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The continued fraction expansion of o with u(a) =3
by

SHIN-ICHI YASUTOMI (Suzuka)

1. Introduction. For any real a, define p(a) by

5 = lminfglgal]
where ¢ is an integer and ||z| = min;ez |z — i|.

A. Markov [5] made a detailed study of the numbers « such that p(c)
< 3. The set {u(a) | @ € R} is called the Lagrange spectrum.

THEOREM A (A. Markov [5]). The Lagrange spectrum below 3 consists
of the numbers /9m? — 4/m, where m is a positive integer such that

(1) m? +m? +m3 =3mmimy, my <m, my <m,

for some positive integers my and ms. Given such a triple m, my, mo, define
u to be the least positive residue of +my/ma mod m and define v by

u? +1=wvm.
Define a quadratic form f,,(x,y), called the Markov form, by
(2) fm(z,y) = ma® 4+ (3m — 2u)zy + (v — 3u)y?,
and let « be a root of fi(x,1) =0. Then
(3) pla) = V/9m?2 — 4/m.

Further, given any a such that (3) holds for some positive integer m, there
exist positive integers my, mo such that (1) holds and « is a root of f(x,1) =
0, where f(x,y) is a quadratic form equivalent to (2), with u and v as defined
above.

A. Markov ([5], [6]) also got the continued fraction expansion of the root
of the Markov form.
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338 S.-I. Yasutomi

THEOREM B (A. Markov [5]). Any Markov form fn,(z,y) factorizes as
follows:

mia — o (e +yla + . ).
Qg + I a_2 + 1

a; + ——— a3+ ——r
042+' 06-4-!-.

where for any integer i, «; € {1,2} and

cee, 1,000,071, = ..., 12k(0)a 22) 12k(1))227 RN 12k(n)7225 ey
where Uy, = u, ..., u for non-negative integers m and k(n) are non-negative
———
mtimes

integers which have the following properties:

1. for any integer i, k(i) — k(i — 1) € {—1,0, 1},

2. if k(i)—k(i—1) = 1 for some integer i, then for the first natural number
§ with k(i +7) — k(i — (14 4)) # 0, we have k(i +7) — k(i — (1 +5)) = —1,

3. if k(i) — k(i — 1) = =1 for some integer i, then for the first natural
number j with k(i+7)—k(i—(147)) # 0, we have k(i+j)—k(i—(1+7)) = 1.

A. Markov studied the sequences {k(n)} with the above properties in [6]
and he gave the following theorem.

THEOREM C (A. Markov [6]). Let {k(n)} (n € Z) be a periodic sequence
of integers with the above properties. Then there exist a rational number u
and a real number b such that for any integer n,

k(n) = [nu+b] — |(n— Du+b],

where for a real number t, |t| is the integral part of t. The converse is also
true.

A. Markov called the sequence {k(n)} a Bernoulli sequence.

Let us denote an ordinary continued fraction expansion with partial quo-
tients {ag, a1, as,...} by

[ao,al,ag,...]:ao—i— 1
a1+
as +

1
a3+‘

Let W (a,b) be the set of finite words, one-sided infinite words and two-sided
infinite words in two symbols a and b. If a and b are positive integers, define
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W] eR for W=WoW;... (W; €{a,b}) to be

[W] = [O,Wo,Wl,WQ,...} =0+

Wo +

We denote the word of m w’s by w,,, that is,

Wy, =W ... W,

m times

and in the case m = 0, wy is an empty word.
For 0 < x < 1, define a one-sided infinite word H (z) by

H(z)=G(x,1)G(x,2)...,
where the nth coordinate of H(x) is
G(xz,n) = |nx| — [(n—1)z].
Define a two-sided infinite word G(z) by
G(z)=...G(z,-1)G(z,0)G(z,1)G(z,2)...

We remark that the sequences {[nx] —[(n —1)z]} have been considered by a
number of authors (see [4]). Define a substitution ¢ : W(0,1) — W(1,2) by

0 — 11,
(b.{l — 22.

Using the above notations, we can rewrite Theorems A, B and C as

THEOREM D (A. Markov). For any z € QN [0, 1],
plo(H (2))]) < 3.

Conversely, if p(a) < 3 for an irrational number «, then there exists x
€ QN0, 1] such that « is equivalent to [¢(H (x))], where real numbers x and
y are said to be equivalent if they are related by a unimodular transformation:

_ay+b

cy+d’

where the integers a,b,c and d are such that ad — bc = +1.

By using the sequence H(z), H. Cohn [1] got a result about p = 3.

THEOREM E (H. Cohn [1]). For any irrational number x € [0,1],

p(lo(H (2))]) = 3.
Other examples of a with p(a) = 3 are found in [10].
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ExAMPLE ([10], Chapter 2, §6). Let r1,73,... be natural numbers with
lim,, _, o 7, = 00, and set
(4) A=1,221,,22...1, 22...
Then pu([A]) = 3.

If 2 € [0,1] and x # 0, then it is easily shown that the maximal length
of a string of consecutive 1’s in ¢(H (x)) is finite. Therefore, the numbers in
the example and those in Theorem E are essentially different. It is a natural
question to determine for which o we get u(a) = 3. In this paper, we give a
solution to this question. Let us first define some notations.

Let C, D be words in W (a, b). If there exist words E, F' (possibly empty)
such that D = FECF, then we call C' a subword of D.

Let S be an infinite word in W (a,b). Define Dg(N) and D(N) for any
natural number N by

Ds(N) ={p € W(a,b) | pis a subword of S and |p| = N},
D%(N) = {p € W(a,b) | p occurs infinitely many times in S and |p| = N},

where |p| is the number of symbols a or b in p.

From Lemma 3 in Section 2, for V,W € W (1,2) with u([V]) < 3, if
Di{,(N) = Dy, (N) for all N, then p([W]) < 3. And it is not difficult to
see that for W,V € W(1,2) with u([Vy]) < 3 (A € A), if D}, (N) =
Uxea Dy, (V) for all N, then u([W]) < 3. Therefore, from Theorem D
for a subset I’ of [0, 1] if there exists W € W(0,1) such that Dy, (N) =
Uzer D}I(w)(N) for all N, then u([p(W)]) < 3.

Roughly speaking, in this paper we show that if I’ is an interval, then a
W as above exists and conversely for any one-sided infinite word S € W (1, 2)
with p(S) < 3 there exists W with the above condition, D (N) = D%(W) (N)
for all N.

To state our theorem, we introduce new sequences which we call super
Bernoulli sequences.

Let Fiy be the Farey sequence for a natural number N. That is,

Fn ={p/q| (p.q) =1, p,q are integers, 0 < p/qg <1, 1 < ¢ < N}.

For a rational z = n/m # 0 with (n,m) = 1, define a new infinite word
G(z) € W(0,1) from G(z) by inserting the finite word G(u,1)...G(u, k),

where v = max{y € F,, | y < z} and k is the denominator of u (if u = 0,
then we set k = 1):

G(z)=...G(z,-1)G(x,0)G(u,1)...G(u, k)G(x,1)G(x,2) ...
For a rational z = n/m # 1 with (n,m) = 1 define

G(z) =...G(z,~1)G(x,0)G(u,1) ... G(u, k)G(z,1)G(x,2) ...,
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where v = min{y € F,,, | z < y} and k is the denominator of u (if u = 1,
then we set k = 1).

For example,

( )= ...00100... = 5,010,
G(1/2) = ...010100101... = - (01)(01) o,
where for a word w, we = www. .. and w = ... wWwWWw.

Let z,y € [0,1] and = < y. Let S be a one- 51ded infinite word € W (0, 1).
If S € W(0,1) satisfies one of following conditions (1)—(4) for all natural
numbers N, then S is said to be a super Bernoulli sequence related to (x,y).

(1) Ds(N)= |J Dge(V

z€[z,y]
(2) z€Q and D§(N)= J Da@)(N)U Do (N),
z€[z,y)
(3) y€Q and Dg(N)= |J Dae(N)U Dy (N,
z€[z,y]
(4) ryeQ and Dy(N)= L[J]DG@(N)LJDG(@( )UDg(N).
ze|x,y

If S satisfies one of conditions (i) (1 < 4 < 4), then it is said to be of
type i. For example, H(z) is a super Bernoulli sequence related to (z,z) of
type 1. Our main result is as follows.

THEOREM 3. Let « be an irrational number with p(a) < 3 and with
continued fraction expansion [ag,a,...]. Then there exists a non-negative
integer n such that a,, € {1,2} for all m > n, and there exists a one-sided
word S € W(0,1) which is a super Bernoulli sequence related to (z,y) for
some x,y with 0 < x <y <1 such that

Dy (N) = D5 (N)  for all N €N,

where A = anapy1an42 - ..

Conversely, let S be any super Bernoulli sequence related to (z,y) and
let A € W(1,2) be a one-sided infinite word such that D (N) = D}, g (N)
for all N. Then u([A]) < 3, and strict inequality holds if and only if © =y
is rational and S is a super Bernoulli sequence of type 1.

In Section 4, we see that if S is a super Bernoulli sequence related to
(z,z) of type 1 with x € Q, then S coincides with H(z) except for a finite
number of letters and we can deduce analogously that then A coincides
with ¢(H (x)) except for a finite number of letters. Therefore, the final line
is nothing but the statement of Theorem D.
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Let us give an example. For the previous example (4) we have
D4 (N) = D5 (N) for all N,
where
S =010010001...0,1...,

and S is a super Bernoulli sequence related to (0,0) of type 3. We note that
if 7, are odd, then A is not represented as ¢(S). For the question whether
A = ¢(S) or not in the statement of the theorem we have the following
proposition.

PROPOSITION 1. Let av be an irrational number with p(a) < 3 and with
continued fraction expansion [ag, a1, . ..]. Suppose that there exists a constant
C such that for positive integers k,l, the condition ap, = apy1 = ... = Qg4
implies I < C. Then there exists a non-negative integer n such that a,, €
{1,2} for all m > n and there exists a word S € W(0,1) which is a super
Bernoulli sequence related to (xz,y) such that

?(S) = anant1Gnia ...

The paper is organized as follows. In Section 2, we carry out a study
of the continued fraction expansion of « with u(a) < 3 analogous to the
argument ([2], Chapter 2) in the case of the Markov spectrum. In Section 3,
we prove the main result. In Section 4, the existence and some properties of
super Bernoulli sequences are proved.

2. Combinatorial calculus of the continued fraction expansion

of a
LEMMA 1. Let a = Jag,a1,...,0m,...] be irrational. Then u(a) =
limsup,,_, o, fn (@), where pp(a) = [0,an—1,an-2,...,00] + [Gn, Gni1,-..]-

Proof. See [9]. m

LEMMA 2. Let « = [ag,a1,...,Gm,...] and B = [bo,b1,...,bm,...], where
a;,b; € {1,2} fori=0,1,... Assume that a; = b; for 0 <i <n. Then
/2"t > |a— 3|

In addition, assume that ap+1 # bpy1. Then for n odd, o > B if and
only if any1 > bni1, while for n even, a > B if and only if any1 < bpyq.
Furthermore,

oo — 3| > 1/32”+3.

Proof. Except for the final inequality, the lemma follows from Lemmas 1
and 2 in Chapter 1 of [2]. Let us prove the final inequality. Define ¢,,,, pm, ¢.,,
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and p/, for m € NU {0} as usual by
m * o ag 1 QA 1
o) L1 0) 1 o)
p;n* . bo 1 by 1
¢ +) " \1 o)1 o)

Then the following formulas are well known:

o = PmQmi1 + Pm—1 _ PrnBms1 + Pryq
GmOmi1 + Gm—1 @ Brny1 + Q1
where
Qi1 = [@mt1, Gmt2y -y Bmt1 = [bmt1, Omat2, -

From the hypothesis, p; = p and ¢; = ¢; for j = 0,1,...,n. Therefore,
DnOnt1 + Pn—1 . PrlBny1 + Pn1
InOn+1 +qn-1  @nPnt1 + qn-1
lon+1 — Bl
[(@nBnt1 + n—1)(@n0ni1 + 1)l
By induction, ¢; < 37 (j =0,1,...,n). Therefore,

e

[atnt1 = Bnt]
[(@nBn+1 + @n-1)(@nons1 + gn—1)]
ongr = Bugr|  14[0,20,21,..]-[0,1,21,2,..] 1
= (3nF1 4 3n-1)2 320+2(1 4 1/9)2 32n+3"
LEMMA 3. Let V = vgvy ... be a one-sided infinite word with pu([V]) < 3,
where vg,v1,... € {1,2}. Let W = wow; ... (wp,wn,... € {1,2}) be a one-
sided infinite word such that Dy, (N) = Di,(N) for all N. Then p([W1]) < 3.

Proof. Using Lemma 1, we show that limsup,,_, . pun([W]) < 3. Let
e >0and 1/2" 2 < e. It is not difficult to see that there exists M € N such
that for all m € N with m > M, wy—n... Wy ... Wyin occurs infinitely
many times in W. From Lemma 2, we have

(5)  pmr((W]) = ([wm—1 - win—n] + Wi + (Wit - - - Wingn])|

< |[wm—1 -« - wo] — [Win—1 -+ . W —n]]
+ ][wm+1wm+2 .. ] — [wm+1 e wm+n”
<1/2" % <.

From the hypothesis, there exists m’ € N such that for any integer
ml/ > m/
(6) pnr ([V]) <3 +e.
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Since Wyp—p .- Wiy - . - Win+rn also occurs infinitely many times in V' by hy-
pothesis, there exists & € N such that

(7) k>m'+n and vg_pii = Wm_nys fori=0,1,...,2n.
From Lemma 2, we have

(8) st (IV]) = (hot - Vo] + 0k + [kt - )|

< |[vk—1-.-v0] = [Vk—1 -+ Vk—n]|
+ Hwk+1wk+2 .o ] - [warl c. warn”
<1/2" % <.

Therefore, from (5)—(8) we have pi,+1([W]) < 3 + 3¢, which proves the
lemma. m

LEMMA 4. Let o = [ag, a1,...] and B = [bo,b1,...], where a;,b; € {1,2}.
Set x = [2,1,1,a] and y = (0,2, 3] and let 0 < & < e,
(1) If  +y < 3+ ¢, then either
(A)a>p, or
(B) 8>« and ay, = by, for all m € N with m < —(loge)/8.
(2) If conversely an, = by, for every m < N, then

|z +y| < 3+1/2N.

Proof. (1) By definition,

a+1 15}
=9 -
TEA s YT e
and
—
(9) r+y—3= b

2a+1)(268+1)

Suppose 3 > «; then

(10) 0<B—a<(a+1)(238+1)e<(2[2,1,2,1,...] +1)% < 49.
Let n be maximal such that a,, = b,, for all m < n. By Lemma 2,
(11) f—a>1/32"13

By (10) and (11),

n >

loge log49 3
" 2log3  2log3 2
Since € < e7%% we have n > —(loge)/8.

The last statement of the lemma is immediate from (9) and Lemma 2. m

00

LEMMA 5. Let o = [ag,...,Gn,...| be irrational with p(a) < 3. Then
there exists m € N such that a,, € {1,2} for n > m.
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Proof. By Lemma 1, there are only finitely many n such that a,, > 4.
Hence we may assume that a,, < 3 for all n. Suppose that there are infinitely
many n such that a,, = 3. For such n, by Lemma 1,

pn(a) =[0,an—1,...,a1] +3 4+ [0,ant1,ni2,-..].
Since [0, @n41, Gnto,...] > 1/4, we have p, () > 3+ 1/4, which contradicts
wla)<3. m

If the nth letter in W = wow; ... is v, then we write

n

W=...v...

For example, in the case of W = abcabaaab we can emphasize the 7th letter
a by writing
W = abcaba @ ab. ..

LEMMA 6. Let a = Jaog,...,an,...] be irrational with p(a) < 3 and
a; € {1,2} fori=0,1,... Put A= apa;... € W(1,2). Then the words 121
and 212 do not appear infinitely many times in A.

Proof. Suppose that 121 appears infinitely many times in A, say

0 n—1nn+1
A= agpg ... 1 21

By Lemma 1,

n—1 1 n+1

pn(a)=2+100, 1 ,...;a1]+[0, 1 ,...]
By Lemma 2,
n—1 ... 1 n+1l ...
0, 1,...,a1] >1[0,1,1,3] =4/7, [0, 1,...]>10,1,1,3] =4/7.

Therefore,

pn(a) =23+ 1/7,
contrary to p(a) < 3. The case of 212 is analogous. m
LEMMA 7. Let o = lag,...,an,...] be irrational with p(a) < 3 and
a; € {1,2} fori=20,1,... Put A = apay ... € W(1,2). Then 111222 and
222111 do not appear infinitely many times in A.
Proof. Suppose that 111222 appears infinitely many times in A. Let
0<e<e®0 and

0 n—3 n—2 n—1 n n+1 n+2
A=aqp... 1 1 122 2 ...,

where n is so large that p,(«) < 3+ e. Then

n n—1 n—2 n—3 n+1l n+42
2,1, 1,1 ,...,a1]+[0, 2,2 ,..]<3+e.
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n—3 n+2
Since [ 1 ,...,a1] < [ 2,...], by Lemma 4 we see that for 0 < m <

(—loge)/8, an—3—m = Qni2+m, contrary to a,_s # an42. The case of 222111
is analogous. =

LEMMA 8. Let o« = Jag,...,an,...] be irrational with p(a) < 3 and
a; € {1,2} fori =0,1,... Put A = apayr... € W(1,2). If m is an odd
integer, then 21,,2 and 12,,1 do not appear infinitely many times in A.

Proof. We argue by induction on m. For m = 1, see Lemma 6. Assume
that m > 3 and the lemma is verified for all positive odd integers smaller
than m. Suppose that 21,,2 appears infinitely many times in A. Let € > 0
be a small number and

0 n—m-—1 n

A=ay... 2 1,2...,

where n is so large that u,(a) < 3+ . By Lemmas 6 and 7,

nn+1l
A=ag...21,,2 2 1;...,

where [ > 2. Then

n n—m—1 n+1 n+2
pn()=1[2,1,...,1, 2 ... a¢]+[0, 2, 1 ,...,1,..]<3+ec.
—— ——

m times [ times

Suppose [ > m — 2. Then, by Lemma 2,

n—m-—1 n+2
[1,....1, 2 ,...a)<[1,..,1,..]
—— ———
m—2 times [ times

We may assume that ¢ is so small that m < (—loge)/8 and ¢ < e~°%,
By Lemma 4, a,—3-; = an424; for j = 0,1,...,m. Therefore, a, i, =
Gpn—m—1 = 2. But | > m — 2 implies a1, = 1, a contradiction. Therefore,
| <m—2 and
nn+1
A=ag...21,,2 2 1;2...

We see that [ is even and | < m — 2 by the inductive assumption. Then, by
Lemma 2,

n—m—1 n+2
[1, , 1, 2 carl <[ 1,...,1,2,..]
—— ———
m—2 times [ times

Therefore Lemma 4 also yields a contradiction. The case of 12,,1 is analo-
gous. m

LEMMA 9. Let a = [ag,...,an,...] be irrational with u(a) < 3 and
a; € {1,2} fori=0,1,... Let

A=aqapay...= 1p(0)2p(1)1p(2)2p(3) RS W(l, 2),
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where p(0) € NU {0} and p(i) e N (i =1,2,...). Define A’ € W(1,2) by
A = boby ... = 1q(0)2q(1)1q(2)2q(3) RS W(l, 2),

where
(i) = p(i) +1 if p(i) is odd,
= p(i) if p(i) is even,

fori=0,1,... Then u([A’]) = u([A]) and D'y(N) = D'y,(N) for all N.

Proof. If p(i) = co for some i, then p([A’]) = u([A]) is clear. Assume
that p(i) < oo for i = 0,1,... Let M € N. By Lemma 8, there exists k € N
such that p(i) > 2M + 1 if p(4) is odd for i > k. Let n = Zf:o p(i). Then
for m > n,

AmAm+1 -+ - - Om42M = bm’bm’+1 v bm'+2M7
where m’ = m + #{u | Y1 ,p(i) < m and p(u) is odd}. Therefore by
Lemma 2,
|t na ([A]) = e ns ([A])] < 17224

Hence p([A']) = p([4]), and by Lemma 8 we have immediately the last
statement of the lemma. =

LEMMA 10. Let a = [ag,...,an,...] be irrational with p(a) < 3 and
a; € {1,2} fori=0,1,... Put A = apay... € W(1,2). Let N > 4 be an
integer. Then there exists m € N such that 1111 and 2222 are not contained
N ApGpt1 ... AprN—1 ot the same time for n > m.

Proof. Let e > 0 be so small that N + 3 < (—loge)/8 and ¢ < =59,
Let k € N be such that p,(a) < 3+ ¢ for m > k. By Lemmas 7 and 8
we may assume that k& > 2N and 121,212,21112,12221,111222,222111 are
not contained in ay_yax— 11 ... Suppose that 1111 and 2222 are contained
in @papy1 ... anen—1 for some n > k. Then the following word appears in
Anlp4+1 -+ .- Ap4N-—1-

2222(1122);1111 or 1111(2211),2222  for some | € NU {0}.

Suppose that 2222(1122);1111 occurs in a,Gp41 - - . apyn—1. Then

A=ap...222 2 (1122),1111. ..,
where n < n’ < n+ N. Thus,

n' n'+1
() =1[2, 1 ,1,2,2,...,1,1,2,2,1,1,1,1,.. ]

TV
[ times

n'—1 n'—2 n'-3

+[0, 2, 2, 2 ,...,a41]
<3+e.
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Suppose that

n'+3 n'+4 n'—2
20 2 2 L L L L, <[ 2 .

[ times
Then by Lemma 4,
n'— n'—2 n'—3
(27, al=[2, 2,1,1,...,2,2,1,1,1,1,...,a1].
lti;rnes

By Lemma 2,

n'—6
(12) [2,2,1,1,...,2,2,1,1,1,1,...,a4]

[—1 times

n' —1 n’
<[2,2,1,1,...,2,2,1,1,1,1,...].

)

l+1:?mes
On the other hand, we get

n'—3 n'—4

p—s(a)=[2", 1 ,1,2,2,...,1,1,2,2,1,1,1,1,..., a4

+0, 27, 2 ,2,1,1,2,2,...,1,1,2,2,1,1,1,1,.. ]

I times
<3+e.
Since 4(l —1) < N +1 < (—loge)/8, (12) contradicts Lemma 4. Therefore,
n'+3 n'4+4 n'—2 n'-3
(27,2 ,1,1,...,2,2,1,1,1,1,1,1,..]>[ 2, 2 ,...,a]
I times

It is easily seen that

n'—2 n'—3 n'—2 n'—3

(27,2, .a]=[2, 2 ,1,1,...,221,1,1,1,...,a],

ptimes
where p <[ — 1. Thus,

n'—3 n'—4

Mn’—?:(a):[ 2 ) 1 7132727"'7171727271a1a1a17"'7a1]

p—1times

n'—2 n'—1

+0,2.,72,2,1,1,2,2,...,1,1,2,2,1,1,1,1,..] < 3+ ¢,

[ times
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and we have a contradiction in the same manner. The case of 1111(2211)2222
occurring in a,Gn4+1 ... GN+n—1 1S analogous. m

LEMMA 11. Let a = [ag,...,an,...] be irrational with p(a) < 3 and
a; € {1,2} fori = 0,1,... Put A = apay... € W(1,2). Let N > 4 be
an integer, and p and q be positive even integers less than N. Then there
exists m € N such that if either 221,221,22 or 112,112,411 is contained in
ApGpi1 ... ApyN—1 for some n > m, then |p —q| < 2.

Proof. Let € > 0 be so small that N + 3 < (—loge)/8 and ¢ < =59,
Let m € N be such that p,(a) < 3+ ¢ for n > m. Suppose that 221,221,22
is contained in an@n41 ...+ N—1 and p > g+ 2, and

n/
Unns - Gnpn—1 = ... 221, 2 21,22 ..
By Lemma 1,
n’ n’+1
(@) =[2,1,...,1,2,...,a1] +[0, 2 ,1,...,1,2,..] <3+e.
——— ——
ptimes g times

Since p > ¢ + 2, we have

n'—2 n’'42
[17,...,1,2,...,a1]<[0, 1 ,...,1,2,..],
S—— S——
p—2times g times

a contradiction by Lemma 4. Therefore ¢ < p+2, and p < g+ 2 in the same
manner. For 112,112,11, we argue analogously. m

LEMMA 12. Let a = [ag,...,Qn,...] be irrational with pu(a) < 3 and
a; € {1,2} fori=0,1,... Put A = apa;... € W(1,2). Let N > 4 be an
integer. Then there exists m € N such that if for positive even integers p

and q, either 221,22 and 221,22, or 112,11 and 112,11 are contained in
AnQp41 - .. AptN—1 for some n > m, then |p —q| < 2.

Proof. Let € > 0 be so small that N+3 < (—loge)/8 and € < e7°%. Let
m € N be such that u;(a) < 3+ ¢ for i > m. Let n > m + N. Suppose that
221,22 and 221,22 are contained in a,ap41 ... an+N—1 and [p —gq| > 2 for
positive even integers p and ¢. Take the word 221,2721,22 (T € W(1,2))
such that 221,227221,22 occurs in a,Gp41 ... anen—1 and |T| is the least
possible. By Lemmas 8-11 we see that |[p — ¢| = 4 and

221,2721,22 = 221,2(21 p+42)521,22,
2
where k € N. Suppose that p = ¢ + 4 without loss of generality, and

ApQp+1 - - Ay N—1 = - .. 2 21q+42(21q+22)k21q2 e
We have



350 S.-I. Yasutomi

q+4 times
n'+q+6 ———
Pnidgre(a) =] 2 ,1,...,1,2,...,a1]

k times

+00,2,1,...,1,2,...,2,1,...,1,2,2,1,...,1,2,.. ]
—— —— ——
q+2 times g+2 times q times

<3+e.

This is a contradiction, as in the proof of Lemma 10. The case where 221,22
and 221,22 are contained in a,@n41 ... ap4N—1 is similar. m

LEMMA 13. Let a = [ag, - . . , Gy, . . .| be irrational with p(a) < 3 and a; €
{1,2} fori=0,1,... Put A=agay... € W(1,2). Let N > 4 be an integer.
Then there exists m € N such that if p and q are positive even integers and
either 221,22 and 1,4, or 112,11 and 2, are contained in anGpy1 ... 0nyN—1
for some n. > m, then |q| < p+ 2.

Proof. This can be shown in the same way as Lemma 12. =m
THEOREM 1. Let A be a one-sided infinite word in W(1,2):
A=apay...= 1p(0)2p(1)1p(2)2p(3) ... € W(l, 2),

where p(i) is an even positive integer for i = 0,1,... Then u([A4]) < 3 if and
only if the following holds: For any even integer N > 4, there exists m € N
such that for any even n > m, anap41...aneNn—1 has one of the following
forms:

(1) If 2222 does not occur in ann41 - .. An+N—1, then apani1 ... anyN-1
coincides with either

(13) Loroy or lopo)22lan(1)22- .- 2210,k) 22127 (k41);
where 7(0), r(k+1) e NU{0} and r(i) € N (1 <i < k) satisfy:

(A) |r(d) —r(j)| <1 for all i,j with 1 < i,5 < k and r(0),r(k+1) <
maxi <;<k{r(i)}

(B) If 6 :=r(i+ 1) —r(i) = £1 for an integer i with 1 < i < k, then
the following holds: if r(i + 14 j) —r(i — j) # 0 for some integer j > 0
and r(i + 1+ k) —r(i — k) = 0 for every integer k with 0 < k < j, then
ri+1+7)—r@—j)=-94.

(ii) If 1111 does not occur in anapy1 . . . ApyN—1, then apaniq .. GptN-1
coincides with either

(14) 22000 o 22r0)1222r1) 12 -+ - 12225 (1) 12220 (k41
where 7(0), r(k+ 1) e NU{0} and r(i) € N (1 <i < k) satisfy:

(C) |r(@) —r(j)| <1 for alli,j with 1 < i,5 <k and r(0),r(k+1) <
max; <i<k{r(z)}.
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D) Ifo=r@i+1)—r@l) =
the following holds: if r(i + 1 +
and r(i+1+k)—r(i—k) =0
r(i+1+7)—r(i—j)=—9.

Proof. Necessity. Let € > 0 be so small that N + 3 < (—loge)/8 and
e < e ?%. Let m’ € N be such that u;(a) < 3+¢ for i > m/. By Lemmas 10,
12 and 13, for any even integer N > 4, there exists m > m’ such that for
any even n > m, if 2222 does not occur in a,G,41 - - - dprN—1 and 22 occurs
in apGp41-..apeN-1, then a,any1 ... ap4y—1 has the form

+1 for an integer i with 1 < ¢ < k, then
j) —7r(i —7) # 0 for some integer j > 0
for every integer k with 0 < k < j, then

Lor0y2212r(1)22 - - - 22107 (k) 2212 (k4 1)
where r(0), r(k+1) e NU{0}, (i) e N (1 <i < k) and
P -G €1 for1<ig <k r(O)r(k+1) < max {r(i).

Suppose that for an integer 1 < i < k,

d=r(+1)—ri)==£1,
and there exists a positive integer s < min(k — (¢ + 1),7 — 1) such that
(15) ri+14+j)—r(i—j)=0 forl<j<s,
r(i+1+s)—r(i—s)=24.

Let o
Apln41 - Ot N—1 = ... 221003 2 2Lo,(41)22. ..
Suppose that r(i +1) —r(i) = —1. Then

(@) =2, 1,...,1,2,...,a] + [0, 2 ,1,...,1,2,..] <3+e.

——— ——

2r (1) times 2r(i+1) times

Therefore, by Lemma 4,

n'—3 n'—3

(1, 1,2, > 1 ,...,1,2,..],
—_——— ———

2r(1)—2 times 2r(i41) times

or

Ap/—3 ... Ap/'—2—4 ... Ap/—2—-N = Ap/42 ... Ap'41+44 .+ - Qp/414N-
But from (15), we have

n'—3 n'—3

(1, 1,2, <[ 1,...,1,2,..],
—_—— —_——
2r(1)—2 times 2r(i41) times

and
Ap/—3...0n' —2_4...Ap/'_2_N 75 Ap'4+2 ... Ap'4+144 -+ - /414N -

This is a contradiction. In other cases, we argue analogously.
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Sufficiency. There exists m € N such that a,a,11 ... an+25+3 has the
form (13) or (14) for any n > m. Let n > m + N + 2. If a,_1a,a,41 is
neither 122 nor 221, it is easily shown that p,([A]) < 3. Let ay,—1anan+1 =
122. Assume that ap_nN_2...0Gn...ap1 N1 does not contain 2222. Then
Up—N-2---Qp...AneN+1 has the form (13). If £ = 0, then

n
Ao N2+ Gy e Gppner = 11...112211...11,

and g, ([A]) < 3 +27WN=3) by Lemma 4. If k = 1, then

n
U N—2 -Gy e Qa1 = 221...12211...11,

and also 1, ([A]) < 342~ V=3) by Lemma 4. Let k > 1. Let

p—N-2 - AnGnt1 = lap0)22. . lori—1)22,
Ap1 -+ Oy N+1 = Lop(i)22 -+ Lorr) 22120 (k1)
If r(i — 1) < r(i), then clearly pu,([A]) < 3 by Lemma 4. Let 7(i — 1) =

7(i) + 1. Then p,([A]) < 3 +2-(N/273) by Lemma 4. In other cases, we
argue analogously. m

3. Super Bernoulli sequences and continued fraction expan-
sions. In this section, we prove our main theorem (Theorem 3). The first
step is to introduce B-words which are essentially Bernoulli sequences de-
fined by A. Markov [6]. Lemmas 15 and 17 in this section are mentioned
in [6]. We give their new proofs. We apply the theory discussed in [3].

Let 1(0,1) be the set of all two-sided infinite words in W(0, 1), that is,

1(0,1) ={g|g:Z — {0,1}}.

For m € Z, we define a transformation o, on I(0,1) by setting, for g €
1(0,1),

om(9)(k) = g(k+m) (keZ)

For g, h € 1(0,1), we say that g is equivalent to h, denoted by g ~ h, if there
exists an integer m such that o,,(g) = h.

For a two-sided infinite word A = ...a_sa_japa; ... (a; € {0,1}) and a
substitution v on W (0, 1), we define v(A) by
'71(14) =...585_.25-159S1--- (81; S {0,1}),
where SpS1... = ’yi(ao)%(al) ...and ... S_928_1 = ... ’yi(a,g)’yi(a,l). It is

easily shown that if g ~ h for g,h € I1(0,1), then y(g) ~ y(h).
In this paper, for two-sided infinite words g, h, if g ~ h, then g and h are
regarded as the same word.
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Let S be a two-sided infinite word in W(0,1). If S has the following
properties, then it is said to be a B-word:

. Or( 1) 10r(0) IOT(l)l Or(k)l ..y, Or
. r( 1)01T(0)01r(1)0 . T(k)O..., or
g = .000...0..., or
o ..1...111...1..., or
..0...010...0..., or
1...101...1...,
where r(i) (i € Z) are positive integers with the properties:
(A) |r(z) —r(j)| <1 for any integers 1, j,
(B) if 6 =r(i+ 1) — r(i) = £1, for some integer i, then either
(1) (z—i—l—l—j)—r(z’—j)—OforalljEN or
(2) there exists s € N such that r(i + 1+ j) — (i — j) = 0 for every

jwithl<j<s,andr(i+1+s)—7r(i—s)=—0.
Let us define substitutions v; : W(0,1) — W(0,1) for i = 0,1 by
0—0, {O — 01,
1 — 01, 1—1.

LEMMA 14. Let S be a B-word. Then:

(1) v(S) and v1(S) are B-words.

(2) 75 1 (S) or 47 1(S) ewists and it is also a B-word.

Proof. Let

S=.. 0,,.( 1)1Or(0)1or(1)1 ,,,(k)l
Then
Y0(S) = . 0p—1)4+11070) 4110, (1) 111+ - Op (g1l
Therefore, fyo(S ) is a B-word. On the other hand, let
’)/1( ) = ... (01)7“(71)1(01)7"(0)1(01)r(1)1 ce (Ol)r(k)l ce
Since 00 and 111 do not occur in v;1(S), we see that 1(S) satisfies the
condition (A). As ¢(i) € {1,2}, we have
¥1(S) = o (01) 1y 1(01)(0) L0y L+ - (O1) a1 ..
.. 1t(_1)01t(0)01t(1)0 e 1t(k¢)0 e

We show that v, (S) satisfies (B). Assume that ¢(i+1)—¢(i) = 1 for an integer
i. Then 01;3;)014(;41) = 01011, and 01(;)01;;41) is a last part of (01), ()1
for an integer m, that is, ...01;(;01;41) = - .. (01)y(r—1)1(01), (1. Let
r(m+1) > r(m). Then ¢t(i + 1+ r(m) — 1) —t(i — (r(m) — 1)) = —1 and
ti+1+u)—t(i —u) =0 for 1 <u <r(m)— 2. Therefore in this case (i)
satisfies (B). Let r(m+1)4+1 =r(m). lf r(m+1+k) = r(m—k) forall k € N,
then t(i+1+1) = t(i—!) for all € N. And if r(m+1+1) = r(m—1) for every
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Iwithl <l <wandr(m+14u)=r(m—u)—1, then t(i+1+1) = t(i—!) for
every [ with 1 <1< 37 (r(m—j)—1,and t(i+1+e) = t(i—e) — 1, where
[ = Z?:o r(m — j) — 1. Therefore in this case, ¢(i) satisfies (B). Therefore,
~v1(S) 1s a B-word. Analogously, 7;(S) for i = 0, 1 is a B-word in other cases
for S.

Let us show the second statement of the lemma. Let

S = 0n 1y 10,0 10,1 Oppy 1+
where (i) € N (i € Z) satisfy (A) and (B). Then 5 *(S) exists and
Y5 (S) = .. 0p(—1)—110,(0)=110,1)—11 ... Op(y—1 L. ..
Therefore, if min{r(i) | i € Z} > 2, then 7, '(9) is also a B-word. Assume
that min{r (i) | i € Z} = 1. Set
Y5 (S) = .. 0p(c1)=110,(0)—110,(1)—1 1 ... Op(gy—11 ...

— 1) 0L0)0Lp@)0 - L0
where p(i) > 1. First, we show that |p(i + 1) — p(i)| < 1 for any i € Z.
Suppose that p(i + 1) — p(i) > 2 for some i. Then

Thus, there exists some j such that

Then we have
r(j+p@) +1) —r( +p@) = -1,
r(7+p@E)+14+u)—r(G+p@iE)—u) =0 forl<u<p(i),
r(j +p@) +1+p(i) —r(j) = -1
But this contradicts the fact that S is a B-word. And we have a contradiction
analogously in the case where p(i)—p(i+1) > 2. Therefore, |p(i+1)—p(i)| < 1
for any i € Z.

We prove that |p(i) —p(k)| < 1 for any i, k € Z. Suppose that there exist
i,k such that p(i) — p(k) = 2, and take such ¢,k with |¢ — k| minimal. We
may assume that i > k. Since p(j) = p(k) + 1 for k < j < i, we have

Lo 01p(k+1)0 - - 1p()0 = 1p(a) O(Lpk) 410) (i—1e—1) Lpiy 420

Therefore,
S = ... (Ol)p(k) O ((Ol)p(k)—‘rlo)(z—k}—l)(Ol)p(k:)+20 e
Then, for some j,

S — ... ]. O Or(j)—l 10r(]+1)]~ e
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Since r(j + 1) — r(j) = —1, we have either r(j + 1 +u) —r(j —u) =0 for
u=1,2,..., or there exists an integer v such that r(j+1+v)—r(j—v) =1
and r(j+1+u) —7r(j —u) =0 for 0 < u < wv. In the first case, we have

S = (0D)p(k)120((01) (k) 410) (- —2) (01) (k)
0((01)p(k)+10) (i—k—1)(01) p(s) +20 - - -
But this contradicts the assumption that |i — k| is minimum. Consider the
second case. If v > (i — k — 1)(p(k) + 1) + p(k) + 1, then
S = (01)p(k)+20((01) p(k) 410) (i -k —2) (01) (k)
0((01)p()+10) (i——1) (01) p(1)420 . . .,
but this also contradicts | — k| being minimum. If v = (i — k — 1)(p(k) +
1) + p(k) + 1, then
S — ... (Ol)ao((Ol)p(k)+10)(i—k—2) (Ol)p(k)
0((01)p(k)+10)(i_k_1)(Ol)p(k)+20. ey
where a > p(k) + 3, contrary to [p(l + 1) — p(I)] < 1 for any integer [. If
v<(i—k—1)(p(k)+ 1)+ p(k)+ 1, then v = b(p(k) + 1) + p(k) for some
integer 2 < b < i — k — 1. Therefore
S = ... (Ol)ao((()]-)p(k)—i-lo)(b—l)(0]-)p(k)0((01)p(k)+10)(i—k—1)(Ol)p(k)+20 ceey
where a > p(k) + 2. In this case, we have a = p(k) + 2, which contradicts
the minimality of |i — k|. Therefore |p(i) — p(k)| < 1 for any i, k € Z.

Now we prove that v, ! (S) satisfies the condition (B). Suppose that there
exist ¢ € Z and u € N such that p(i +1) —p(i) =p(i + 1 +u) —p(i —u) #0
and p(i+1+j)—p(i—j) =0for 1 < j < u. Suppose that p(i+1)—p(i) = 1.
Then

S = (01) iy - - 0001 sy O (O1) (g1 - - O(01) it cpar) - - -
Thus, for some integer j,
n
S = ... ]. O Or(j)—l 10r(]+1)1 e
Therefore 7(j +1) —r(j) = =1, r(j + 1+ v) —r(j —v) = =1 and 7(j +
1+k)—r(j—k)=0for1 <k <wv, wherev=> _.  r(m). But this

contradicts the assumption that S is a B-word. Therefore ;' (S) satisfies
(B). The case p(i + 1) — p(i) = —1 is similar.
We reason analogously in other cases for S. m

Now we introduce the following transformation 7" on [0, 1]:

——  ifeel=[0.1/2)

T@) =19 95 -1

ifz el =[1/2,1],
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and define

x

9@ =35 alw=3—

Then T'o¢; =id on [0, 1] and ¢goT = id on I; for i = 0, 1. Define a function
G :10,1] — W(0,1) by

G:z— G(z).
We need the following theorem. Originally, it was stated for H(z) instead
of G(z), but it is not difficult to show that it holds for G(x).

THEOREM F (S. Ito, S. Yasutomi [3]). The following diagrams commute
fori=0,1:

0,1] —<=W(0,1)
¢il i’?i

and

Pk

I —5>w(0,1)
where W (0,1) is the image of I; under G.
LEMMA 15 (A. Markov [6]). Let S be a B-word. Then for any finite
subword M in S there exists x € [0,1] such that M is a subword of G(z).

Proof. By Lemma 14 and its proof, there exist words Sy, S1,... such
that So = S and f;(S;) = S;—1 for i = 1,2,..., where f; € {70,71}. Define
a sequence {i,}>2 ; as follows:

;o 1o it fi =,
" L if fi =7
Consider two cases:

CASE 1: there exists an integer m such that i,, = i,, for any n > m,
CASE 2: otherwise.

CASE 1. It is easily seen that if 7,, = 0 then

g _ ...0...000...0..., or
™7 1...0...010...0...,
and if 4,, = 1 then

(.10 1110010 or
S’”_{...l...101...1...
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Let iy, =0.If S, =...0...000...0..., then S,, = G(0) and by Theo-
rem F, we have
S=70...0%,(G(0) = G(¢i, 0...0¢;,(0)).
Therefore, in this case the assertion holds. Let S, = ...0...010...0...

Then
S=,0...07,(..0...010...0...).

Therefore, for a large integer k,
Yig © - o%—m(oklok) D M.
On the other hand, we see easily that

1
Gl ——) =...0,1041...
(k+1> B Ck

Therefore, by Theorem F we have

1 1
G(d)h O...O¢im (M)) = %41 - 9%Ym, <G<]{j—|—1>> D .1\47

and so, in this case the assertion also holds. If i,,, = 1, the lemma is obtained
analogously.

CASE 2. For n=1,2,... let
Apn=7,0...07,(0), Bp=",0...07,(1).
Clearly,
lim |4,| =00, lim |B,|=oc.
n—oo n—oo
Therefore, there exists an integer k such that
min(|Ael, |Bel) > [M].
Since S = 7;, 0...07;,(Sk), M is contained in either (i) ApAx, (ii) By DBy,
or (iii) AkBk or BkAk
In cases (i)—(iii), we have respectively either
G(¢i, 0...0¢i,(0)) =7, 0...07,(G(0)) D M,
G(¢i, 0...0¢i, (1)) =, 0...07,(G(1)) D M,
G(¢iy0...00;,(1/2)) =i, 0...0%,(G(1/2)) D M,
which proves the assertion. m

LEMMA 16. Let x € [0,1) be rational. Then there exists n € NU{0} such
that T™(z) = 0.

Proof. See Proposition 1.1 of [4]. m
For x € [0, 1], define an infinite sequence {i1,2,...} by the condition
i, =1 if T" Y(z) € I,.

We call this sequence the name of x.
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LEMMA 17 (A. Markov [6]). For any x € [0,1], the sequence G(z) is a
B-word.

Proof. The sequences G(0) = ...000... and G(1) = ...111... are
B-words. First, let 0 < x < 1 be rational, and the sequence i1, 13,... be the
name of z. Then by Lemma 16, there exists n € NU{0} such that 7" (z) = 0.
Therefore, by Theorem F we have

G(z) = G(di, 0...0;,(0)) =i, ©... 07, (G(0)).
Since G(0) is a B-word, so is G(z) by Lemma 15.
Let x be irrational. Then there exist x,, € [0,1] N Q for all n € N such
that G(z,i) = G(zy,1) for —n < i < n. Hence G(z) is a B-word. =

THEOREM 2. Let A be a one-sided infinite word in W (1,2). Let
A=apay...= 1p(0)2p(1)1p(2)2p(3) NS W(l, 2),

where p(i) is an even positive integer fori = 0,1,..., and put S = ¢~ 1(A) =
081 - .., where s; € {0,1}. For u([A]) < 3, the following condition is neces-
sary and sufficient: For every N € N, there exists m € N such that if n > m,
then $pSnt1 ... SnyN—1 15 a subword of G(x) for some z € [0,1].

Proof. Necessity. There exists m € N such that for any integer n > m,
SnSn+1 - - - Sn+N—1 occurs infinitely many times in S. Set M = s,8,41 ...
... SnynN—1- Then, at least one of the words 0MO0, 0M1, 1M0, 1M1 occurs
infinitely many times in S. By induction, there exist sequences a,as, . ..
and by,bo,... € {0,1} such that a,, ...a; Mb;...b, occurs infinitely many
times in S for n = 1,2,... Define a two-sided word M’ by

M/ = ...CLQCLlele...

Theorem 1 implies that M’ is a B-word. Therefore, by Lemma 15 there exists
x € [0, 1] such that M is a subword of G(x), and then s,S,41...8,4N_1 I8
a subword of G(x) for some x € [0, 1].

Sufficiency. By assumption, for n > m, $,8,41 ... SpenN—1 i8S a subword
of G(x) for some = € [0,1]. Since G(x) is a B-word by Lemma 17, ¢(M)
satisfies the conditions of Theorem 1. Therefore, p([A]) < 3. m

Define G(x,y,n) for real numbers x,y and an integer n by

G(z,y,n) = [nz+y] - [(n -z +y].

LEMMA 18. Let a € [0,1] and N € N. Set {—kamod 1 |k=1,...,N}U
{0,1} = {a(()a’N), e ,agf(‘;N;)} with aémN) =0< aga’N) <...< ang’N) =1.
Define a function f on [O,’l] by

(a,N) (a,N)

_Jk dfzela a0 ),
/(@) {0 z'fa:zl.k o

Then, for z,y € [0,1],
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(1) G, ;1) G, 2, N) = G(a,y,1) ... Gleyy, N) if f(x) = f(y),

2) Glaya,1)... Glaya, N) # Glayy, 1) ... Glayy, N) if f(z) # F(y)-

Proof. (1) Suppose that z,y € [0,1], z >y, f(zx) = f(y) and G(a, x, 1)
# G(a,y,i) for some 1 < i < N. Since [ia + x] > [icv + y], there exists z
such that y < z < x and i + z = 0 mod 1. Therefore, z = a; for some
0 < k < Pia,n), contrary to f(x) = f(y).

(2) Let

0 <e<min{lal™" —a*M|1i=1,..., Pun}
Then, for k = 1, ey P(a,N)7
G(a,ag,1)...G(a,ax, N) # G(a,ar, —e,1)...G(a,ar, — €, N).

It is easily shown that for z € [0,1), {u € [0,1) | G(,x,1)...G(a,2z,N) =
G(a,u,1)...G(a,u,N)} is a connected set. This yields (2). m

LEMMA 19. Let S be an arbitrary finite word in W(0,1) and set

Ps ={z €0,1] | S is a subword of G(x)}.

Then Ps is a connected set in [0, 1].

Proof. Let Pg be not empty. Let u,v € Pg and v < v. We show that
for any z € [u,v], z € Ps. By hypothesis, there exist integers n, m such that
(16) S=G(u,n)Gu,n+1)...Gu,n+1[S| —1)

=Gv,m)Gv,m+1)...G(v,m+|S| —1).
Set uy = {(n — Du}, v1 = {(m — 1w}, z = (v1 —w1)/(u—v) and y =
(vu; —uvy)/(v — u). Then (z,y) is a solution of the equation
Y =uX + uq,
Y =vX 4+ .
Set z; = y — zx. Then (x,y) is on the line {(X,Y) | Y = 2X + 2 }. For

p,q € R, let b it
_Jlpd itp=g,
(p.q) = { [¢,p] otherwise.
It is not difficult to see that kz+z1 € (kutuq, kv+vy) fork =0,1,...,[S]|—
From (16), we have |ku+ui| = [kv+v1] and so |kz + 21| = |[ku+uq] =
| kv 4 v1 ] for such k. Hence,
S=G(z,2,1)...G(z,21,]|95]).

If z is not rational, then the fact that {{nz1} |n =0,1,...} is dense in
[0, 1] 1mphes that there exists [ € N such that |kz + 21| = |kz + {lz}] for
k= .., |S| — 1. Therefore,

S=G(z,1+1)...G(z,1+|S]),
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Assume that z is rational and set z = p/q, where p,q € N and (p,q) = 1.
Set r = |gz1|. Then Lemma 18 shows that
G(z,21,1)...G(z,21,|S|) = G(z,7/q,1)...G(2z,7/q,|S)).
From the hypothesis on p and ¢, there exists t € N U {0} such that tp =
r mod ¢ and t < q. Therefore,
G(z,t+1)...G(z,t+]|S]) = G(2,7/q,1)...G(z,7/q,|5])-
Hence, 2 € Ps. m
Let S* = R/Z and I = [0,1]. Define a function 7, : I — I x S for
n=20,1,... by
™ (x) = (z, —nz),

and define
N

Ay =IxS"— ] m(D).
n=0
LEMMA 20. Let P = (2z1,y1), Q = (z2,y2) € An. Then P and Q are in
the same connected component of Ay if and only if
G(xlaylv 1) ce. G(xhyl?N) = G(xQJ Y2, 1) s G(«T2,y27N)-
Proof. The necessity is immediate by Lemma 18.
For a component C' of Ay we denote by ¢g(C') the word
9(C) =G(z1,y1,1)...G(x1,y1,N) for some (z1,y1) € C,

which depends only on C. Let m be the projection I x S' — I. Let C
be a connected component of Ay. Put p(C) = {D | D is a connected
component of Ay such that g(D) = ¢(C)}. Suppose that Cq,Cy € p(C)
and 7(C1) N7(Cy) # 0. Then there exist (a,v1) € Cq and (a,v3) € Co. By
the definition of Ay, we have

({a} x YN Ay = {a} x (af™™,a{*™)u...U{a} x (afs™) el ™).

If f(v1) # f(ve), where f(-) is defined in Lemma 18, then
G(u,v1,1)...G(u,v1,N) # G(u,v2,1) ... G(u,v2, N).

This is a contradiction. Thus f(v1) = f(v2), and therefore C; = Cs. On the

other hand, it is easily seen that

Pycy = DEL;%C) D).

Since Py is a connected set by Lemma 19, we know that p(C') = {C}.
Hence, the assertion follows. m

LEMMA 21. Let S be a finite word in W(0,1). Then
|[Ps| < 2/[5].
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Proof. We may assume that Ps # (). By Lemma 20 there exists a

component C of A|g such that Ps = 7(C). From the definition of 4g,
7(C)] < 2/|S]. u
LEMMA 22. Let z,y € [0,1]. Then
Dg(r)(N) = Dg(z’y)(N) for all N,
where
G(z,y) =...G(z,y, -1)G(z,y,0)G(z,y,1) .. .,

and G(z,y,n) = [nz+y| — [(n — Dz +y| forn e Z.

The proof is easy. m

LEMMA 23. Let o € [0,1] and N € N. Then there existe > 0 and Ny € N
such that for any B € [0, 1] with |5 — a| < €, each subword of G(«) of length
N is contained in every subword of G(3) of length larger than Ny.

Proof. Assume that « is irrational. For z € [0,1] and n € N, define:
M(r,n) = maX{|a’§g‘T’n) - al(f«kﬂll)| ‘ k= 07 17 sy P(:r,n) - 1}7
M(z,n) = min{|al(c$’n) - al(q:::ﬁll)| ’ k= 07 1,... 7P(:E,TL) - 1}7

where a,(f’n) (k=0,1,...,Pgn) and P ) are defined in Lemma 18. Since
« is irrational, there exists K € N such that

Mo, k) < 5M(a,N)-

Then it is not difficult to show that there exists € > 0 such that if |3 — ¢
< & then Mg x) < 2m(g,n) and G(f) contains every subword of G(«) of
length N. Let § € [0,1] and |8 — a| < . Let S be a subword of G(«)
of length N. Let S’ be an arbitrary subword of G(3) of length 2K. By
Lemma 18 there exists an integer 0 < k < P(B’n) — 1 such that if v €

[aff’n), a,(er’rf)) then S = G(B,v,1)...G(B,v,N). Moreover, there exists u €

[0, 1] such that
S =G(B,u,1)...G(B,u,2K).
Since Mg i) < %m(ﬁ,N), there exists a natural number j < K such that

jB+ue [agf’"), agfi’?)). Therefore,

S=G(Bu,j+1)...G(Bu,j+N).

Hence, S is a subword of S’.

Suppose that « is rational. First, let & = 0. Then a subword of G(0) of
length N is equal to O . It is not difficult to show that if 0 < 5 <1/(N +1)
then G(8) = ...10(0)10R(1) ... and R(i) > N for every i € Z. Therefore,
any subword of G() of length 2N has Oy as a subword.
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Let a = 1. Then a subword of G(1) of length N is 1y. It is not difficult
to show that if N/(N +1) < 8 < 1 then G(8) = ...01lg()01g() ... and
R(i) > N for i € Z. Therefore, any subword of G((3) of length 2N has 1y
as a subword. Thus the lemma holds for a =0, 1.

Suppose that « # 0, 1. By Lemma 16, there exists n € NU{0} such that
T™(a) = 0. Therefore, there exists m € NU {0} such that T («) = 1/2.
Then, by Theorem F, we have

$iyo...00;, 00o(l) =, ¢io...00; 0¢1(0)=aq,

where {i1,1i2,...} is the name of a. Define words Ay, By, A3 and By by
A =7, 0...0%,0%(0), As=1;0...0%, o71(0),
By =7;,0...07, ov(l), Ba=7,0...0%, ov(1).
Then vp(1) = v1(0) = 01 implies By = As. By Theorem F, we see that
Gla) =7, 0...07, ov(G(l))=...B1B; ...

It is easily seen that any subword of G(«) of length N is contained in (Bj)n-
Define real numbers v and v by

N 1
“:¢i1°‘--°¢imo¢0<N+1>7 U=¢i10...0¢im0¢1<N+1>.

[u,a]:¢i1o...o¢imo¢o<[NN1,1]>,
1

Then

+
[a7v]:¢i1o"'o¢im0¢1<|:0,jv_i_1:|).

Therefore, 5 € [u, ] implies
G(B)=...(B1)r0)A1(B1)rm)A1 .- -,

where 7 (i) are integers and r(i) > N for i € Z, and if § € [, v] then
G(B) =...(A2)r0)B2(A2),1)B2 . . -,

where r(7) have the same property. Since |A1]|, |Bz2| < |B1], every subword of
G(f) of length 2N|B;| contains (Bj)n as a subword. Therefore the lemma
holds in this case. m

LEMMA 24. Let x € [0,1] N Q. Then fori=1,2,

G(9i(z)) =7(G(x) of v #1,
G(¢i(x)) =7(G(x) if x#0.
Proof. Assume that x # 1. Put x = n/m, let iy,i2,... be the name

of z, and set T = min{y € F,, | y > x}. It is not difficult to show that
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(x) = T(T). Since 0 = 1 and ¢;, o ...0 ¢;, (0) = x where k is defined by
¥(x) =0 and T*~1(x) # 0, we have
¢piyo...00,(1)=1.
Therefore, by Theorem F, we have
G(2) = G(d 0. 0 31, (0)) = 7, © ... 073, (G(0)),
G(T) = G(d, 0 0 61y (1)) = 7, 0. 0 74, (G(1)).
Then it is not difficult to show that
Vi, ©...07,(0) = G(x,1)...G(z,m),
Yi; ©...07,. (1) =G(Z,1)...G(T, h),
where h is the denominator of T. Therefore,
G(z) =7, 0...07,(...0...010...0...).

Since the name of ¢;(x) is 4,41, ...,%k,..., we have

G(¢i(z)) =7viovi, 0...0%,(...0...010...0...) =7 (G(z)).

Other cases can be proved analogously. =

NS

LEMMA 25. (1) Let (zo,y0), (z1,y1) € [0,1] be distinct with z; < y;
for i =0,1. Let S; be any super Bernoulli sequence related to (x;,y;) for
1=0,1. Then Sy and Sy are different.

(2) Let (x,y) € [0,1]*> and * < y. Let S and S’ be super Bernoulli
sequences related to (z,y) of type i,5 € {1,2,3,4}, respectively. Then S and
S’ are different if i # j.

Proof. (1) Since (zo,y0) # (x1,y1), there exists an irrational number
w € [zg, yo] A [x1,y1]. We assume without loss of generality that w € [z, yo]
and w & [x1,y1]. Then, by Lemma 21, there exists M € N such that for
N> M,

l)G(w)(]\[)m U DG(z)(N) =0.
z€[z1,y1]
Therefore if S; is a super Bernoulli sequence related to (x1,y1) of type 1,
then SO 75 Sl.
Assume that S; is a super Bernoulli sequence related to (x1,y1) of type 3.
Then, from the proof of Lemma 24, we have

Gy1) =7, 0...07%,(...0...010...0...) =, o...0v, (G(0)),
where {iy,is,...} is the name of y; and T*(y;) = 0 and T*~!(y;) # 0. For
any u > 0, we see easily that for all N,

Dgiy(N) € |J Dagsy(N).
2€[0,u]
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Therefore, for each M € N,
D ooy a@ M) C U Dayorom, ao (M),

z€[0,u]

By Lemma 24, we have

DGorm M) € U Dowiyoosi, (:n ().

2€[0,u]

Since ¢;, 0...0¢;, is increasing and ¢;, o...0¢;, (0) = y1, we have for all M,

D) |J Do (M),

wE[y1,v]

where v = ¢;, o ... 0 ¢;, (u). Therefore, for any v € [0, 1] with u > y;, we
have
D) |J  Daw(M).
wE[y1,u]
By Lemma 21 there exists M’ € N and u € [0, 1] with u > y; such that for
any N > M’,
ZE[yl,’LL]
Therefore, for any N > M’ we have

Dg(w)(N) N (Dm (M) U U Dg(z)(N)) = 0.
z€[z1,y1]

Hence, Sy # S1. In other cases we argue in the same way.

(2) We assume that Sy is a super Bernoulli sequence related to (x,y) of
type 1, and S is of type 3. Let 41,5, ... be the name of w. Then, as in the
proof of Lemma 24, we have

Gy) =", 0...0%,(-..0...010...0...),

where k is least such that T%(y) = 0. We show that 7;, o...0;, (01) is not a
subword of G(y). Suppose otherwise. As in the proof of Lemma 24, we have

G(y) =iy 0+ 07, (G(0))-

Since G(T'(y)) = i, © --- © 7, (G(0)), iy © ... 0, (01) is a subword of
G(T(y)). Therefore, by induction on k, 01 is a subword of G(T*(y)) = G(0),
a contradiction. Therefore, ;, o ... 07, (01) is not a subword of G(y). By
Theorem F we have

G(¢iy0...00; (1)) =7, 0...07,G(1),

and 7;, 0...07;, (01) is a subword of G(¢;, o...0¢;, (1/2)). Since ¢;, 0. ..0¢;,
is an increasing function, we know that ¢;, o...o ¢;,(1/2) > y. Therefore,
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the fact that Pﬂﬁlo.__om.k(l) is a connected set, by Lemma 19, implies

Pfyilo...o%k(OD N [1’7y] = 0.

Therefore,

Yir © -+ 07, (01) € D (K) and 7, 0... 07, (01) ¢ U Deey(E).

z€[z,y]
Thus, S does not coincide with S’. Other cases are analogous. m

Proof of Theorem 3. Let « be irrational with p(«) < 3, and with contin-
ued fraction expansion [ag,a1,...]. By Lemma 5 there exists m € N U {0}
such that a,, € {1,2} for all n > m. Define a word A by

A=amlms1 - -

By Lemma 9, we only have to study the word A" defined in Lemma 9, instead
of A. The word A’ has the form

A =1400)201)La2)29(3) -+
where ¢(i) are even non-negative integers for ¢ = 0,1,... Set S = sps1... =
¢~ 1(A"), and define a subset {2 of [0,1] as follows: z € 2 if and only if for
any € > 0 and N € N there exists 3 € [0, 1] such that |5 — z| < € and there
exists a subword of G(3) of length N which occurs infinitely many times
in S.

From the definition, it is not difficult to see that (2 is closed. Let us
show that it is connected. Let x1, x5 € {2 and assume that z1 < xo. Take z
satisfying 1 < z < 5. We show that z € {2. Let € > 0 be small and NV € N.
We may assume that 1/(N — 1) < e. By Theorem 2, there exists m € N such
that for any subword p of S(,,) of length N there exists # € [0, 1] such that
p is also a subword of G(3), where S(;,) = $m5my1 ... We may assume that
any subword of S,y of length N occurs infinitely many times in S(,,). Since
x; € 12 for i = 1,2, there exists y; € [0,1] such that |z; — y;| < ¢ and there
exists a subword p; of G(y;) of length N which occurs infinitely many times
in S(p). Let s¢; 8¢, 41 -+ 8¢, 4+ nN—1 be an occurrence of p; for i = 1, 2. Assume
that ¢; < 3. By Theorem 2, there exist ¢, € [0,1] for k = 0,1,...,c0 — 1
such that S¢, 4 kSc,4k+1 - - - Se;+h+N—1 is a subword of G(t;). By Lemma 21,
we have [ty —tg+1] <2/(N —1) <2efor k=0,1,...,co —c; — 1. Therefore,
there exists t; such that |z —¢;| < €. Since S¢, 1 kS, +k+1 - - - Sey+h+N—1 OCCUTS
infinitely many times in S, we conclude that z € (2.

Let us show that (2 is not empty. We can choose words qn for N € N
such that gn occurs infinitely many times in S and |gny| = N. Then, by
Theorem 2, for each N there exists 7y € [0, 1] such that gy is contained
in G(7n). Since [0, 1] is a compact set, there exists a subsequence 7;, (k =
1,2,...) which converges to a point v € [0, 1]. It is not difficult to show that
v € (2. Therefore, {2 is not empty.
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Since {2 is a connected and closed set, there exist z,y € [0,1] with z <y
such that 2 = [z, y]. Let us show that

(17) Ds(N)> |J Dgy(N) forall N €N.
2€(z,y)

Suppose that z € [x,y] and p is an arbitrary subword of G(z) of length N.
Then, by Lemma 23, there exist ¢ > 0 and Ny € N such that for 5 € [0, 1]
with |5 — z| < e, each subword of G(z) of length N is contained in every
subword of G(3) of length greater than Ny. Since z € (2, there exists v €
[0, 1] such that |y — 2| < €, and there exists a subword ¢ of G(v) of length
Ny such that ¢ occurs infinitely many times in S. Since p is contained in
g, p occurs infinitely many times in S. Therefore, p € D4(N), that is, (17)
holds.

Let us study the set Dg(N)\ U, e[y, Da(z)(IV). Suppose that it is not
empty and let L € Dg(N)\U,¢(, ) Da(z) (V). Then we can take a sequence
of words Lo, L1, ... which satisfies the following conditions:

® LO = L7
o L1 =e;L;f; for some e;, f; € {0,1} for i =0,1,...,
e [; occurs infinitely many times in S for i = 0,1, ...

Then, by Theorem 2, there exists 7; € [0,1] for ¢ = 0,1,... such that
L; is a subword of G(7;). By Lemma 21, 7; converges in [0, 1] to some v =
lim; o 7. It is easy to see that v € [z,y] (= £2).

Let us show that v = x or v = y. Suppose that © < v < y. Then
there exists [ € N such that 7, € [z,y]. Since L is a subword of G(m),
Le Uze[m/] D¢ (.)(N), contrary to the definition of L. Therefore, v = x or

v =1.

CASE 1: v = z. Suppose that x is irrational. Since the boundary points
of m(C) are rational where C' is any component of Ay, there exists € > 0
such that if y € [0,1] and |z — y| < &, then Dg;)(N) = Dgy)(N). As
lim; oo 7; = v there exists j € N such that |7; — x| < e. Therefore, since
L is a subword of Dg(,,)(N), L is a subword of Dg,)(IV), contrary to the
definition of L.

Suppose that v = z and z is rational. Define a two-sided infinite word I
by

I'= hm Lz = ... €1€0Lf0f1 NN

By Theorem 1, I' is a B-word. From Lemma 14 and its proof, if I" has 00
as a subword, then v, '(I") exists and v, }(I") does not; if I" has 11 as a
subword, then 4, *(I') exists and 7, *(I") does not; and if I" has neither 00
nor 11 as a subword, that is, I' = G(1/2), then ;' (I") and ~; '(I") exist.
Define a sequence i1, 12, ... € {0,1} inductively as follows:
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If I" has 00 as a subword then i; = 0, if I" has 11 as a subword then
’io = 1, and if I' = G(1/2) then ’io = 1.

Assume that iq,...,7; are defined; set

I, :fyz.;lo...O’yi_ll(F).
Then i1 = 0 if I} has 00 as a subword, ix4+1 = 1 if I';, has 11 as a subword,
and ik+1 =1if Fk = G(1/2)

Let u € [0,1] be the number whose name is {i1,2,...}. Suppose that u
is irrational. In the same way as in the proof of Lemma 15, L; is a subword
of G(u) for i = 0,1,... Therefore, by Lemma 21, v = . But this contradicts
the fact that x is rational. Hence, u is rational and there exists j € N such
that if k¥ > j, then i, = ¢;. It is not difficult to see that

I, € {G(0),G(0),G(1),G(1)}-
Since I' = 7;, o...07;, (%), by Lemma 24 we have

I € {G(¢(0)), G(¢/(0)), G(¢'(1)), G(¢'(1)) },

where ¢ = ¢i, 0...0¢;,.

Let us show that I' = G(¢'(1)). Suppose that I" = G(¢/(0)) or G(¢'(1)),
that is, there exists ¢ € [0,1] such that I" = G(t). Then, t € [z,y] by
Lemma 21, contrary to L & U, ¢[, ) Da(x)(IV). Suppose that I" = G( G(4'(0)).
Let us show that ¢’(0) = z. By Lemma 24,

(18)  G@O) =1 (GO) = -..+(0) ..+ (O () (). ..
where ¢/ =;, 0...07;,. By Theorem F,

G(9/(0)) = /(G(0) = ...7/(0) ... 7(0)...
Since L; is a subword I" for ¢ = 0,1, ..., for any n there exists k& such that
~'(0),, is a subword of Lj. Therefore, Lemma 21 implies ¢’'(0) = x.
Let us show that for all M,

(19) G(:r) U D (M
z€[z,y]
By (18), any element of D )(M) is a subword of 7/(0)/7'(1)7'(0)as, and

since ¢'(0) = z, there exists M’ > M with ¢'(1/M’) € [z, y]. By Theorem F
we have

G(¢/(1/M/)) == ’)/(. . OM/,llOMf,ll .. )
=Y (O ar—17 ()Y (0)ar—17' (1) -
e )( ) is a subword of G(¢'(1/M’)). Hence,

(19) holds and I" # G(¢(0)). Therefore, I' = G(¢'(1)). Then we have z =
¢'(1) in the same way. Thus L € D¢ () (N).

Therefore, any element of D=—
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CASE 2: v = y. Then analogously y is rational and L € D@ (N).
Therefore we have the first statement of the theorem.

We now prove the last statement of the theorem. Let 0 < x <y <1, let
S =s05182... € W(0,1) be a super Bernoulli sequence related to (z,y) and
let A € W(1,2) be a one-sided infinite word such that D', (N) = D}, 4 (N)
for all V.

Theorem 2 implies immediately p([A4]) < 3.

Let « = y be rational. By Proposition 3 in Section 4, since S is a super
Bernoulli sequence related to (z,y) of type 1, there exists m such that

SmSm41 ... = G(x,1)G(x,2)...,
and there exists k£ such that
arapyt - = O(G(x,1)G(x,2)...).

Theorem D yields pu([¢(S)]) < 3.
Conversely, suppose that p([A]) < 3. Then, by Theorem D, there exist a
rational number « € [0, 1] and a natural number m such that

Ammy1 - = (G, 1)G(e,2) ...).
Therefore S is also a super Bernoulli sequence related to (a, ) of type 1.

Then Lemma 25 yields that x+ = y = « and S is not a super Bernoulli
sequence related to (a, a) of type i for i =2,3,4. =

Proof of Proposition 1. By Lemma 5 there exists m € NU {0} such that
an € {1,2} for n > m. Define a word A by

A=amtmit---,
and denote it by
A= 1p0)2p) 1p2)20(3) - -
where p(i) € NU{0} for i = 0,1, ... From Lemma 8 and the assumption on

A, there exists k € N such that if ¢ > k then p(7) is even. Therefore, from
the proof of Theorem 3 we obtain the assertion. m

4. On super Bernoulli sequences. In this section we prove the exis-
tence and some properties of super Bernoulli sequences.

PROPOSITION 2. For each x,y € [0,1] with x < y, there exists a super
Bernoulli sequence related to (x,y) of type 1. If x is rational, then there
exists such a sequence of type 2; if y is rational, then there exists a sequence
of type 3; and if both x and y are rational, then there exists a sequence of
type 4.

Proof. If x = y, then H(x) is a super Bernoulli sequence related to
(z,y) of type 1. Let x < y. Let {N;} be an increasing sequence of natural
numbers such that lim; ., N; = co. Let z € [z, y]. Then, by Lemma 23, for
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each N; there exist N! € N and €, > 0 such that if |3 — 2| < &% then each
subword of G/(z) of length N; is contained in every subword of G(/3) of length
greater than N!. Since [z, y] is a compact set, there exist 2, 2%, ..., 2! such

rTmy
that
m;
§=0 !

where U(z,e) = {6 € [0,1] | |z — ] < €}. We assume that

o z € U(z, £f),

oy cU(z,, 0m,),
oU(z],az )NU (2, +1)7é®’

if 4 is even, and
o ycU(2, &),
°w€U@h7%) ,
‘U( ) U(z ]+1’EZZ;+1)7£®7

if 4 is odd, forz—O,l,...andj:O,l,...,mi—l.
Choose numbers v§ fori=0,1,...and j =0,1,...,m; — 1 such that

vj- EU(z"»,si YNU (2 ]H, : +1).

Define a sequence of words P?, AZ R;, SJ’ fori =0,1,...and 5 =0,1,...,m;
as follows.
First, we define P%, A9, R}, S? for j = 0,1,...,mo. Put
P° = G(z,1)G(z,2) ...G(x, No)
and consider
P =G(z,Ng+ 1)G(x, Ng +2)...G(x, Ny + Ngg).

By Lemma 23, there exists a subword Ry of P such that |RY| = Ny and R}
is also a subword of G(2(). Write

P=AR)BY.
Since RY is a subword of G(z)), there exists a word S such that |80] Ny
and R{S{ is a subword of G(z(). Since v) € U(z,e) ) NU (27, e ) by

Lemma 23 there exist words Ay, R{ such that |R}| = No, SOAOR is a
subword of G(v]) and RY is a subword of G(2Y). Since RY is a subword of
G(2Y), there exists a word Sy such that |SY| = Ny and RYSY is a subword
of G(29).

Define A2+17 R2+17 Sgﬂ (1 <k <mp—1) inductively as follows: Suppose
that |RY| = |SY| = Ny and R?SY? is a subword of G(z))) and SY_ | AYRY is a
subword of G(v)_;). From v) € U(z,g,egg) N U(zgﬂ,aggﬂ) and Lemma 23
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there exist words A}, and R}, such that |R}) | = No, SPA) R}, is
a subword of G(vf) and R}, is a subword of G(z),). Since R}, is a
subword of G(z)), there exists a word Sj_; such that |S), ;| = Ny and
R)_ S0, is a subword of G(zg+1)

Similarly, we can construct P, A’ R;,SJ’ fori>0and j=0,1,...,m;
such that

o [P = |R}| = |8} = N

e S/ 1P; is a subword of G(x) if i is even, and of G(y) if i is odd,

o Si JALRI is a subword of G(vi_,) for k =1,...,m;, and RS} is a

subword of G(z},),
o P'A} R} is a subword of G(x) if i is even, and of G(y) if i is odd.
For ¢ =0,1,... define
Ui = PPAYR)S(ALR, S, .. Rl Sl and U =UgUhUs...

By construction, we have
(20) Dy, (N:)

m; m;—1
C Dg(e)(Ni) U Dy (N, U D ( U Dawi)(
Let us show that
(21) Dy(N)= | Dg(:)(N) forall N €N,

z€[z,y]

By (20), we have immediately

U Deey(V)

z€[z,y]

Let z € [z,y]. Then, by Lemma 23 there exist ¢ > 0 and N’ such that if
B € U(z,¢), then each subword of G(z) of length N is contained in every
subword of G(f3) of length N'. Since S} is a subword of G(2}) and of G(v}),
and R: +1 is a subword of G(z2%,) and of G(v}) for i = 0,1,... and j =
0,1,...,m; — 1, by Lemma 21 we have

|25 —vj| <2/Ni, |z —vj] < 2/N;.

Consequently, there exist i,j € NU {0} with j < m; such that z} € U(z,¢)
and N; > N’. Therefore, any subword of G(z) of length N is a subword of
R’. Hence, we get (21) and U is a super Bernoulli sequence related to (z,y).

Let x > 0 be irrational. We can construct a super Bernoulli sequence
related to (z,y) of type 2 similarly to the above construction. We outline the
proof. Let zg, x1,... € [0,1] be an increasing sequence x; < = fori =0, 1,...
and lim; .., x; = x. Let Ny, N1,... be an increasing sequence of natural
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numbers. For each k € NU {0} define words P*(zy), A%(xx), R} (1), Sk(xr),
Ui(x;) for i >0 and j = 0,1,...,m; as in the previous discussion using zy
instead of z. Then it is not difficult to show that there exist words H}, for
k=0,1,... such that S2¥(zy)HyP***1(z411) is a subword of G(y). Let

U/ = U()(ZL’Q)HoUl (ZL‘l)UQ(IlZ‘l)HlUg(JTQ) e Uzk(ZBk)HkU2k+1(IEk+1) e

Then U’ is a super Bernoulli sequence related to (z,y) of type 2. Other cases
are similar. m

For a one-sided infinite word S € W(0,1), we define Ps : N — N and
P::N— N by

Ps(N) =tDs(N), P§(N)=4Dg(N).

Pg( ) is called the complezity of S and P§( ) is called the modified
complezity; the latter was introduced in [8]. In Proposition 3 below we give a
representation of super Bernoulli sequences in a specific case. A constructive
representation of super Bernoulli sequences related to (x,z) for = € [0, 1] is
mentioned in [8]. But we have no idea of representation of super Bernoulli
sequences in general cases.

PROPOSITION 3. Let x € [0, 1] be rational and let S be a super Bernoulli
sequence related to (x,x) of type 1. Then S coincides with H(x) except for
a finite number of letters.

Proof. Let x = p/q, where p > 0, ¢ > 0 are integers, p < ¢ and
(p,q) = 1. It is not difficult to see that H(x) is periodic with minimal
period q. Therefore, for all N,

(22) Pr)(N) <q.

Let us show that Py ;)(q) = ¢. Suppose that Pp(4)(q) < ¢. Then there
exist integers 4,7 such that 1 <i < j < ¢ and G(z,i+n) = G(x,j + n) for
n=20,...,q—1.Since H () is periodic with period ¢, we have G(z, j—i+n) =
G(z,n) for n =1,2,... Therefore,

H(z)=G(z,1)...G(z,j —i)H(z) = (G(z,1)...G(z,] — 1)) so-

But this contradicts the fact that H(x) is periodic with minimal period q.
Therefore, Pp(;)(q) = ¢ and from (22) we see that for all N > g,

Pp()(N) = q.
We set S = sgs1..., where sg,s1,... € {0,1}. There exists an integer
m > 0 such that any subword of s,,S;,41... of length ¢ + 1 occurs in-

finitely many times in $,,8m,41 ... From the hypothesis, s,,8m41 ... 8m+q €
D¢(2)(q+1). Since G(x) is also periodic with the same period as H(x),

(23) SmSm41 -+ Smtq € DH(x)(q +1).
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Since H (z) is periodic with period ¢, S, = Sm+q. In the same way, we have
Sm+n = Sm+n+q fOI' n = 0, 1, e

Therefore, $;,Sm+1 - - - is periodic with period q. From (23) we get Sy, Sm41 - - -
oo 8mtq—1 € Dp(2)(q). Therefore, S coincides with H(x) except for a finite
number of letters. m

It is known that for all irrational 2 and natural N, Pg(g)(N) = N+1 ([7]).
It seems difficult to calculate the complexity of super Bernoulli sequences.
But we can calculate their modified complexity.

PROPOSITION 4. Let z,y € [0,1] and x < y. Let S be a super Bernoulli
sequence related to (x,y) of type 1. Then, for all N,

N+1+3N Fla,yi)  if <y,

" _J N+1 if x =y is irrational,
(24) Ps(N) = N+1 ifN<m—-1, . ) .
m N >m if © =1y is rational,

where

F(x,y;i1) =#{q € Q| x < ¢ <y, and the denominator of q is < i},
and m is the denominator of x.

Proof. Let z < y. Fix N > 1. By Lemma 20,

P%(N) = the number of connected components of Ay N (z,y) x S*.
Define 7/, : I — I x S forn =0,1,... by

!

7, (u) = (u,nu) for u eI,
and set
N
N=1x8"—]Jm@).
n=0
Define

g(u,v) = (u,—v) for (u,v) € I x S*.
Then g is a bijective mapping Ay N(z,y) xSt — AN (z,y) xS, Therefore,
O(An N (z,y) x ST) = (AN N (2,y) x 1),
where {(©) is the number of connected components of the topological

space 6.
From geometrical considerations,

(AN N (2,y) x §1) = G(Ay_1 N (z,) x §T)

N-1

= (0 U (D0 (my) x 1) + 1.

n=0



Continued fraction expansion 373

We calculate the right side of the above equation. Notice that for each
natural k,
k—1
(@) = | J{(u,v) [v=ku—i, i/k <u< (i+1)/k},
i=0
and the solution of

v=Nu—m,
{v =nu—n/,
where m,n,n’ e NU{0},0<m<N-1,n<Nand0<n' <n-1,is
given by

- m—n _ Nn' —nm
““N-n YT TuCN

Therefore, the number of points of 75 (1) N Uszo 7 (I) N (z,y) x St is the
number of elements of the set

m m—n’<m—|—1
N~ N-—-n N

/

< J—
N—n

It is not difficult to show that the set (25) is equal to
{¢ € Q| z < q <y, and the denominator of ¢ is < N},

T <y,0§m,n<N,0§n’<n}.

and we have immediately
O(AL N (z,y) x S = 2.
This yields (24). Other cases are easy. m
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