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Zero order estimates for functions satisfying generalized
functional equations of Mahler type

by

TrOMAS TOPFER (Koln)

1. Introduction and results. Zero order estimates for analytic func-
tions are closely related to problems in the theory of transcendental num-
bers. The basic question, if the value f(«) of a transcendental function f
at an algebraic point « is transcendental or—more generally—if the values
fi(a),..., fm(a) of several algebraically independent functions fi,..., fm
are algebraically independent for algebraic «, can be changed into the quan-
titative problem to give lower bounds for |P(fi(«),..., fm(a))| in terms of
the degree and the height of the polynomial P € Z[yi,...,ymn] \ {0}, and in
general zero order estimates are necessary to solve this problem.

In the case of Mahler functions f : U;(0) — C, which satisfy (in the
simplest case) a functional equation of the form

F(z7) = R(z, f(2))

with d € N, d > 2, and a rational function R(z,y), the qualitative and the
quantitative question are extensively studied. For a historical survey of the
qualitative transcendence results see [K]|, [L], [LP], and transcendence mea-
sures can be found in [NT] and in the references given there. The first mea-
sures for algebraic independence were proved by Becker [B1] and—using a
completely different method—by Nesterenko [Ne3|. Both results are effective
in the height, but not in the dependence on the degree of the polynomial P.
This is due to the fact that the construction of the auxiliary function, which
is needed in the proof, depends on Siegel’s lemma. Since this construction is
not explicit, a zero order estimate for the auxiliary function is necessary to
derive completely effective measures, and at that time no zero order estimate
was available.

Using elementary methods, Wass [W] obtained a zero order estimate
and gave an effective version of Nesterenko’s result. One year earlier Nish-
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ioka derived the following general zero order estimate, which is much better
than Wass’ result. The proof was published in [Nil] and is an extension
of Nesterenko’s elimination-theoretic method in [Nel]; more exactly, the
method of [Ne2] is applied to the polynomial ring C[z] over a field C' of
characteristic 0, and applications of this theorem were given by Becker [B2],
Nishioka [Ni2], and Tépfer [T1], [T2].

THEOREM (Nishioka [Nil]). Let f1,..., fm € C[[2]] be formal power se-
ries with coefficients in a field C' of characteristic 0 and satisfy

() — Ai(z, f1(2)s. .oy fm(2))
ety = EE R I <

where d € N, d > 2, and A; € Clz,y1,...,Ym] (0 <i < m) are polynomials
with deg, A; < s and deg,, , A; < t. Suppose that t™ < d and Q €
Clz,y15- -+, Ym| with deg, Q < M, deg,, ., Q< N and M > N > 1. If

Q(z, f1(2),..., fm(2)) # 0, then
ordg Q(z, f1(2),..., fm(2)) < co M N™10gd/(log d—mlogt)
where p=1+s/(d—1t) and

o= max{ ordg Ao(z, f;(_z)t, R fm(z))7

-----

8m2 (8dt)mﬂ(12m(8d)m_l)m log t/(log d—mlog t) } '

Recently a more general kind of functional equations was studied by
Becker [B3], [B4], [B5]. Suppose that the function f is holomorphic in a
neighborhood U of a point 6 € ((/f, the power series expansion of f at 6
has algebraic coefficients, the transformation 7" is meromorphic in U and
algebraic over the function field Q(z) over the algebraic numbers, and f
satisfies a functional equation

(1) A(z, f(2), f(T(2))) = 0

for z € U and a polynomial A(z,y,w) with algebraic coefficients. Under
certain assumptions on f, T, 0, A, and « Becker [B4] proved that f(«) is
transcendental. Quantitative results for functions which satisfy functional
equations of the form (1) with polynomial transformations T'(z) € Q[z] and
A(z,y,w) = w — q(y), ¢ € Q[z] with degq = deg T, the so-called Béttcher
functions, can be found in [B5].

Qualitative algebraic independence results for certain rational transfor-
mations were given by Becker [B3] for functions fi,..., f,, satisfying

(2) fi(z) = ai(2) fi(T(2)) + bi(2) (1 <i<m)



Zero order estimates 3

with a;,b; € Q(2) and T(z) = p(z~ )7L, p € Q[2] of degree at least 2. In
this paper we consider a generalization of (2) and state a zero order estimate
which generalizes the above mentioned result of Nishioka. Applications of
this result to algebraic independence are given in [T3].

THEOREM 1. Let f1,..., fm € C[[z]] be formal power series with coeffi-
cients in a field C' of characteristic 0 and satisfy
Ai(z, f(2))

(1 <i<m),

filT(2)) = Ao(z, f(2))

where f(z2) = (f1(2),..., fm(2)), T(2) = Ti(2)/T2(2) is a rational func-
tion with T1,Ty € C[z], d = max{degTi,degTr}, § = ordgT(z) > 2,
and A; € Clz,y1,...,ym] (0 < i < m) are polynomials with deg, A; < s
and deg,, ., A; <t. Suppose that t™ < 0 and Q € C[z,y1,...,Ym] with
deg, @ < M, deg,, ., Q<N and M >N >1.1IfQ(z, f(2)) #0, then

ordg Q(z, f(2)) < ¢y MN™ogd/(logd—mlogt)

where =1+ s/(d —t) and
{Ordo Ao(z, f(2))
C1 — Inax

§—t ’

,ud5_1m2(85t)m(4m(85)m_1)10g d/(log §—mlogt)—1 }

REMARK. In the special case T'(z) = 2¢, we have § = d, and the assertion
of the theorem is just Nishioka’s result [Nil] with a slightly better constant.

COROLLARY 1. Let f1,..., fm € C[[z]] be formal power series with coef-
ficients in a field C of characteristic 0 which satisfy

fi(z) = ai(2) fi(T(2)) + bi(2) (1 <i<m),
where a;,b; € C(2) are rational functions, T(z) = p(z=1)~* with a polyno-

mial p € Clz] and d = degp > 2. Suppose that Q € Clz,y1,. .., Ym] with
deg, Q@ < M, deg, ., Q<Nand M >N >1.1IfQ(z, f(2)) #0, then
ordg Q(z, f(2)) < ctMN™
with ¢1 = ¢1(a;, bj,d,m) € Ry as in Theorem 1.
Proof. Notice that d =degp =ordgT = >t=1.

COROLLARY 2. Let f1,..., fm € C[[z]] be formal power series with coef-
ficients in a field C of characteristic 0 which satisfy

fi(2) = ai(2) fi(T(2)) + bi(2) (1 <i<m),

where a;,b; € C(z) are rational functions and T € C|z] is a polynomial
with d = degT > 6 = ordg T > 2. Suppose that Q € Clz,y1,...,Ym] with
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deg, Q@ < M, deg,, ., Q<Nand M >N >1. If Q(z, f(2)) #0, then

ordg Q(Z,f(z)) < ClMNmIOgd/ log §
with ¢ = ¢1(a;, bj,d, d,m) € Ry as in Theorem 1.

The proof of Theorem 1 depends on the following criterion for algebraic
independence over fields of Laurent series. This criterion is based on Nish-
ioka’s result [Nil], hence on the elimination-theoretic method of Nesterenko
[Nel], [Ne2] and Philippon [P1], [P2].

For the statement of the criterion we need some notations. Suppose C'is a
field of characteristic 0, v the valuation ordg of the field C((z)) of Laurent se-
ries or its unique extension to the algebraic closure C((z)). For w € C((2)) "

put v(w) = minj<;<m{v(w;)}, and for polynomials Q(z,vo,Y1,-..,Ym) €
Cly] with

o

QY = D Gy (DU - Y

define
v(@) = min {v(quo,...un)ts N(Q)=deg, ., Q H(Q)=deg, Q.

05y bm

THEOREM 2. Let C be a field of characteristic 0 and w € C((z))m
Suppose that there exist increasing functions ¥1,Ws : N — R | positive real

numbers 1, P, A, a nonnegative integer ki and for each k € {0,...,k1}
(nk)

a set of polynomials Q(l) QY € Clz,yr, - . ym] with the following
properties for k € {0,...,k1}, i€ {l,... ,ng}:
(i) @2 > &1, %(k) > max{¥(k), —2v(w)}, A = Ya(k + 1)/ (k),
(i) (a) N(@,)) < @,
(b) H(Q,") < @,
(0) (@) (@) = ! (k),
(d) v(w—0) < Ws(k) for all common zeros § € C’((z)) of Q(l)
AR Q(nk)7
(iii) ¥1 (k1) > 2m(4/1)m_10345m_1 max{®1P(0), mPs}, where cg =1 for
v(w) >0 and c3 = (2m)™ for v(w) < 0.

Then we have with ¢y, = m for v(w) > 0 and ¢4 = 2™m™*2 for v(w) < 0,

lpl (k‘l) S Cq4 (4A)m¢71n¢2

2. Notations and lemmas. For polynomials Q(z, 5o, ¥1,- .-, ¥m) € R[y]
with R = Clz] let H(Q), N(Q), v(Q) be defined as above. If I C R[y| is a
homogeneous ideal, then h(I) denotes the height of I, rad I is the radical

of I, and Z(I) is the zero set of I in C’((z))mJrl \ {0}. For the definition
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of N(I), H(I) (resp. B(I) in [Nil]) and v(I(8)) for 8 € C((2)) " \ {0}
the reader is referred to Nishioka’s paper [Nil]. The projective distance of

B,0 € mmﬂ \ {0} is defined as
V(8,0) = —v(8) —v(@) + min {v(B;0; — 5,0},

<i,5<

and for homogeneous ideals I put

V(8,2(I)) = sup {V(3,0)}

0ez(I)
LEMMA 1. Suppose that P € R[y]\ {0} is a homogeneous polynomial, I =

(P) is the principal ideal in Ry] generated by P, and 3 € C((z))m+1 \ {0}.
Then

N(I)=N(P), H(I)<H(P), v((B))=v(P(p))—N(P)v(p).

Proof. See [Nil], Proposition 1. m

LEMMA 2. Suppose that 3 € C’((Z))mJrl \ {0}, I is an unmized homo-
geneous ideal in Rly], h(I) < m, and I = LN...NI, NI 1N...N1
is its irreducible primary decomposition with I; N R = (0) forl < s and
Ispan...N1p = (b), b€ R\{0}. Forl < s let k; be the exponent of the ideal
I; and P, =rad I;. Then

(1) 22—y kN (P) = N(I),

(i) H(b) + >y kiH(P1) = H(I),

(1ii) v(b) + 32—y kv (Pi(B)) = v(I(8)),

(iv) 0 <w(b) < H(b) < H(I).

When s = t, the terms H(b) and v(b) are missing.

Proof. See [Nil], Proposition 2. m

LEMMA 3. Suppose that 3 € C((z))m+1 \ {0}, P is a nonzero homoge-
neous prime ideal of Rly] with PN R = (0) and h(P) < m, Q € R[y| is a
homogeneous polynomial with Q & P and

A(Q(B)) —v(B)N(Q)) = min{X,V (B, Z(P))} > 0,

where v(P(B)) > X and A > 1. If r = m+1—h(P) > 2, then there exists an
unmized homogeneous ideal I C R[y| with Z(I) = Z(P,Q), h(I) = m—r+2,
such that

(i) N(I) < N(P)N(Q),
(ii) H(I) < H(P)N(Q) + N(P)H(Q),
(iif) v(I(w)) = X/A = H(P)N(Q) — N(P)H(Q).

If h(P) = m, then the right side of inequality (iii) is not positive.



6 T. Topfer

Proof. If X <V(§,Z(P)), we know
v(Q(P)) —v(BIN(Q) = X/A,
and Lemma 3 of [Nil] yields the assertion. If V(8, Z(P)) < X, we have
v(Q(P)) —v(BIN(Q) = V(8, Z(P))/A,
and Lemma 4 of [Nil] implies the assertion. m

LEMMA 4. Suppose I C Rly] is a nonzero unmized homogeneous ideal,
INR=(0), andr =m+1—h(I) > 1. Then for every € C’((z))m+1 \ {0}

we have

N(DV(B,Z(1)) =z v(I(B))/r — 2H(I).
Proof. See Lemma 6 of [Nil]. m

3. Proof of Theorem 2. The proof is analogous to the proof of Theorem
6 in [T1]. As usual in elimination theory, we show by induction that there
exist homogeneous prime ideals P; C Rly| with h(P;) =1 (I = 1,...,m),
which satisfy B

3) N(Pi) < @,
(4) H(Py) < 18",
Wy (k1) ¥y (k1)
(5) v(Pi(B)) = WN(PI) + 2(4A)—1d P, H(Py),

where § = (1,w) € C’((z))mJrl \ {0} for w € C((2)) " as in Theorem 2.
In the last step for [ = m + 1 Lemma 3 implies the asserted inequality of
Theorem 2.

Without loss of generahty we may assume that v(w) > 0. If v(w) < 0,
we suppose that v(w1),...,v(ws) < 0 < v(Wit1),.-.,0(wm) and apply the
transformation

Q(yl7 cee 7ym) - @(ylv s 7ym)
= (yl o 'yﬁ)degQQ(l/yh' ) 1/ymyf<+17 s >ym)

to all polynomials which occur in the proof. Thus with @ = (1/w1,...,1/wy,
Wktls -« Wm) We have
N(Q) <mdegQ <m®, =&, H(Q)=H(Q) < dy <mdy = b,
v(Q@)) = v((wi ... wx)” QW) > v(Q(w)) > W1 (k) = ¥y (k).
Now we suppose that 0= (04,...,0,,) is a common zero of Q( ), .. ,7,57%).
If 0, = 0 for some i € {1,...,k}, then v(@—0) < v(w;) = —v(w;) < —v(w) <
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Wy (k); otherwise
W@—B) = min {—v(w) —v(0:) +vwi — 6;),0(w; — 0,)}

1<i<r
KA1<Gj<m
< —20(w) +v(w — 0) < 2Uy(k) = &5 (k).
Hence (i), (ii) of Theorem 2 are fulfilled with A* = 24, v(w) > 0, and (iii)
follows from
@y (k1) > 2m(4A)™ 12" (@)™ max{2m®, W5 (0), mP, }
= 2m(44%)" 107" max{®1¥; (0), D3}
Therefore we suppose from now on that all assumptions of Theorem 2
are satisfied with v(w) > 0.
Throughout the proof of Theorem 2 let @Q* denote the homogeniza-
tion of the polynomial Q € R[yi,...,Ym], i.e. Q* € Rlyo,y1,..-,Ym] =
Rly] is homogeneous with deg, Q* = deg,, . Q and Q*(1,y1,...,Ym) =

Q(yl) DRI yTn)'
In the first step, [ = 1, we choose one of the polynomials le), ey Q(nkl

say Q;:l), and define the unmixed homogeneous ideal I(1) = (Qéll)*) C R[y|.
Then A(I™)) = 1 and, by Lemma 1,

6) NIy <o, HID) <y,  o(IV(B) > 0(Q) (W) > ¥ (k).

Now suppose that P, ..., P6) ¢ R[y] are the associated prime ideals
of I which are defined in Lemma 2. Then N(P®) < &, H(PW) <
Dy, h(P@W) =1 for i = 1,...,s. If none of the prime ideals P(*) satisfies
inequality (5), we have

oPO(@) < BN pw) L B0 gy po)

1 2
fori=1,...,s, and Lemma 2(iii), (iv) together with Theorem 2(iii) implies
LD (k1) J/ k
(1) 1(k1) 0y 4 Zlk) (i)
v(IM(B)) < v 25, ;kNP ZkHP ) < W (ky),

but this contradicts the rightmost inequality of (6). Thus at least one prime
ideal, say P, satisfies (3)-(5), and we define P; = P(1),

Now we assume that (3)—(5) are fulfilled for | — 1 with I € {2,...,m}.
With

(k) 7y (K1)
B 2(4/1)172@11—1]\7(73[‘1) - 2(44)1-2(1 — 1), 2,

the inequalities v(P—1(8)) > X > ¥,(0) hold, the latter by Theorem 2(iii).

H(P—y)
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Furthermore Lemma 4 and Theorem 2(iii) imply

X H(Pi—1)
V(B,Z(Pi-1)) = (m+1—(1-1)NP_) 2N(77171)

Since

1 1
X < (ky) <2(4A)l—2 + 2(44)=2(1 - 1)

there exists a number k; € {0,...,k;} with

Wg(k‘l) < min{X, V(Q,Z(’Pl_l))} < Wg(kl + 1).

> < W (ky) < Wo(ky),

We claim that at least one of the polynomials Q,S)*, ey g;k’)* does

not belong to P;_;. Otherwise Z(P;_1) C Z(Q,S)*, A ,(C:Lkl)*), and then
Theorem 2(ii)(d) implies after some calculation

(k) < V(8,Z(Pie) < V(B ZQY",...,Q4"")) < (k).

l

but this is a contradiction. Without loss of generality we may assume that

QL ¢ Py
Define 0 € R4 by
min{X, V(5, Z(Pi-1))} = ov(Q," (8)) = ov(Q} (@),
From Theorem 2(i), (ii)(c) and the choice of k; we get
o (k) < ov(Qy) (@) < Palk +1) < AT (R),
hence o < A and
A0(Q))"(B) 2 min{ X, V/(5, Z(Pr-1))}
with A4 > 1 (notice that v(8) = v(l) = 0). By Lemma 3 and Theo-

rem 2(ii), (iii) there exists an unmixed homogeneous ideal () C R[y] with
h(IW) =1 and

(1) N(UIY) <& N(P_y) < B,
(8) HID) < @1 H(Pi_1) + PoN(Pr_y) <1710y,

0 o)z ik

B N(Py) +
D2 Gayig VP e e s,

H(Pi—1).

Once more we consider the associated prime ideals PV, ..., P®) of the ideal
I® according to Lemma 2, which satisfy

NP <@,  HPY)<id\1o,.
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If none of the prime ideals P, 1 < i < s, satisfies (5), from Lemma 2 and
(7), (8) we get

v(I(B))
M - . (2) Lpl kl ()
<U(b)+2(4A)171¢11 ;]’QN(P )+ 2[(4/1 l 1@[ 1¢ ZkHP
_ k) U (k)
- (4/1)"1¢11‘1N(Pl*1) " (I - 1)(4A)l—1¢11—2¢2H(PH)’

but this contradicts (9). So at least one prime ideal P(0) satisfies (3)—(5),
and we choose P; = Plio),
In the last step for [ = m +1 the prime ideal P,,, C R[y] satisfies (3)—(5),
and Theorem 2(iii) implies once more
P5(0) < min{X, V(8,Z(Pn))} < Ya(k1),
so that we can find k1 € {0,..., k1 } with
Py (k1) < min{X, V(3,Z(Pin))} < Yo(km1 +1)

and some v € {1,...,ng,, ., } such that Qg:l ¢ Pp,. Thus Lemma 3 with
r =1 implies

0> X/A—® H(Pp) — P3N (P,
7 (k)
= (et )P
7, (k)
N (2(4A)m—1m/@§”—1¢2

and this completes the proof of Theorem 2. m

e

4. Proof of Theorem 1. To apply Theorem 2, we begin with the poly-
nomial @ € R[y1,...,Yn]) and define a sequence (Qx)ren, of polynomials in
Rly1, ..., ym] with certain functions @1, P9, ¥;,¥; : N — R such that

N(Qr) < @1(k), H(Qr) < Po(k), Wi(k) <v(Qr(w)) <Wa(k)

for k € Ny and w = (f1(2),..., fm(2)). Then we choose the parameter k;
with respect to H(Q) and N (Q), such that (iii) is satisfied with &1 = ®1(k;)
and @y = Py(ky1). To fulfill (ii)(d), we notice that v(w) > 0, and for each

zero § € C((z)) ™ of the polynomial Q. the inequalities

a(k) > v(Qk(w)) = v(Qr(w) — Qi(0))
> 0(Qr) +v(w—0) >v(w—10)
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hold. Then Theorem 2 yields a bound for ¥ (k) and thereby a bound for
v(Q(w)) = ordg Q(z, f(2)).

Without loss of generality we suppose that T(z) = T1(z)/T2(z) with
T5(0) # 0, and inductively we define for k£ € Ny,

QO(Zyyh' . 7ym) = Q(zayla cee 7ym)a

Qk(%Z/h LRI 7ym)
- TQ(Z)H(Qk_I)AO(Za Y1y 7ym)N(Qk_1)

Al(zaylv"'aym) Am(zayh"')ym))
’A()(Zaylv"'aym)’ ’ A0(373/17--~73/m)
Then for all k € Ny we have

Qk ec[zyylv'-'aym]a N(Qk) StN<Qk—1) StkN7
k k

H(Qk) < dH(Qk;_l) + SN(Qk_l) < dkM + SNdd —

X Qr—1 <T(Z)

< pMd*

with =14 s/(d—t). Since T5(0) # 0 and v(T'(z)) = §, we get for the zero
order of
Qi(z, f(2) = To(2) @1 Ag (2, f(2) V1 Qur(T(2), £(T(2)))
the bound
dordg Qr—-1(2, f(2)) < ordg Qr(z, f(2))
< dordg Qr-1(2, f(2)) + N(Qg-1) ordg Ao(z, f(2)),

and this implies with v = v(Q(w)) = ordo Q(z, f(2)),
k_ th
0—t
if we assume without loss of generality that v > Nv(Ag(w))/(d —t). With

d) = Nth, &y =pMd™, A=25 W (k)=uvé" W(k)=206"

No(Ag(w)) < 26Fv = Wy (),

Wy (k) = 6"v < ordg Qi(z, f(2)) < 6 v+

we can apply Theorem 2. Therefore we choose

(m — 1) log(80) + log(4m) + mlog N
logd — mlogt

klz +17

and this implies
vkt > 4m(85)m Tty N™mR

Now we must distinguish between two cases. If ¥;(k;) does not satisfy
(iii) of Theorem 2, then

@y (k) < 2m2(80)™ 1"ty < m>(88) DT Dy.
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Otherwise we get the same upper bound from Theorem 2 and deduce

v < pm2(86)™(dtme M MN™
< Md(s—lmQ(85t)m(4m(86)m—1)10gd/(logé—mlogt)—l
% Mleogd/(logé—mlogt).

This completes the proof of Theorem 1. m
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