6). If N=1(k + ¢,,0) is a pole of S(s) then
its real part is < o and therefore k¥ < [No}] =: ¢. Asb € R~ \ Z can be
chosen arbitrarily the statement of the theorem follows. m
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