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Zero order estimates for functions satisfying generalized
functional equations of Mahler type
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Thomas Töpfer (Köln)

1. Introduction and results. Zero order estimates for analytic func-
tions are closely related to problems in the theory of transcendental num-
bers. The basic question, if the value f(α) of a transcendental function f
at an algebraic point α is transcendental or—more generally—if the values
f1(α), . . . , fm(α) of several algebraically independent functions f1, . . . , fm
are algebraically independent for algebraic α, can be changed into the quan-
titative problem to give lower bounds for |P (f1(α), . . . , fm(α))| in terms of
the degree and the height of the polynomial P ∈ Z[y1, . . . , ym] \ {0}, and in
general zero order estimates are necessary to solve this problem.

In the case of Mahler functions f : U1(0) → C, which satisfy (in the
simplest case) a functional equation of the form

f(zd) = R(z, f(z))

with d ∈ N, d ≥ 2, and a rational function R(z, y), the qualitative and the
quantitative question are extensively studied. For a historical survey of the
qualitative transcendence results see [K], [L], [LP], and transcendence mea-
sures can be found in [NT] and in the references given there. The first mea-
sures for algebraic independence were proved by Becker [B1] and—using a
completely different method—by Nesterenko [Ne3]. Both results are effective
in the height, but not in the dependence on the degree of the polynomial P .
This is due to the fact that the construction of the auxiliary function, which
is needed in the proof, depends on Siegel’s lemma. Since this construction is
not explicit, a zero order estimate for the auxiliary function is necessary to
derive completely effective measures, and at that time no zero order estimate
was available.

Using elementary methods, Wass [W] obtained a zero order estimate
and gave an effective version of Nesterenko’s result. One year earlier Nish-
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ioka derived the following general zero order estimate, which is much better
than Wass’ result. The proof was published in [Ni1] and is an extension
of Nesterenko’s elimination-theoretic method in [Ne1]; more exactly, the
method of [Ne2] is applied to the polynomial ring C[z] over a field C of
characteristic 0, and applications of this theorem were given by Becker [B2],
Nishioka [Ni2], and Töpfer [T1], [T2].

Theorem (Nishioka [Ni1]). Let f1, . . . , fm ∈ C[[z]] be formal power se-
ries with coefficients in a field C of characteristic 0 and satisfy

fi(zd) =
Ai(z, f1(z), . . . , fm(z))
A0(z, f1(z), . . . , fm(z))

(1 ≤ i ≤ m),

where d ∈ N, d ≥ 2, and Ai ∈ C[z, y1, . . . , ym] (0 ≤ i ≤ m) are polynomials
with degz Ai ≤ s and degy1,...,ym Ai ≤ t. Suppose that tm < d and Q ∈
C[z, y1, . . . , ym] with degz Q ≤ M , degy1,...,ym Q ≤ N and M ≥ N ≥ 1. If
Q(z, f1(z), . . . , fm(z)) 6= 0, then

ord0Q(z, f1(z), . . . , fm(z)) ≤ c0MNm log d/(log d−m log t),

where µ = 1 + s/(d− t) and

c0 = max
{

ord0A0(z, f1(z), . . . , fm(z))
d− t ,

8m2(8dt)mµ(12m(8d)m−1)m log t/(log d−m log t)
}
.

Recently a more general kind of functional equations was studied by
Becker [B3], [B4], [B5]. Suppose that the function f is holomorphic in a
neighborhood U of a point θ ∈ Ĉ, the power series expansion of f at θ
has algebraic coefficients, the transformation T is meromorphic in U and
algebraic over the function field Q(z) over the algebraic numbers, and f
satisfies a functional equation

(1) A(z, f(z), f(T (z))) = 0

for z ∈ U and a polynomial A(z, y, w) with algebraic coefficients. Under
certain assumptions on f , T , θ, A, and α Becker [B4] proved that f(α) is
transcendental. Quantitative results for functions which satisfy functional
equations of the form (1) with polynomial transformations T (z) ∈ Q[z] and
A(z, y, w) = w − q(y), q ∈ Q[z] with deg q = deg T , the so-called Böttcher
functions, can be found in [B5].

Qualitative algebraic independence results for certain rational transfor-
mations were given by Becker [B3] for functions f1, . . . , fm satisfying

(2) fi(z) = ai(z)fi(T (z)) + bi(z) (1 ≤ i ≤ m)
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with ai, bi ∈ Q(z) and T (z) = p(z−1)−1, p ∈ Q[z] of degree at least 2. In
this paper we consider a generalization of (2) and state a zero order estimate
which generalizes the above mentioned result of Nishioka. Applications of
this result to algebraic independence are given in [T3].

Theorem 1. Let f1, . . . , fm ∈ C[[z]] be formal power series with coeffi-
cients in a field C of characteristic 0 and satisfy

fi(T (z)) =
Ai(z, f(z))

A0(z, f(z))
(1 ≤ i ≤ m),

where f(z) = (f1(z), . . . , fm(z)), T (z) = T1(z)/T2(z) is a rational func-
tion with T1, T2 ∈ C[z], d = max{deg T1,deg T2}, δ = ord0 T (z) ≥ 2,
and Ai ∈ C[z, y1, . . . , ym] (0 ≤ i ≤ m) are polynomials with degz Ai ≤ s
and degy1,...,ym Ai ≤ t. Suppose that tm < δ and Q ∈ C[z, y1, . . . , ym] with
degz Q ≤M , degy1,...,ym Q ≤ N and M ≥ N ≥ 1. If Q(z, f(z)) 6= 0, then

ord0Q(z, f(z)) ≤ c1MNm log d/(log δ−m log t),

where µ = 1 + s/(d− t) and

c1 = max
{

ord0A0(z, f(z))

δ − t ,

µdδ−1m2(8δt)m(4m(8δ)m−1)log d/(log δ−m log t)−1
}
.

Remark. In the special case T (z) = zd, we have δ = d, and the assertion
of the theorem is just Nishioka’s result [Ni1] with a slightly better constant.

Corollary 1. Let f1, . . . , fm ∈ C[[z]] be formal power series with coef-
ficients in a field C of characteristic 0 which satisfy

fi(z) = ai(z)fi(T (z)) + bi(z) (1 ≤ i ≤ m),

where ai, bi ∈ C(z) are rational functions, T (z) = p(z−1)−1 with a polyno-
mial p ∈ C[z] and d = deg p ≥ 2. Suppose that Q ∈ C[z, y1, . . . , ym] with
degz Q ≤M , degy1,...,ym Q ≤ N and M ≥ N ≥ 1. If Q(z, f(z)) 6= 0, then

ord0Q(z, f(z)) ≤ c1MNm

with c1 = c1(ai, bj , d,m) ∈ R+ as in Theorem 1.

P r o o f. Notice that d = deg p = ord0 T = δ > t = 1.

Corollary 2. Let f1, . . . , fm ∈ C[[z]] be formal power series with coef-
ficients in a field C of characteristic 0 which satisfy

fi(z) = ai(z)fi(T (z)) + bi(z) (1 ≤ i ≤ m),

where ai, bi ∈ C(z) are rational functions and T ∈ C[z] is a polynomial
with d = deg T ≥ δ = ord0 T ≥ 2. Suppose that Q ∈ C[z, y1, . . . , ym] with
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degz Q ≤M , degy1,...,ym Q ≤ N and M ≥ N ≥ 1. If Q(z, f(z)) 6= 0, then

ord0Q(z, f(z)) ≤ c1MNm log d/ log δ

with c1 = c1(ai, bj , d, δ,m) ∈ R+ as in Theorem 1.

The proof of Theorem 1 depends on the following criterion for algebraic
independence over fields of Laurent series. This criterion is based on Nish-
ioka’s result [Ni1], hence on the elimination-theoretic method of Nesterenko
[Ne1], [Ne2] and Philippon [P1], [P2].

For the statement of the criterion we need some notations. Suppose C is a
field of characteristic 0, v the valuation ord0 of the field C((z)) of Laurent se-
ries or its unique extension to the algebraic closure C((z)). For ω ∈ C((z))

m

put v(ω) = min1≤i≤m{v(ωi)}, and for polynomials Q(z, y0, y1, . . . , ym) ∈
C[y] with

Q(z, y) =
σ∑

µ0,...,µm=0

qµ0,...,µm(z)yµ0
0 . . . yµmm

define

v(Q) = min
µ0,...,µm

{v(qµ0,...,µm)}, N(Q) = degy1,...,ym Q, H(Q) = degz Q.

Theorem 2. Let C be a field of characteristic 0 and ω ∈ C((z))
m

.
Suppose that there exist increasing functions Ψ1, Ψ2 : N → R+, positive real
numbers Φ1, Φ2, Λ, a nonnegative integer k1 and for each k ∈ {0, . . . , k1}
a set of polynomials Q

(1)
k , . . . , Q

(nk)
k ∈ C[z, y1, . . . , ym] with the following

properties for k ∈ {0, . . . , k1}, i ∈ {1, . . . , nk}:
(i) Φ2 ≥ Φ1, Ψ2(k) ≥ max{Ψ1(k),−2v(ω)}, Λ ≥ Ψ2(k + 1)/Ψ1(k),

(ii) (a) N(Q(i)
k ) ≤ Φ1,

(b) H(Q(i)
k ) ≤ Φ2,

(c) v(Q(i)
k (ω)) ≥ Ψ1(k),

(d) v(ω− θ) ≤ Ψ2(k) for all common zeros θ ∈ C((z))
m

of Q(1)
k , . . .

. . . , Q
(nk)
k ,

(iii) Ψ1(k1) > 2m(4Λ)m−1c3Φ
m−1
1 max{Φ1Ψ2(0),mΦ2}, where c3 = 1 for

v(ω) ≥ 0 and c3 = (2m)m for v(ω) < 0.

Then we have with c4 = m for v(ω) ≥ 0 and c4 = 2mmm+2 for v(ω) < 0,

Ψ1(k1) ≤ c4(4Λ)mΦm1 Φ2.

2. Notations and lemmas. For polynomials Q(z, y0, y1, . . . , ym) ∈ R[y]
with R = C[z] let H(Q), N(Q), v(Q) be defined as above. If I ⊂ R[y] is a
homogeneous ideal, then h(I) denotes the height of I, rad I is the radical

of I, and Z(I) is the zero set of I in C((z))
m+1 \ {0}. For the definition
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of N(I), H(I) (resp. B(I) in [Ni1]) and v(I(β)) for β ∈ C((z))
m+1 \ {0}

the reader is referred to Nishioka’s paper [Ni1]. The projective distance of

β, θ ∈ C((z))
m+1 \ {0} is defined as

V (β, θ) = −v(β)− v(θ) + min
0≤i,j≤m

{v(βiθj − βjθi)},

and for homogeneous ideals I put

V (β, Z(I)) = sup
θ∈Z(I)

{V (β, θ)}.

Lemma 1. Suppose that P ∈ R[y]\{0} is a homogeneous polynomial , I =

(P ) is the principal ideal in R[y] generated by P , and β ∈ C((z))
m+1 \ {0}.

Then

N(I) = N(P ), H(I) ≤ H(P ), v(I(β)) ≥ v(P (β))−N(P )v(β).

P r o o f. See [Ni1], Proposition 1.

Lemma 2. Suppose that β ∈ C((z))
m+1 \ {0}, I is an unmixed homo-

geneous ideal in R[y], h(I) ≤ m, and I = I1 ∩ . . . ∩ Is ∩ Is+1 ∩ . . . ∩ It
is its irreducible primary decomposition with Il ∩ R = (0) for l ≤ s and
Is+1 ∩ . . .∩ It = (b), b ∈ R \ {0}. For l ≤ s let kl be the exponent of the ideal
Il and Pl = rad Il. Then

(i)
∑s
l=1 klN(Pl) = N(I),

(ii) H(b) +
∑s
l=1 klH(Pl) = H(I),

(iii) v(b) +
∑s
l=1 klv(Pl(β)) = v(I(β)),

(iv) 0 ≤ v(b) ≤ H(b) ≤ H(I).

When s = t, the terms H(b) and v(b) are missing.

P r o o f. See [Ni1], Proposition 2.

Lemma 3. Suppose that β ∈ C((z))
m+1 \ {0}, P is a nonzero homoge-

neous prime ideal of R[y] with P ∩ R = (0) and h(P) ≤ m, Q ∈ R[y] is a
homogeneous polynomial with Q 6∈ P and

Λ(v(Q(β))− v(β)N(Q)) ≥ min{X,V (β, Z(P))} > 0,

where v(P(β)) ≥ X and Λ ≥ 1. If r = m+1−h(P) ≥ 2, then there exists an
unmixed homogeneous ideal I ⊂ R[y] with Z(I) = Z(P, Q), h(I) = m−r+2,
such that

(i) N(I) ≤ N(P)N(Q),
(ii) H(I) ≤ H(P)N(Q) +N(P)H(Q),

(iii) v(I(ω)) ≥ X/Λ−H(P)N(Q)−N(P)H(Q).

If h(P) = m, then the right side of inequality (iii) is not positive.
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P r o o f. If X ≤ V (β, Z(P)), we know

v(Q(β))− v(β)N(Q) ≥ X/Λ,
and Lemma 3 of [Ni1] yields the assertion. If V (β, Z(P)) ≤ X, we have

v(Q(β))− v(β)N(Q) ≥ V (β, Z(P))/Λ,

and Lemma 4 of [Ni1] implies the assertion.

Lemma 4. Suppose I ⊂ R[y] is a nonzero unmixed homogeneous ideal ,

I ∩R = (0), and r = m+ 1−h(I) ≥ 1. Then for every β ∈ C((z))
m+1 \ {0}

we have

N(I)V (β, Z(I)) ≥ v(I(β))/r − 2H(I).

P r o o f. See Lemma 6 of [Ni1].

3. Proof of Theorem 2. The proof is analogous to the proof of Theorem
6 in [T1]. As usual in elimination theory, we show by induction that there
exist homogeneous prime ideals Pl ⊂ R[y] with h(Pl) = l (l = 1, . . . ,m),
which satisfy

N(Pl) ≤ Φl1,(3)

H(Pl) ≤ lΦl−1
1 Φ2,(4)

v(Pl(β)) ≥ Ψ1(k1)
2(4Λ)l−1Φl1

N(Pl) +
Ψ1(k1)

2(4Λ)l−1lΦl−1
1 Φ2

H(Pl),(5)

where β = (1, ω) ∈ C((z))
m+1 \ {0} for ω ∈ C((z))

m
as in Theorem 2.

In the last step for l = m + 1 Lemma 3 implies the asserted inequality of
Theorem 2.

Without loss of generality we may assume that v(ω) ≥ 0. If v(ω) < 0,
we suppose that v(ω1), . . . , v(ωκ) < 0 ≤ v(ωκ+1), . . . , v(ωm) and apply the
transformation

Q(y1, . . . , ym)→ Q(y1, . . . , ym)

= (y1 . . . yκ)degQQ(1/y1, . . . , 1/yκ, yκ+1, . . . , ym)

to all polynomials which occur in the proof. Thus with ω = (1/ω1, . . . , 1/ωκ,
ωκ+1, . . . , ωm) we have

N(Q) ≤ m degQ ≤ mΦ1 = Φ∗1, H(Q) = H(Q) ≤ Φ2 ≤ mΦ2 = Φ∗2,

v(Q(ω)) = v((ω1 . . . ωκ)− degQQ(ω)) ≥ v(Q(ω)) ≥ Ψ1(k) = Ψ∗1 (k).

Now we suppose that θ = (θ1, . . . , θm) is a common zero of Q
(1)
k , . . . , Q

(nk)
k .

If θi = 0 for some i ∈ {1, . . . , κ}, then v(ω−θ) ≤ v(ωi) = −v(ωi) ≤ −v(ω) ≤
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Ψ2(k); otherwise

v(ω − θ) = min
1≤i≤κ

κ+1≤j≤m
{−v(ωi)− v(θi) + v(ωi − θi), v(ωj − θj)}

≤ −2v(ω) + v(ω − θ) ≤ 2Ψ2(k) = Ψ∗2 (k).

Hence (i), (ii) of Theorem 2 are fulfilled with Λ∗ = 2Λ, v(ω) ≥ 0, and (iii)
follows from

Ψ∗1 (k1) > 2m(4Λ)m−12m−1(mΦ1)m−1 max{2mΦ1Ψ2(0),mΦ2}
= 2m(4Λ∗)m−1Φ∗m−1

1 max{Φ∗1Ψ∗2 (0), Φ∗2}.
Therefore we suppose from now on that all assumptions of Theorem 2

are satisfied with v(ω) ≥ 0.
Throughout the proof of Theorem 2 let Q∗ denote the homogeniza-

tion of the polynomial Q ∈ R[y1, . . . , ym], i.e. Q∗ ∈ R[y0, y1, . . . , ym] =
R[y] is homogeneous with degy Q

∗ = degy1,...,ym Q and Q∗(1, y1, . . . , ym) =
Q(y1, . . . , ym).

In the first step, l = 1, we choose one of the polynomials Q(1)
k1
, . . . , Q

(nk1 )
k1

,

say Q(1)
k1

, and define the unmixed homogeneous ideal I(1) = (Q(1)∗
k1

) ⊂ R[y].
Then h(I(1)) = 1 and, by Lemma 1,

(6) N(I(1)) ≤ Φ1, H(I(1)) ≤ Φ2, v(I(1)(β)) ≥ v(Q(1)
k1

(ω)) ≥ Ψ1(k1).

Now suppose that P(1), . . . ,P(s) ⊂ R[y] are the associated prime ideals
of I(1), which are defined in Lemma 2. Then N(P(i)) ≤ Φ1, H(P(i)) ≤
Φ2, h(P(i)) = 1 for i = 1, . . . , s. If none of the prime ideals P(i) satisfies
inequality (5), we have

v(P(i)(β)) <
Ψ1(k1)

2Φ1
N(P(i)) +

Ψ1(k1)
2Φ2

H(P(i))

for i = 1, . . . , s, and Lemma 2(iii), (iv) together with Theorem 2(iii) implies

v(I(1)(β)) < v(b) +
Ψ1(k1)

2Φ1

s∑

i=1

kiN(P(i)) +
Ψ1(k1)

2Φ2

s∑

i=1

kiH(P(i)) ≤ Ψ1(k1),

but this contradicts the rightmost inequality of (6). Thus at least one prime
ideal, say P(1), satisfies (3)–(5), and we define P1 = P(1).

Now we assume that (3)–(5) are fulfilled for l − 1 with l ∈ {2, . . . ,m}.
With

X =
Ψ1(k1)

2(4Λ)l−2Φl−1
1

N(Pl−1) +
Ψ1(k1)

2(4Λ)l−2(l − 1)Φl−2
1 Φ2

H(Pl−1)

the inequalities v(Pl−1(β)) ≥ X > Ψ2(0) hold, the latter by Theorem 2(iii).
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Furthermore Lemma 4 and Theorem 2(iii) imply

V (β, Z(Pl−1)) ≥ X

(m+ 1− (l − 1))N(Pl−1)
− 2

H(Pl−1)
N(Pl−1)

> Ψ2(0).

Since

X ≤ Ψ1(k1)
(

1
2(4Λ)l−2 +

1
2(4Λ)l−2(l − 1)

)
≤ Ψ1(k1) ≤ Ψ2(k1),

there exists a number kl ∈ {0, . . . , k1} with

Ψ2(kl) < min{X,V (β, Z(Pl−1))} ≤ Ψ2(kl + 1).

We claim that at least one of the polynomials Q(1)∗
kl

, . . . , Q
(nkl )∗
kl

does

not belong to Pl−1. Otherwise Z(Pl−1) ⊂ Z(Q(1)∗
kl

, . . . , Q
(nkl )∗
kl

), and then
Theorem 2(ii)(d) implies after some calculation

Ψ2(kl) < V (β, Z(Pl−1)) ≤ V (β, Z(Q(1)∗
kl

, . . . , Q
(nkl )∗
kl

)) ≤ Ψ2(kl),

but this is a contradiction. Without loss of generality we may assume that
Q

(1)∗
kl
6∈ Pl−1.

Define σ ∈ R+ by

min{X,V (β, Z(Pl−1))} = σv(Q(1)∗
kl

(β)) = σv(Q(1)
kl

(ω)).

From Theorem 2(i), (ii)(c) and the choice of kl we get

σΨ1(kl) ≤ σv(Q(1)
kl

(ω)) ≤ Ψ2(kl + 1) ≤ ΛΨ1(kl),

hence σ ≤ Λ and

Λv(Q(1)∗
kl

(β)) ≥ min{X,V (β, Z(Pl−1))}
with Λ ≥ 1 (notice that v(β) = v(1) = 0). By Lemma 3 and Theo-
rem 2(ii), (iii) there exists an unmixed homogeneous ideal I(l) ⊂ R[y] with
h(I(l)) = l and

N(I(l)) ≤ Φ1N(Pl−1) ≤ Φl1,(7)

H(I(l)) ≤ Φ1H(Pl−1) + Φ2N(Pl−1) ≤ lΦl−1
1 Φ2,(8)

v(I(l)(β)) ≥ Ψ1(k1)

(4Λ)l−1Φl−1
1

N(Pl−1) +
Ψ1(k1)

(4Λ)l−1(l − 1)Φl−2
1 Φ2

H(Pl−1).(9)

Once more we consider the associated prime ideals P(1), . . . ,P(s) of the ideal
I(l) according to Lemma 2, which satisfy

N(P(i)) ≤ Φl1, H(P(i)) ≤ lΦl−1
1 Φ2.
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If none of the prime ideals P(i), 1 ≤ i ≤ s, satisfies (5), from Lemma 2 and
(7), (8) we get

v(I(l)(β))

< v(b) +
Ψ1(k1)

2(4Λ)l−1Φl1

s∑

i=1

kiN(P(i)) +
Ψ1(k1)

2l(4Λ)l−1Φl−1
1 Φ2

s∑

i=1

kiH(P(i))

≤ Ψ1(k1)

(4Λ)l−1Φl−1
1

N(Pl−1) +
Ψ1(k1)

(l − 1)(4Λ)l−1Φl−2
1 Φ2

H(Pl−1),

but this contradicts (9). So at least one prime ideal P(i0) satisfies (3)–(5),
and we choose Pl = P(i0).

In the last step for l = m+1 the prime ideal Pm ⊂ R[y] satisfies (3)–(5),
and Theorem 2(iii) implies once more

Ψ2(0) < min{X,V (β, Z(Pm))} ≤ Ψ2(k1),

so that we can find km+1 ∈ {0, . . . , k1} with

Ψ2(km+1) < min{X,V (β, Z(Pm))} ≤ Ψ2(km+1 + 1)

and some ν ∈ {1, . . . , nkm+1} such that Q(ν)∗
km+1

6∈ Pm. Thus Lemma 3 with
r = 1 implies

0 ≥ X/Λ− Φ1H(Pm)− Φ2N(Pm)

≥
(

Ψ1(k1)
2(4Λ)m−1ΛΦm1

− Φ2

)
N(Pm)

+
(

Ψ1(k1)
2(4Λ)m−1mΛΦm−1

1 Φ2
− Φ1

)
H(Pm),

and this completes the proof of Theorem 2.

4. Proof of Theorem 1. To apply Theorem 2, we begin with the poly-
nomial Q ∈ R[y1, . . . , ym] and define a sequence (Qk)k∈N0 of polynomials in
R[y1, . . . , ym] with certain functions Φ1, Φ2, Ψ1, Ψ2 : N→ R+ such that

N(Qk) ≤ Φ1(k), H(Qk) ≤ Φ2(k), Ψ1(k) ≤ v(Qk(ω)) ≤ Ψ2(k)

for k ∈ N0 and ω = (f1(z), . . . , fm(z)). Then we choose the parameter k1

with respect to H(Q) and N(Q), such that (iii) is satisfied with Φ1 = Φ1(k1)
and Φ2 = Φ2(k1). To fulfill (ii)(d), we notice that v(ω) ≥ 0, and for each
zero θ ∈ C((z))

m
of the polynomial Qk the inequalities

Ψ2(k) ≥ v(Qk(ω)) = v(Qk(ω)−Qk(θ))

≥ v(Qk) + v(ω − θ) ≥ v(ω − θ)
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hold. Then Theorem 2 yields a bound for Ψ1(k1) and thereby a bound for
v(Q(ω)) = ord0Q(z, f(z)).

Without loss of generality we suppose that T (z) = T1(z)/T2(z) with
T2(0) 6= 0, and inductively we define for k ∈ N0,

Q0(z, y1, . . . , ym) = Q(z, y1, . . . , ym),

Qk(z, y1, . . . , ym)

= T2(z)H(Qk−1)A0(z, y1, . . . , ym)N(Qk−1)

×Qk−1

(
T (z),

A1(z, y1, . . . , ym)
A0(z, y1, . . . , ym)

, . . . ,
Am(z, y1, . . . , ym)
A0(z, y1, . . . , ym)

)
.

Then for all k ∈ N0 we have

Qk ∈ C[z, y1, . . . , ym], N(Qk) ≤ tN(Qk−1) ≤ tkN,

H(Qk) ≤ dH(Qk−1) + sN(Qk−1) ≤ dkM + sN
dk − tk
d− t ≤ µMdk

with µ = 1 + s/(d− t). Since T2(0) 6= 0 and v(T (z)) = δ, we get for the zero
order of

Qk(z, f(z)) = T2(z)H(Qk−1)A0(z, f(z))N(Qk−1)Qk−1(T (z), f(T (z)))

the bound

δ ord0Qk−1(z, f(z)) ≤ ord0Qk(z, f(z))

≤ δ ord0Qk−1(z, f(z)) +N(Qk−1) ord0A0(z, f(z)),

and this implies with ν = v(Q(ω)) = ord0Q(z, f(z)),

Ψ1(k) = δkν ≤ ord0Qk(z, f(z)) ≤ δkν+
δk − tk
δ − t Nv(A0(ω)) ≤ 2δkν = Ψ2(k),

if we assume without loss of generality that ν ≥ Nv(A0(ω))/(δ − t). With

Φ1 = Ntk1 , Φ2 = µMdk1 , Λ = 2δ, Ψ1(k) = νδk, Ψ2(k) = 2νδk

we can apply Theorem 2. Therefore we choose

k1 =
[

(m− 1) log(8δ) + log(4m) +m logN
log δ −m log t

]
+ 1,

and this implies

νδk1 ≥ 4m(8δ)m−1νNmtmk1 .

Now we must distinguish between two cases. If Ψ1(k1) does not satisfy
(iii) of Theorem 2, then

Ψ1(k1) ≤ 2m2(8δ)m−1Φm−1
1 Φ2 ≤ m2(8δ)mΦm1 Φ2.
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Otherwise we get the same upper bound from Theorem 2 and deduce

ν ≤ µm2(8δ)m(dtmδ−1)k1MNm

≤ µdδ−1m2(8δt)m(4m(8δ)m−1)log d/(log δ−m log t)−1

×MNm log d/(log δ−m log t).

This completes the proof of Theorem 1.

References

[B1] P.-G. Becker -Landeck, Maße für algebraische Unabhängigkeit nach einer Me-
thode von Mahler , Acta Arith. 50 (1988), 279–293.

[B2] P.-G. Becker, Effective measures for algebraic independence of the values of
Mahler type functions, ibid. 58 (1991), 239–250.

[B3] —, Algebraic independence of the values of certain series by Mahler’s method ,
Monatsh. Math. 114 (1992), 183–198.

[B4] —, Transcendence of the values of functions satisfying generalized Mahler type
functional equations, J. Reine Angew. Math. 440 (1993), 111–128.

[B5] —, Transcendence measures for the values of generalized Mahler functions in ar-
bitrary characteristic, Publ. Math. Debrecen 45 (1994), 269–282.

[K] K. K. Kubota, Linear functional equations and algebraic independence, in: Tran-
scendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.),
Academic Press, New York, 1977, 227–229.

[L] J. H. Loxton, Automata and transcendence, in: New Advances in Transcendence
Theory, A. Baker (ed.), Cambridge Univ. Press, Cambridge, 1988, 215–228.

[LP] J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic inde-
pendence by a method of Mahler , in: Transcendence Theory: Advances and Ap-
plications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977,
211–226.

[Ne1] Yu. V. Nesterenko, Estimates for the orders of zeros of functions of a certain
class and applications in the theory of transcendental numbers, Izv. Akad. Nauk
SSSR Ser. Mat. 41 (1977), 253–284 (in Russian); English transl.: Math. USSR-Izv.
11 (1977), 239–270.

[Ne2] —, On algebraic independence of algebraic powers of algebraic numbers, Mat. Sb.
123 (165) (1984), 435–459 (in Russian); English transl.: Math. USSR-Sb. 51 (1985),
429–454.

[Ne3] —, On a measure of the algebraic independence of the values of certain functions,
Mat. Sb. 128 (170) (1985), 545–568 (in Russian); English transl.: Math. USSR-Sb.
56 (1987), 545–567.

[Ni1] K. Nish ioka, On an estimate for the orders of zeros of Mahler type functions,
Acta Arith. 56 (1990), 249–256.

[Ni2] —, Algebraic independence measures of the values of Mahler functions, J. Reine
Angew. Math. 420 (1991), 203–214.
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