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Jacobi symbols, ambiguous ideals, and continued fractions
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R. A. Mollin (Calgary, Alta.)

The purpose of this paper is to generalize some seminal results in the
literature concerning the interrelationships between Legendre symbols and
continued fractions. We introduce the power of ideal theory into the arena.
This allows significant improvements over the existing results via the infra-
structure of real quadratic fields.

1. Notation and preliminaries. Let D0 > 1 be a square-free positive
integer and set

σ0 =
{

2 if D0 ≡ 1 (mod 4),
1 otherwise.

Define

ω0 = (σ0 − 1 +
√
D0)/σ0 and ∆0 = (ω0 − ω′0)2 = 4D0/σ

2
0 ,

where ω′0 is the algebraic conjugate of ω0, namely ω′0 = (σ0− 1−√D0 )/σ0.
The value ∆0 is called a fundamental discriminant or field discriminant
with associated radicand D0, and ω0 is called the principal fundamental
surd associated with ∆0. Let

∆ = f2
∆∆0

for some f∆ ∈ N. If we set g = gcd(f∆, σ0), σ = σ0/g, D = (f∆/g)2D0, and
∆ = 4D/σ2, then ∆ is called a discriminant with associated radicand D.
Furthermore, if we let

ω∆ = (σ − 1 +
√
D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the
discriminant ∆ = (ω∆−ω′∆)2. This will provide the canonical basis element
for certain rings that we now define.
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Let [α, β] = αZ+ βZ be a Z-module. Then

O∆ = [1, ω∆],

is an order in K = Q(
√
∆) = Q(

√
D0) with conductor f∆. If f∆ = 1, then

O∆ is called the maximal order in K.
Now we bring ideal theory into the picture. Let I = [a, b + cω∆], with

a > 0. The following tells us when such a module is an ideal (see [4, Exercise
1.2.1(a), p. 12]).

Proposition 1.1 (Ideal Criterion). Let ∆ be a discriminant , and let
I 6= (0) be a Z-submodule of O∆. Then I has a representation of the form

I = [a, b+ cω∆],

where a, c ∈ N and b ∈ Z with 0 ≤ b < a. Furthermore, I is an ideal of O∆
if and only if this representation satisfies c | a, c | b, and ac |N(b+cω∆). (For
convenience, we call I an O∆-ideal.) If c = 1, then I is called primitive,
and I has a canonical representation as

I = [a, (b+
√
∆)/2],

with −a ≤ b < a.

If I = [a, b + ω∆] is a primitive O∆-ideal, then a is the least positive
rational integer in I, denoted by N(I) = a and called the norm of I.

An O∆-ideal I is called reduced if there does not exist any element α ∈ I
such that both |α| < N(I) and |α′| < N(I), where α′ denotes the algebraic
conjugate of α ∈ O∆, namely if α = (x+ y

√
∆)/2, then α′ = (x− y√∆)/2.

On the other hand, the conjugate of the ideal I is I ′ = [a, b+ ω′∆].
It is convenient to have easily verified conditions for reduction (see [4,

Corollaries 1.4.2–1.4.4, p. 19]).

Theorem 1.1. Suppose that ∆ > 0 is a discriminant and I = [a, b+ω∆]
is an O∆-ideal. Then each of the following holds:

1. If N(I) <
√
∆/2, then I is reduced.

2. If I is reduced , then N(I) <
√
∆.

3. If 0 ≤ b < a <
√
∆ and a >

√
∆/2, then I is reduced if and only if

a− ω∆ < b < −ω′∆.
Now we give an elucidation of the theory of continued fractions as it

pertains to the above. Continued fraction expansions will be denoted

〈a0; a1, a2, . . . , al, . . .〉,
where ai ∈ R are called the partial quotients of the continued fraction ex-
pansion. If ai ∈ Z, and ai > 0 for all i > 0, then the continued fraction is
called an infinite simple continued fraction (which is equivalent to being an
irrational number), whereas if the expression terminates, then it is called
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a finite simple continued fraction (which is equivalent to being a rational
number).

We will be discussing quadratic irrationals which are real numbers γ
associated with a radicand D such that γ can be written in the form

γ = (P +
√
D)/Q,

where P,Q,D ∈ Z, D > 0, Q 6= 0, and P 2 ≡ D (mod Q). The following is
a setup for our discussion of the continued fraction algorithm.

Suppose that I = [a, b+ ω∆] is a primitive ideal in O∆. Then we define
the following for the quadratic irrational γ = (b+ω∆)/a (where g and h are
defined above):

(1.1) (P0, Q0) = ((σ0b+ f∆(σ0 − 1) + hσ0)/g, aσ0/g),

and (for i ≥ 0),

D = P 2
i+1 +QiQi+1,(1.2)

Pi+1 = aiQi − Pi,(1.3)

ai = b(Pi +
√
D)/Qic,(1.4)

where bxc is the greatest integer less than or equal to x, i.e. the floor of x.
Therefore, γ = 〈a0; a1, . . . , ai, . . .〉 is the simple continued fraction expansion
of γ.

Remark 1.1. The simple continued fraction expansion of a quadratic
irrational γ is called purely periodic provided that there is an integer l ∈ N
such that γ = 〈a0; a1, a2, . . . , al〉 = 〈a0; a1, a2, . . . , al−1〉. The value l = l(γ)
is called the period length of the simple continued fraction expansion of γ.
Furthermore, quadratic irrationals are purely periodic if and only if they are
reduced, i.e. a quadratic irrational γ is purely periodic if and only if γ > 1
and −1 < γ′ < 0.

In what follows we need the notion of equivalence of ideals. Two ideals
I and J of O∆ are equivalent (denoted by I ∼ J) if there exist non-zero
α, β ∈ O∆ such that (α)I = (β)J (where (x) denotes the principal ideal
generated by x). For a discriminant ∆, the class group of O∆ determined by
these equivalence classes is denoted by C∆, with order h∆, the class number
of O∆. The following is fundamental to the discussion (see [4, Theorem 2.1.2,
pp. 44–47]). The following relationship between the ideals and continued
fractions was dubbed the infrastructure of a real quadratic field by Dan
Shanks.

Theorem 1.2 (The Continued Fraction Algorithm). Let ∆ > 0 be a
discriminant , and let I = I1 = [a, b + ω∆] be a primitive ideal in the order
O∆. Set P = P0 and Q = Q0, as defined in (1.1), and let Pi and Qi for
i > 0 be defined by (1.2)–(1.4) in the simple continued fraction expansion of
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γ = γ0 = (P +
√
D)/Q. If Ii = [Qi−1/σ, (Pi−1 +

√
D)/σ], then I1 ∼ Ii for

all i ≥ 1. Also, there exists a least value m ≥ 1 such that Im+i is reduced
for all i ≥ 0.

In the next section the methods of proof require results on the following
well-known pair of sequences. For a quadratic irrational γ = 〈a0; a1, . . .〉,
define two sequences of integers {Ai} and {Bi} inductively by:

A−2 = 0, A−1 = 1, Ai = aiAi−1 +Ai−2 for i ≥ 0,(1.5)

B−2 = 1, B−1 = 0, Bi = aiBi−1 +Bi−2 for i ≥ 0.(1.6)

The first result for these sequences comes from [4, Exercise 2.1.2(c),
p. 54]:

(1.7) AkBk−1 −Ak−1Bk = (−1)k−1

for any k ∈ N.
If γ =

√
D, and l = l(

√
D), where D > 0 is a radicand, then by [4,

Exercise 2.1.2(g)(iv), p. 55],

(1.8) A2
k−1 −B2

k−1D = (−1)kQk.

Also, if we define the alternating sum for
√
D as

Σ =
l∑

j=1

(−1)l−jaj ,

then by [3, (3.3), p. 369], if l is even,

Σ ≡ l + 2 + al/2 + 2Bl/2−2 + 2Bl/2−1 + 2Al/2−2(1.9)

+ 2Al/2−1 + 2Al/2−1Bl/2−2 (mod 4),

and by [3, (4.1), p. 370],

(1.10) (−1)l/2al/2Ql/2 + 2(Al/2−1Al/2−2 −DBl/2−1Bl/2−2) = 0.

If l(
√
D) = l is odd, then by [4, Exercise 2.1.13(a), p. 58], aj = al−j

whenever 1 ≤ j < l. Thus, in this case

(1.11) Σ = 2a0.

The reader is cautioned that our notation is in conflict with that of Friesen
[3]. Our notation is consistent with that of [4].

There is also another useful fact that we will exploit in the next section.

Theorem 1.3. Suppose that D > 0 is a radicand , and l(
√
D) = l with

the Qj defined for the simple continued fraction expansion of
√
D as in

(1.1)–(1.4). Then Qj | 2D with Qj > 1 if and only if j = l/2. Furthermore,
if D is even, then Qj |D with Qj > 1 if and only if j = l/2. In either case,
al/2 = 2Pl/2/Ql/2.

P r o o f. See [4, Theorem 6.1.4, p. 193].
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Remark 1.2. Theorem 1.3 is applicable to a special set of ideals, which
will be the dominant candidates of study in the sequel. If I is an O∆-
ideal such that I = I ′, then I is called ambiguous. Ambiguous ideals are
necessarily divisors of ∆, and so are of order 1 or 2 in C∆ (see [4, Exercise
1.2.5, p. 13]). Since Theorem 1.2 tells us that the Qj are the norms of all
the principal reduced O∆-ideals via the simple continued fraction expansion
of
√
D, Theorem 1.3 tells us that there is a principal reduced ideal of norm

Ql/2 in the simple continued fraction expansion of
√
D. Observe as well

the important fact that since we are going to be considering only simple
continued fraction expansions of

√
D in the sequel, it follows that ∆ = 4D,

even when D ≡ 1 (mod 4). In the latter case we are not in the maximal
order. In any case, σ = 1 henceforth.

Finally, there is a classical result due to Gauss that we will need, so we
present it here for the convenience of the reader. First, we need to define the
following concepts. The elementary abelian 2-subgroup of O∆ is denoted by
C∆,2 with order h∆,2.

Theorem 1.4. If ∆ is a fundamental discriminant divisible by exactly
n ∈ N distinct primes, then the following each hold.

1. C∆,2 has order h∆,2 = 2t∆ , where t∆ = n− 2 if ∆ > 0 and there is a
prime p |∆ with p ≡ 3 (mod 4), and t∆ = n− 1 otherwise.

2. If ∆ > 0 is divisible by a prime p ≡ 3 (mod 4), then C∆,2 is generated
by classes represented by ambiguous ideals.

P r o o f. For part 1, see [4, Theorem 1.3.3, p. 16], and for part 2 see [4,
Exercise 1.3.7(d), p. 19].

2. Results. At the beginning of [3, Section 7, p. 377], Friesen states:
“The cases considered in this paper, namely where N is the product of two
distinct primes or where N is twice such a product, are, in some sense, both
the most general cases and also the simplest ones, for which we can hope
to arrive at relationships between the Legendre symbols, the alternating
sum, Σ, and the period of the continued fraction expansion of

√
N . One

can expect more complications (and many more separate cases to examine)
when N has 3 or more odd prime factors.” In this section, we show that
this view is not entirely correct when viewed from the perspective of ideal
theory. We show that there can be an unbounded number of prime factors in
the discriminant if the analogous situation to the simple cases covered in [1],
[3], and [5] is assumed (see Corollaries 2.1 and 2.4 below). Furthermore, we
need not even restrict attention to fundamental discriminants. For instance,
our first result generalizes one of the main results of [3] by exploiting some
classical ideal-theoretic facts seemingly overlooked by the aforementioned
authors.



336 R. A. Mollin

Theorem 2.1. Suppose that ∆ = 4D is a discriminant with radicand
D = ab ≡ 1 (mod 4), with a ≡ 3 (mod 4), a, b ∈ N. Then l(

√
D) = l is

even. Furthermore, if a = Ql/2 in the simple continued fraction expansion
of
√
D, then the following Jacobi symbol equalities hold :

(
a

b

)
= (−1)l/2 and

(
b

a

)
= (−1)l/2+1.

P r o o f. By (1.8),

A2
l−1 −B2

l−1D = (−1)l.

If l is odd, then A2
l−1 ≡ −1 (mod a), a contradiction since a ≡ 3 (mod 4).

Thus, l is even. From (1.8) again,

(2.12) A2
l/2−1 −DB2

l/2−1 = (−1)l/2Ql/2.

Now we show that Ql/2 |Al/2−1. By (1.10), Ql/2 |Al/2−1Al/2−2, since Ql/2 =
a |D. However, by (2.12) any prime that divides Ql/2 must divide Al/2−1,
so by (1.7), Ql/2 |Al/2−1. By setting x = Al/2−1/a and y = Bl/2−1, we get

(2.13) ax2 − by2 = (−1)l/2.

Hence,
(
a

b

)
=
(
ax2

b

)
=
(
ax2 − by2

b

)
=
(

(−1)l/2

b

)
=
(−1
b

)l/2
= (−1)l/2,

where the last equality follows from the fact that b ≡ 3 (mod 4). Also,
(
b

a

)
= −

(−by2

a

)
= −

(
ax2 − by2

a

)
= −

(
(−1)l/2

a

)
= (−1)l/2+1,

where the last equality follows since a ≡ 3 (mod 4).

Remark 2.1. The reader may wonder why we did not need to assume
that gcd(a, b) = 1 in the hypothesis of Theorem 2.1. However, the condition
a = Ql/2 is strong enough to ensure that this is the case. To see this we
merely look at (2.13) in the above proof.

Remark 2.2. The hypothesis of Theorem 2.1 (and that of Theorem
2.2 below) relies upon the fact that we are assuming the existence of a
principal ideal I with 1 < N(I) <

√
D. By Theorem 1.1, this means that I

is reduced, so by the continued fraction algorithm, Theorem 1.2, N(I) = Qj
for some natural number j with 1 < j < l in the simple continued fraction
expansion of

√
D. However, if N(I) | 2D, then by Theorem 1.3, we must

have N(I) = Ql/2, since there is exactly one non-trivial reduced ideal in the
principal class of C∆ by Theorem 1.3. This is what underlies the following
result, which Theorem 2.1 generalizes.
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Corollary 2.1 (Friesen [3, Theorem 2, p. 372]). If D = pq, p ≡ q ≡ 3
(mod 4), p < q primes, then the following Legendre symbol equalities hold :(

p

q

)
= (−1)l/2 and

(
q

p

)
= (−1)l/2+1.

P r o o f. By part 1 of Theorem 1.4, C∆,2 = 1, since t∆ = 0 = n − 2
therein. In other words, h∆ is odd. Hence, the O∆-ideal P above p must be
principal, given that it is an ambiguous ideal (see Remark 1.2). Since p < q
forces p <

√
D =

√
∆/2, it follows from Theorem 1.1 that P is reduced.

Therefore, we may invoke Theorems 1.2–1.3 to conclude that p = Ql/2,
since P ∼ 1. Hence, the hypothesis of Theorem 2.1 holds, and the result
follows.

Example 2.1. If D = 3 · 11 = 33, then
√
D = 〈5; 1, 2, 1, 10〉, l = 4,

(
3
11

)
= 1 =

(−1
11

)l/2
and

(
11
3

)
= −1 =

(−1
11

)l/2+1

.

For an example of a non-fundamental radicand, we have the following.

Example 2.2. Let D = 3549 = 3 · 7 · 132 = ab = 3 · 1183. Then√
D = 〈59; 1, 1, 2, 1, 9, 4, 1, 1, 1, 29, 6, 1, 38, 1, 6, 29, 1, 1, 1, 4, 9, 1, 2, 1, 1, 118〉,

so l = 26, and Ql/2 = Q13 = 3. Therefore,
(
a

b

)
=
(

3
1183

)
= −1 = (−1)l/2,

(
b

a

)
=
(

1183
3

)
= 1 = (−1)l/2+1.

The hypothesis of Theorem 2.1 may seem difficult to check in general.
However, we can cite entire classes of radicands which, by their very nature,
must satisfy the criterion. For instance, we have the following.

Corollary 2.2. Suppose that D satisfies the first statement of Theorem
2.1. Suppose further that

D = (at)2 − a for some t ∈ N, t > 1.

Then the following Jacobi symbol equalities hold :(
a

b

)
= (−1)l/2 and

(
b

a

)
= (−1)l/2+1.

P r o o f. We have the OD-ideal

A = [a, at+
√
D] = (at+

√
D) ∼ 1

since N(I) = (at)2 −D = a. Also, since t > 1, we have a <
√
D. Therefore,

by the continued fraction algorithm Theorem 1.2, a = Ql/2. The result now
follows from Theorem 2.1.
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Radicands of the type in Corollary 2.2 are examples of Extended Ri-
chaud–Degert (ERD) types, which have been extensively studied. See [4,
pp. 77 ff] for complete details.

Example 2.3. Let D = 2102 − 15 = 44085 = ab = 15 · 2939. Then√
D = 〈209; 1, 26, 1, 418〉,

so l = 4,
(
a

b

)
=
(

15
2939

)
= 1 = (−1)l/2,

(
b

a

)
=
(

2939
15

)
= −1 = (−1)l/2+1.

Other ERD-types fit into the pattern as well.

Corollary 2.3. Let D satisfy the first statement of Theorem 2.1. Fur-
thermore, assume that

D = (at)2 ± 4a for some t ∈ N.
Then the following Jacobi symbol equalities hold :

(
a

b

)
= (−1)l/2 and

(
b

a

)
= (−1)l/2+1.

P r o o f. The ideal [4a, at+
√
D] is principal in O4D since |N(at+

√
D)| =

4a. However, by [4, Exercise 1.5.3(a), p. 28],

[4a, at+
√
D] = [a, at+

√
D][4, at+

√
D],

and [4, at +
√
D] ∼ 1, since [4, at +

√
D] = [2, at +

√
D]2 ∼ 1, given that

[2, at +
√
D] is an ambiguous O4D-ideal. Hence, [a, at +

√
D] ∼ 1. Since

a <
√
D, by the continued fraction algorithm we have Ql/2 = a, so the

result follows from Theorem 2.1.

Example 2.4. Let D = 182301 = 4272−28 = 3 ·7 ·8681 = ab = 7 ·26043.
Then √

D = 〈426; 1, 29, 2, 212, 1, 120, 1, 212, 2, 29, 1, 852〉,
so l = 12. Therefore,

(
a

b

)
=
(

7
26043

)
= 1 = (−1)l/2,

(
b

a

)
=
(

26043
7

)
= −1 = (−1)l/2+1.

However, if the hypothesis of Theorem 2.1 is violated, then the conclusion
cannot be guaranteed.
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Example 2.5. Let D = 2102+15 = 44115 = 3·5·17·173 = ab = 15·2941.
We have 〈210; 28, 420〉, so l = 2, and Ql/2 = Q1 = 15. However,

(
15

2941

)
= 1 6= (−1)l/2 = −1.

Here D ≡ 3 (mod 4).

Theorem 2.1 also has a disguised test for principality of ambiguous ideals
built into it. It is not always easy to check whether a given ideal is princi-
pal without, for example, constructing the continued fraction expansion of√
D and sifting through the values of the Qj ’s via the continued fraction

algorithm. However, all we need to know via Theorem 2.1 is the value of
l(
√
D) = l.

Example 2.6. If D = 3 · 5 · 7 · 13 = 1365, then√
D = 〈36; 1, 17, 2, 17, 1, 72〉,

so l = 6. We have(
3

455

)
= 1 6= (−1)l/2 = −1, hence P3 6∼ 1, P3 | 3.

Also, (
7

195

)
= 1 6= (−1)l/2 = −1, hence P7 6∼ 1, P7 | 7,

(
3 · 13

35

)
= 1 6= (−1)l/2 = −1, hence P3P13 6∼ 1, P13|13,

and (
7 · 13

15

)
= 1 6= (−1)l/2 = −1, hence P7P13 6∼ 1.

Since hD = hD,2 = 4 by part 1 of Theorem 1.4, we cannot have all com-
binations of Pj for j = 3, 7, 13 non-principal, so the only possibility is that
P3P7 ∼ 1. Hence, we have shown that

CD = 〈P3〉 × 〈P13〉 = 〈P7〉 × 〈P13〉.
Example (2.6) shows the power of Theorem 2.1 in determining the ele-

mentary abelian 2-group structure via Jacobi symbols.
Thus far, we have considered only radicands D ≡ 1 (mod 4). We now

turn to the other case covered in [3].

Theorem 2.2. Let D = 2ab ≡ 2 (mod 4), a, b ∈ N, be a radicand where
a ≡ 3 (mod 4) and b ≡ 7 (mod 8). Then l(

√
D) = l is even. If Ql/2 = 2a,

then the following Jacobi symbol equalities hold :(
a

b

)
= (−1)l/2 and

(
b

a

)
= (−1)l/2+1.
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P r o o f. This follows in the same fashion as Theorem 2.1.

Corollary 2.4 (Friesen [3, Theorem 5, p. 374].) If p ≡ 3 (mod 8) and
q ≡ 7 (mod 8) are primes and D = 2pq, then l is even and(

p

q

)
=
{

(−1)l/2 if 2p < q,
(−1)l/2+1 if 2p > q.

P r o o f. As in the proof of Theorem 2.1, l is even, and

A2
l/2−1 −DB2

l/2−1 = (−1)l/2Ql/2.

Checking this equation modulo 8, one sees that Ql/2 6= 2, p. If 2p < q, then
by the continued fraction algorithm and Theorem 1.4, Ql/2 = 2p, so the
result follows from Theorem 2.2.

Remark 2.3. If one compares the latter proof with that given in [3,
Theorem 5, pp. 374–375], where five separate cases are considered, then the
superiority of the infrastructure method becomes evident.

Corollary 2.5. Suppose that D satisfies the first statement of Theorem
2.2. Suppose further that D = n2 ± r, where r |n, r, n ∈ N, and r ≡ 6
(mod 8), where n > r if D = n2 − r. Then the following Jacobi symbol
equalities hold :(

r/2
D/r

)
= (−1)l/2 and

(
D/r

r/2

)
= (−1)l/2+1.

P r o o f. This is proved exactly as in the proof of Corollary 2.2.

Example 2.7. Let D = 2 · 3 · 7 = 42 = 62 + 6 = n2 + r. Then√
42 = 〈6; 2, 12〉,

so l = 2, and (
r/2
D/r

)
=
(

3
7

)
= −1 = (−1)l/2,

(
D/r

r/2

)
=
(

7
3

)
= 1 = (−1)l/2+1.

In view of Remark 2.2, what is hidden in the above is the following rela-
tionship between solvability of Diophantine equations and the principality
of certain ideals.

Theorem 2.3. Suppose that ∆ = 4D is a discriminant with associated
radicand D, I ∼ 1 is an O∆-ideal with 1 < N(I) <

√
D, and N(I) | 2D. If

D = ab for some a, b ∈ N with a < b, then the Diophantine equation

(2.14) |ax2 − by2| = 1

has a solution x, y ∈ Z if and only if a = N(I) = Ql/2 in the simple
continued fraction expansion of

√
D.
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P r o o f. Suppose that equation (2.14) has a solution x, y ∈ Z. Since a < b,
we have a <

√
D. Set

α = ax+ y
√
D.

Then α ∈ O∆, and

|N(α)| = |a2x2 − y2D| = a|ax2 − by2| = a.

Therefore, the OD-ideal I = (α) is principal with |N(I)| = a dividing D.
By Theorems 1.1–1.3, a = Ql/2 = N(I).

Conversely, if a = N(I) = Ql/2 |D, then I = (α) is principal, so there are
x, y ∈ Z such that α = x+y

√
D, and N(α) = ±a. Therefore, x2−y2D = ±a,

so

|a(x/a)2 − by2| = 1,

as required.

Remark 2.4. Notice that in the proof of Corollary 2.1, the classical result
from ideal theory is basically what underlies the phenomenon explored by
the aforementioned authors. The link between the solvability of certain Dio-
phantine equations and the principality of certain related ideals, as displayed
in Theorem 2.3, is the backbone of all the arguments presented herein, but
not explicitly present in the papers [1]–[3] and [5].

We now turn to a generalization of results from [1]–[3] and [5] involving
the alternating sum Σ. First we generalize a result from [3] as a preparatory
lemma.

Lemma 2.1. If D ≡ 2 (mod 4) is a radicand , where D > 0, and l(
√
D) =

l is even, then

Σ ≡ l + 2 +Al/2−1 (mod 4) if Ql/2 is even,(2.15)

and

Σ ≡ l + 2Bl/2−1 (mod 4) if Ql/2 is odd.(2.16)

P r o o f. First assume that Ql/2 is even. Since Ql/2 |D by Theorem 1.3,
we have Ql/2 ≡ 2 (mod 4). Thus, by (1.8), Al/2−1 is even and Bl/2−1 is odd.
By (1.2), Pl/2 is even, so by Theorem 1.3, al/2 is even. By (1.7), Al/2−2 is
odd, and by (1.10), Bl/2−2 is even. Therefore, using (1.10), al/2 ≡ ±Al/2−1
(mod 4). Hence, by putting all of this information into (1.9), we get

Σ ≡ l + 2±Al/2−1 + 2Bl/2−1 + 2Al/2−2 ≡ l ±Al/2−1 + 2 (mod 4),

and since l ≡ −l (mod 4) and −2 ≡ 2 (mod 4), we obtain

Σ ≡ l +Al/2−1 + 2 (mod 4),

as required.
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Now we assume that Ql/2 is odd. Thus, by (1.8), Al/2−1 is odd, and by
Theorem 1.3, al/2 is even. Therefore, by (1.10),

al/2 + 2Al/2−2 ≡ 0 (mod 4).

Hence, from (1.9),

Σ ≡ l + 2 + 2Bl/2−2 + 2Bl/2−1 + 2Al/2−1 + 2Al/2−1Bl/2−2 (mod 4)

≡ l + 2(1 +Al/2−1) + 2Bl/2−2(1 +Al/2−1) + 2Bl/2−1 (mod 4)

≡ l + 2Bl/2−1 (mod 4),

as required.

Corollary 2.6 (Friesen [3, Lemma (4.2)–(4.3), p. 370]). If D = 2pq
where p, q are odd primes and if l(

√
D) is even, then

Σ ≡
{
l +Al/2−1 + 2 (mod 4) if Ql/2 is even,
l + 2Bl/2−1 if Ql/2 is odd.

Example 2.8. Let D = 2 · 7 = 14. Then
√
D = 〈3; 1, 2, 1, 6〉, so l = 4.

Also, Al/2−1 +A1 = 4, so l+ 2 +Al/2−1 = 10. Since Σ = −1 + 2−1 + 6 = 6,
we get

Σ ≡ l + 2 +Al/2−1 (mod 4),

where Ql/2 = Q2 = 2.

Example 2.9. Let D = 2 · 7 · 31 = 434. Then
√
D = 〈20; 1, 4, 1, 40〉, so

l = 4. Also, Bl/2−1 = B1 = 1, so l+2Bl/2−1 = 8. Since Σ = −1+4−1+40 =
42, we get

Σ ≡ l + 2Bl/2−1 (mod 4),

where Ql/2 = Q2 = 7.

Example 2.10. Let D = 2 · 3 · 5 · 13 · 17 = 6630. Then
√
D = 〈81; 2, 2, 1, 4, 1, 2, 2, 162〉,

so l = 8. Also, Al/2−1 = A3 = 570, so l + 2 +Al/2−1 = 580.
Since Σ = −2 + 2− 1 + 4− 1 + 2− 2 + 162 = 164, we get

Σ ≡ l + 2 +Al/2−1 (mod 4),

where Ql/2 = Q4 = 30.

We may now state the first main result on the alternating sum Σ.

Theorem 2.4. Let D = 2ab be a radicand with a, b ∈ N, where

a ≡ 5 (mod 8) and b ≡ 3 (mod 4).
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Then l is even. Suppose that in the simple continued fraction expansion of√
D, we have Ql/2 ∈ {a, b, 2a, 2b}. Then

Σ ≡
(
a

b

)
+ 1 (mod 4).

P r o o f. By (1.8) and Theorem 1.3,

Ql/2(Al/2−1/Ql/2)2 − (D/Ql/2)B2
l/2−1 = (−1)l/2,

where Ql/2 |Al/2−1 by the same techniques as used in the proof of Theorem
2.1. Thus, by setting x = Al/2−1/Ql/2 and y = Bl/2−1, we get

(2.17) Ql/2x
2 − (D/Ql/2)y2 = (−1)l/2.

Suppose that Ql/2 = 2b. By (2.17), x is odd and l/2 is even, so Al/2−1 ≡ 2
(mod 4). Therefore, by (2.15) in Lemma 2.1,

Σ ≡ 0 (mod 4).

Also, from (2.17) we get
(
a

b

)
= −

(−ay2

b

)
= −

(
2bx2 − ay2

b

)
= −

(
(−1)l/2

b

)
= −

(
1
b

)
= −1,

so the result follows.
Suppose that Ql/2 = 2a. Then by (2.17),

2ax2 − by2 = (−1)l/2,

so Bl/2−1 is odd. Thus,

2x2 + 1 ≡ (−1)l/2 (mod 4).

Therefore, x and l/2 have the same parity, so

Al/2−1 = 2ax ≡ 2x ≡ l (mod 4).

By (2.15), Σ ≡ 2 (mod 4). Also, by (2.17) and quadratic reciprocity,
(
a

b

)
=
(
b

a

)
=
(

2ax2 − by2

a

)
=
(

(−1)l/2

a

)
=
(−1
a

)l/2
= 1.

The result follows.
Suppose that Ql/2 = a. Then by (2.17),

ax2 − 2by2 = (−1)l/2,

so

5− 6y2 ≡ (−1)l/2 (mod 8).
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Hence, all of l/2, x, and Bl/2−1 are odd. Thus, by (2.16) in Lemma 2.1,
Σ ≡ 0 (mod 4). Also,

(
a

b

)
=
(
ax2 − 2by2

b

)
=
(−1
b

)l/2
= −1,

so the result follows.
Finally, suppose that Ql/2 = b. By (2.17),

bx2 − 2ay2 = (−1)l/2,

so both x and Al/2−1 are odd. Thus,

3− 2y2 ≡ (−1)l/2 (mod 4).

Therefore,
Bl/2−1 ≡ l/2 + 1 (mod 2).

By (2.16), Σ ≡ 2 (mod 4). Also,
(
a

b

)
=
(
b

a

)
=
(
bx2 − 2ay2

a

)
=
(−1
a

)l/2
= 1.

Hence, the full result is proved.

To check that the hypothesis on the Ql/2 holds in Theorem 2.4, we
merely note that D = cQl/2 for some c ∈ N. This is easily determined for
ERD-types.

Corollary 2.7. Suppose that D = n2 + a is a radicand , a |n, where
a, n ∈ N, a ≡ 5 (mod 8), n odd , and b = D/(2a) ≡ 3 (mod 4). Then

Σ ≡
(
a

b

)
+ 1 (mod 4).

P r o o f. By [4, Theorem 3.2.1, p. 78], Ql/2 = a, so the result follows from
Theorem 2.4.

Example 2.11. Let D = 230 = 152 + 5 = 2ab = 2 · 5 · 23. Then
√
D =

〈15; 6, 30〉, Ql/2 = Q1 = 5, and
(
a

b

)
=
(

5
23

)
= −1.

Since Σ = −6 + 30 = 24, we get

Σ ≡ 0 ≡
(
a

b

)
+ 1 (mod 4).

Example 2.12. Let D = 1052 + 21 = 11046 = 2ab = 2 · 21 · 263. Then√
D = 〈105; 10, 210〉, and Ql/2 = 21. Also,

(
a

b

)
=
(

21
263

)
= −1.



Jacobi symbols, ideals, and continued fractions 345

Since Σ = −10 + 210 = 200, we get

Σ ≡ 0 ≡
(
a

b

)
+ 1 (mod 4).

Other ERD-types are also easy to check under the purview of Theorem
2.4.

Corollary 2.8. If D = n2 ± 2a is a radicand where 2a |n ∈ N, a ≡ 5
(mod 8), b = D/(2a) ≡ 3 (mod 4), then

Σ ≡
(
a

b

)
+ 1 (mod 4).

P r o o f. By [4, Theorem 3.2.1, p. 78], Ql/2 = 2a. The result now follows
from Theorem 2.4.

Example 2.13. Let D = 476238 = 6902 +138 = 2ab = 2 ·69 ·3451. Then√
D = 〈690; 10, 1380〉, Ql/2 = Q1 = 138 = 2a, and

(
a

b

)
=
(

69
3451

)
= 1.

Since Σ = −10 + 1380 = 1370, we get

Σ ≡ 2 ≡
(
a

b

)
+ 1 (mod 4).

However, when the hypothesis of Corollary 2.8 fails, then we cannot
guarantee the conclusion.

Example 2.14. Let D = 475962 = 6902−138 = 2ab = 2 ·69 ·3449. Then√
D = 〈689; 1, 8, 1, 1378〉, Ql/2 = Q2 = 138 = 2a, and

(
a

b

)
=
(

69
3449

)
= 1.

Since Σ = −1 + 8− 1 + 1378 = 1384 ≡ 0 (mod 4), we get

Σ 6≡ 2 ≡
(
a

b

)
+ 1 (mod 4).

Here, b ≡ 1 (mod 4).

We now generalize some results from [3] on alternating sums in order to
complete the picture. This will allow us to formulate a table of values that
generalizes tables in [3].

Theorem 2.5. Suppose that D > 0 is a radicand , no prime p ≡ 3
(mod 4) divides D, and

√
D = 〈a0; a1, a2, . . . , al〉. If Ql/2 is square-free,

then

Σ ≡ 2a0l (mod 4).
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P r o o f. If l is odd, then by (1.11), Σ = 2a0, so the result trivially follows.
Assume that l is even. By Theorem 1.3, Ql/2 | D, so Ql/2 ≡ 2 (mod 8) or
Ql/2 ≡ 1 (mod 4).

If Ql/2 ≡ 2 (mod 8), then (1.8) implies that

2(Al/2−1/Ql/2)2 −B2
l/2−1 ≡ (−1)l/2 (mod 4)

since Ql/2 is square-free. Thus, Al/2−1 ≡ l+2 (mod 4). By (2.15) in Lemma
2.1,

Σ ≡ 0 ≡ 2a0l (mod 4).

If Ql/2 ≡ 1 (mod 4) and D ≡ 2 (mod 4), then by (1.8), Al/2−1 is odd
and Bl/2−1 ≡ l/2 (mod 2). Therefore, by (2.16) in Lemma 2.1,

Σ ≡ 0 ≡ 2a0l (mod 4).

If Ql/2 ≡ 1 (mod 4) and D ≡ 1 (mod 4), then by Theorem 1.3,

al/2 = 2Pl/2/Ql/2,

so al/2 is even.
If l/2 is even, then by (1.8), Al/2−1 is odd and Bl/2−1 is even. By (1.10),

al/2 ≡ 2Al/2−2 (mod 4).

Hence, putting the above into (1.9) yields Σ ≡ 0 ≡ 2a0l (mod 4).
If l/2 is odd, then by (1.8), Al/2−1 is even and Bl/2−1 is odd. By (1.7),

Al/2−2 is odd and by (1.10),

al/2 ≡ 2Bl/2−2 (mod 4).

Finally, putting the above into (1.9) yields Σ ≡ 0 ≡ 2a0l (mod 4).

Corollary 2.9 (Friesen [3, Theorem 1, p. 371]). Let p ≡ q ≡ 1 (mod 4)
be distinct primes, and let D = pq. Then

Σ ≡ 2a0l (mod 4).

Corollary 2.10 (Friesen [3, Theorem 4, p. 373]). Let p ≡ q ≡ 1
(mod 4) be distinct primes, and let D = 2pq. Then

Σ ≡ 2a0l (mod 4).

The above allows us to generalize tables in [3].
In Table 2.1, we assume that D = ab, a, b ∈ N, is a radicand. Also, in

the columns for a ≡ 1, 5 (mod 8), we assume that D is not divisible by any
prime p ≡ 3 (mod 4), and Ql/2 is square-free. In the columns where a ≡ 3, 7
(mod 8), we assume that Ql/2 = a.
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Table 2.1

a ≡ 1 (mod 8) a ≡ 3 (mod 8)

b ≡ 1 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 3 (mod 8) ( ab ) = (−1)l/2

b ≡ 5 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 7 (mod 8) ( ab ) = (−1)l/2

a ≡ 5 (mod 8) a ≡ 7 (mod 8)

b ≡ 1 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 3 (mod 8) ( ab ) = (−1)l/2

b ≡ 5 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 7 (mod 8) ( ab ) = (−1)l/2

Next, we observe that if a, b ∈ N are odd and relatively prime, then
(
a

b

)
= (−1)Σ/2+1 if and only if Σ ≡

(
a

b

)
+ 1 (mod 4).

Hence, we achieve the following generalization of [3, Table 2, p. 366] via
Theorem 2.4.

In Table 2.2, we assume that D = 2ab, for a, b ∈ N, is a radicand. Also, in
the columns for a ≡ 1, 5 (mod 8), we assume that D is not divisible by any
prime p ≡ 3 (mod 4) and Ql/2 is square-free. In the columns where a ≡ 3, 7
(mod 8), we assume that Ql/2 ∈ {a, b, 2a, 2b}. Furthermore, in the column
where a ≡ 3 (mod 8) and b ≡ 7 (mod 8), we assume that Ql/2 = 2a, and in
the column where a ≡ 7 (mod 8) and b ≡ 3 (mod 8), we assume Ql/2 = 2b.

Table 2.2

a ≡ 1 (mod 8) a ≡ 3 (mod 8)

b ≡ 1 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 3 (mod 8)
b ≡ 5 (mod 8) Σ ≡ 2a0l (mod 4) ( ba ) = (−1)Σ/2+1

b ≡ 7 (mod 8) ( ab ) = (−1)l/2

a ≡ 5 (mod 8) a ≡ 7 (mod 8)

b ≡ 1 (mod 8) Σ ≡ 2a0l (mod 4)
b ≡ 3 (mod 8) ( ab ) = (−1)Σ/2+1 ( ba ) = (−1)l/2

b ≡ 5 (mod 8) Σ ≡ 2a0l (mod 4) ( ba ) = (−1)Σ/2+1

b ≡ 7 (mod 8) ( ab ) = (−1)Σ/2+1

Finally, we observe that, with the above generalizations of the results
from [3], we may state the following.
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Theorem 2.6. Let D = ab, a, b ∈ N, be a radicand with a ≡ 3 (mod 8)
and b ≡ 7 (mod 8). Then l is even. If Ql/2 ∈ {2a, b}, then

(
a

b

)
= (−1)U/2,

where T + U
√
D is the fundamental unit of O4D.

P r o o f. This goes exactly as in the proof of [3, Theorem 7, p. 377], with
the more general results above being referenced rather than the narrower
results proved therein.

Corollary 2.11 (Friesen [3, Theorem 7, p. 377]). Let p ≡ 3 (mod 8)
and q ≡ 7 (mod 8) be primes and let D = 2pq. Then the following Legendre
symbol equality holds: (

p

q

)
= (−1)U/2,

where T + U
√
D is the fundamental unit of Q(

√
D).

Again, ERD-types are special candidates.

Corollary 2.12. If D = (4at)2 − a, where a |n, a ≡ 3 (mod 8), and
b = D/a ≡ 7 (mod 8), then

(
a

b

)
= (−1)U/2.

P r o o f. By [4, Theorem 3.2.1, p. 78], Ql/2 = 2a, so the result follows.

Example 2.15. Let D = 141 = 122 − 3 = ab = 3 · 47. Then

T + U
√
D = 95 + 8

√
141 and

(
a

b

)
=
(

3
47

)
= 1 = (−1)U/2.

We conclude with an illustration of Corollary 2.12 that shows the power
over the narrower scope in Corollary 2.11. We use a non-fundamental dis-
criminant and composite a and b.

Example 2.16. LetD = 3242−27 = 104949 = 33·132·23 = ab = 27·3887.
Then the fundamental unit of O4D = [1,

√
104949] is

T + U
√
D = 7775 + 24

√
D.

Hence, (
a

b

)
=
(

27
3887

)
= 1 = (−1)U/2.
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