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On the Erdős–Turán inequality for balls

by

Glyn Harman (Cardiff)

1. Introduction. Let (Ω,M, µ) be a probability space. Given a family
of sets F ⊆M, we define the discrepancy of a set of points {x1, . . . , xN} ⊆ X
with respect to F by

DN (F , xn) = sup
A∈F

∣∣∣
∑

xn∈A
n≤N

1−Nµ(A)
∣∣∣.

The most well known case of this has Ω = T = R/Z, µ(·) the usual Haar
measure (equivalent to Lebesgue measure on [0, 1)) and F the family of
intervals (mod 1). For this case Erdős and Turán [4] proved the following
upper bound:

(1.1) DN (F , xn) ≤ C1N

L
+ C2

L∑
m=1

1
m

∣∣∣
N∑
n=1

e(mxn)
∣∣∣

for all positive integers L, where e(y) = exp(2πiy). Here C1 and C2 are
absolute, and the best known values are C1 = 1, C2 = 2+2/π (see [1], p. 20,
or [10], p. 8). The Erdős–Turán theorem was generalized independently to
Tk by Koksma [9] and Szüsz [13]. They took F to be the family of boxes with
sides parallel to the axes (see also [3] and [6], §5.4). It is possible to prove
an analogue when F is the family of all boxes. As is well known, allowing
the boxes to be “tilted” greatly increases the discrepancy in general (see [6],
§5.4, [2] and [10]).

In [7] Holt has given an Erdős–Turán inequality for balls. This was based
on an approximation to the characteristic function of a ball which is in some
sense optimal [8]. It is the purpose of this note to prove a stronger version of
this result. It may seem paradoxical that we will not employ the “optimal”
functions used by Holt. We will explain below the difference between Holt’s
work and our own. Suffice it to say now that his approach optimized the
analogue of C1 above, but gave the wrong size coefficients in the analogue
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of the sum over m. We will not try to optimize C1 and C2, but we will get
the correct order of diminution for the coefficients. If we write B(r) for the
family of balls with radius r, Holt’s result is as follows.

Theorem 1. Let r ≥ 0 and {x1, . . . ,xN} ⊂ Tk. Then, for all s > 0,

(1.2) DN (B(r),xn) ≤ NAk(r, s)

+
∑

0<|m|<s

(
Ak(r, s) +

(
r

|m|
)k/2

|Jk/2(2π|m|)|
)∣∣∣

N∑
n=1

e(m · xn)
∣∣∣.

In the above Jν denotes the Bessel function of order ν, and, when rs > 1,

Ak(r, s)� rk−1s−1.

The fault with (1.2) is that the coefficients involving m should have size
(

r

|m|
)k/2

|Jk/2(2π|m|)| � min
(
rk,

r(k−1)/2

|m|(k+1)/2

)
.

Our main result establishes this. We will write Cj(t), Cj(a, b), etc. for con-
stants depending only on given parameters (t, a, b in the examples quoted).

Theorem 2. Under the hypotheses of Theorem 1 we have

(1.3) DN (B(r),xn) ≤ C1(k)N(rk−1s−1 + s−k)

+ C2(k)
∑

0<|m|<s

(
1
sk

+ min
(
rk,

r(k−1)/2

|m|(k+1)/2

))∣∣∣
N∑
n=1

e(m · xn)
∣∣∣.

In particular , writing C for the family of all balls of radius less than one
half , we have

(1.4) DN (C,xn) ≤ C3(k)
N

s
+ C4(k)

∑

0<|m|<s

1
|m|(k+1)/2

∣∣∣
N∑
n=1

e(m · xn)
∣∣∣.

We state two applications of the above result as further theorems.

Theorem 3. Let p be a prime number. Then there is a lattice point
h ∈ Zk such that |h| < p and the sequence xn = nh/p satisfies, for all
r ∈ (0, 1),

(1.5) Dp(B(r),xn)� (prk)(k−1)/(k+1) + 1.

Theorem 4. For almost all α ∈ Tk we have

(1.6) DN (C, nα)� N1−2/(k+1) log2N.

We note that in (1.5) we have improved Holt’s exponent (k−1)/k (The-
orem 2 of [7]). We have also relaxed the condition rkp > 1, but this only
involved the addition of the term 1 in (1.5). We remark that the correspond-
ing bounds for tilted boxes have the form N1−1/k, a result which is known
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to be best possible (see [14] and §5.4 of [6]). The author has not been able
to determine whether (1.5) and (1.6) are quite sharp in the case k = 2
(exponent 1/3), or whether the universal lower bound for (1.6)

DN (C,xn)� N1/4

may be nearer the truth.

2. Preparatory lemmas. A real even entire function is an entire func-
tion which is even and only takes real values on the real axis. Let E(s) be
the set of all such functions which satisfy

f(z) = O(exp(2πs|z|)) as |z| → ∞.
Lemma 1. Let r, s > 0. Then there are functions F1(z), F2(z) ∈ E(s)

such that

(2.1) F1(x) ≤ χ(x) ≤ F2(x), x ∈ R,
where χ(x) is the characteristic function of the interval [−r, r], and

(2.2) Fj(x) = χ(x) +O

(
min

(
1,

1
|s(x− r)|2

))
,

where the constant implied by the O notation is absolute.

P r o o f. See [8], Chapter 1 of [10], or Chapter 2 of [1]. Usually the close-
ness of approximation of Fj(x) to χ(x) is given by calculating

∞\
−∞

(F2(x)− F1(x)) dx or
∞\
−∞
|Fj(x)− χ(x)| dx.

The estimate (2.2) will prove more helpful in our context for reasons which
should become clear.

Lemma 2. Let r, s > 0 and k ∈ N. Then there are functions G1(z), G2(z)
∈ E(s) such that

(2.3) G1(x) ≤ χ(x) ≤ G2(x)

and

(2.4) |Gj(x)− χ(x)| ≤ C(k)h(x),

where

(2.5) h(x) = min(1, |s(x− r)|−2j(x,r)), j(x, r) =
{
k if |x| ≥ r,
1 if |x| < r.

P r o o f. We appeal to Lemma 1 with s replaced by s/k. We take G2(x) =
F2(x)k, which clearly satisfies all our demands. For odd k we can take
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G1(x) = F1(x)k. For k even, either replace k by k + 1 (since the truth
of (2.5) with k + 1 implies its truth for k), or take

G1(x) = kF1(x)F2(x)k−1 − (k − 1)F2(x)k.

See Lemma 6 of [5] for the motivation and proof that this is a lower bound
function.

Remark. The advantage of the functions constructed above is that the
errors are given a suitable bound both for small and large values of x, unlike
the situation in [8] where the term of importance is

∞\
0

|Fj(x)− χ(x)|xu dx,

and the xu factor cancels out the errors for small x. To obtain our results,
essentially we will need to estimate such integrals for two different values of
u, as becomes clear in the next lemma.

Lemma 3. Let r, s > 0 and k ∈ N. Let G1(x), G2(x) be the functions
given by Lemma 2. Then, for all m with 1 ≤ m ≤ 2k − 1, and all v with
0 < v ≤ s, we have

(2.6)
∞\
0

|Gj(x)− χ(x)|min
(
xm−1,

(
x

v

)(m−1)/2)
dx

≤ Cj(k,m)
(

1
sm

+ min
(
rm,

r(m−1)/2

v(m+1)/2

))

for j = 1, 2. Moreover ,

(2.7)
∞\
0

|Gj(x)− χ(x)|xm−1 dx ≤ Cj+2(k,m)
(

1
sm

+
rm−1

s

)
.

P r o o f. These results follow from Lemma 2 after splitting [0,∞) into
appropriate regions. For example, if v > 1/r we have to consider, for (2.6),
the four integrals (assuming v−1 + s−1 < r for clarity)

1/v\
0

xm−1

s2(r − x)2 dx,

r−1/s\
1/v

(
x

v

)(m−1)/2 1
s2(r − x)2 dx,

r+1/s\
r−1/s

(
x

v

)(m−1)/2

dx,

∞\
r+1/s

(
x

v

)(m−1)/2 1
s2k(x− r)2k dx.

The reader will have no difficulty in verifying that each of these integrals
has the right size.
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3. Proof of Theorem 2. Theorem 2 follows immediately from the
following lemma which may have other applications. We write Vk for the
volume of a ball belonging to B(1) in Rk.

Lemma 4. Let B ∈ B(r) in Tk, and let χ(x) be its characteristic function.
Let s > 0. Then there are functions H1(x),H2(x) such that

(3.1) H1(x) ≤ χ(x) ≤ H2(x)

and

(3.2) Hj(x) = Vkr
k +O

(
1
sk

+
rk−1

s

)
+

∑

0<|m|<s
cj(m)e(m · x),

where

(3.3) |cj(m)| � 1
sk

+ min
(
rk,

r(k−1)/2

|m|(k+1)/2

)
.

P r o o f. We deal with the construction of H1(x) only; the choice of H2 is
analogous. Also, without loss of generality, we can suppose that B is centred
at the origin: this only affects cj(m) by a factor e(−m · a), where a is the
centre of the ball. We pick G1(x) from Lemma 2, and let χ(x) be as defined
in Lemma 1. There should be no confusion in the following between χ(x)
the characteristic function of the ball, and χ(x) the characteristic function
of the interval. Since G1 is an even entire function we may write

G1(x) =
∞∑
n=0

cnx
2n.

Also, if we write z = (z1, . . . , zk), the function

U(z) =
∞∑
n=0

cn(z2
1 + . . .+ z2

k)n

is an entire function of k complex variables, and

(3.4) |U(z)| = O(exp(2πs‖z‖))
where

‖z‖ = sup
x∈S
|z · x|,

and S ∈ B(1) is centred at the origin (see [8] for details).
Write

Û(y) =
\
Rk
U(x)e(−x · y) dx.

Then, using (3.4) with Theorem 4.9 of Chapter 3 in [12], we obtain Û(y) = 0
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for |y| ≥ s. Also

Û(0) =
\
Rk
U1(x) dx = kVk

∞\
0

G1(t)tk−1 dt(3.5)

= kVk

∞\
0

χ(t)tk−1 dt−
∞\
0

(χ(t)−G1(t))tk−1 dt

= Vkr
k +O

(
rk−1

s
+

1
sk

)

by Lemma 3. Moreover,

Û(v) =
\
Rk
χ(x)e(−x · v) dx−

\
Rk

(χ(x)− U(x))e(−x · v) dx

= I1(v)− I2(v) say.

Now, as is well known (it follows from Theorem 3.3 of [12], Chapter 4, for
example),

(3.6) I1(v) =
(
r

|v|
)k/2

Jk/2(2π|v|r).

Also, since χ and G1 are both radial functions, we can apply Theorem 3.3
of [12], Chapter 4, to I2 to obtain

(3.7) I2(v) = 2π|v|1−k/2
∞\
0

(χ(x)−G1(x))Jk/2−1(2π|v|x)xk/2 dx.

Since, for u > 0,

Ju(x) ≤ C(u) min(x−1/2, xu) for x > 0,

(3.6) and (3.7) with Lemma 3 (with m = k say) give, for |v| > 0,

(3.8) |Û(v)| �
(

1
sk

+ min
(
rk,

r(k−1)/2

|v|(k+1)/2

))
.

Hence, if we write

H1(x) =
∑

n∈Z
U(x + n),

we have (3.1)–(3.3) as desired by the k-dimensional Poisson summation for-
mula (see [12], pp. 251–252, for example).

4. Proof of Theorem 3. By the argument on page 65 of [7] there is
a lattice point h with |h| < p, and, using our Theorem 2 in place of Holt’s
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Theorem 1, we obtain

Dp(B(r),xn)� ps−1rk−1 +
∑

|m|<s
min

(
rk,

r(k−1)/2

|m|(k+1)/2

)
(4.1)

� ps−1rk−1 + 1 + (rs)(k−1)/2

after an easy calculation. If we then take the optimal choice

s = (p2rk−1)1/(k+1)

to balance the first and last terms in (4.1) we thereby obtain (1.5).

5. Proof of Theorem 4. We note that, if ‖ · ‖ now denotes distance to
a nearest integer, then

∣∣∣
∑

n≤N
e(nα ·m)

∣∣∣ ≤ min
(
N,

1
‖α ·m‖

)
.

If m = (m1, . . . ,mk), write

d(m) =
k∏

j=1

max(1, |mj |).

By Theorem 2 of [11] (applied in 1, . . . , k dimensions), we have, for almost
all α and all ε > 0,∑

0<|m|<s
(d(m)‖α ·m‖)−1 � (log s)k+1+ε.

From this it easily follows that, for almost all α,∑

0<|m|<s
(|m|(k+1)/2‖α ·m‖)−1 � s(k−1)/2(log s)k+1+ε.

Theorem 4 then follows from Theorem 2 with the choice

s = N2/(k+1)(logN)−ε−2.
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