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1. Introduction. In [8], Holzer proved that if the equation a X?+bY? +
cZ? = 0, where a,b,c € Z, has a non-trivial solution in integers, then a so-
lution (z,y, z) exists with |z| < |be|'/?, |y| < |ac|'/?, |z| < |ab|'/?. Later,
Mordell [12] gave a simple elementary proof of this result. Let K be an
algebraic number field. In case where a, b, ¢ are integers of K, Siegel [20]
obtained a very sharp estimate for the size of the “smallest” solution of the
above equation in integers of K. In this work we generalize these results.
Let F(X,Y) be an absolutely irreducible polynomial of K[X, Y] such that
the equation F(X,Y) = 0 defines a curve C' of genus 0. Suppose that C
has a non-singular point defined over K. Then we calculate an explicit up-
per bound for the size of the “smallest” non-singular point of C' over K.
Furthermore, we obtain an effective parametrization of C.

A fundamental result due to Hilbert and Hurwitz [6] says that any curve
of genus 0 defined over Q is birationally equivalent to either a line or a conic.
The same result was obtained independently by Poincaré [13]. Furthermore,
in [13], Poincaré proved, by another method, that any curve of genus 0
defined over Q is birationally equivalent to a conic. In Sections 3 and 4 we
give an effective proof of these results. In Section 3, we deal with curves of
genus 0 defined over K with only ordinary singular points. We prove that
every curve of this class is birationally equivalent over K to a conic, giving
explicit estimates on the size of the conic, the birational isomorphism and
its inverse. In the case where the curve has odd degree we prove that it
is birationally equivalent over K to a line giving explicit estimates for the
birational isomorphism and its inverse.

A classical result asserts that any curve A is birationally equivalent to
a plane curve E with at most ordinary double points as singularities. In
Section 4, we give an effective proof of this result for the case of curves of
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genus 0 defined over K and we obtain explicit estimates about the size of
E, the birational isomorphism and its inverse. Finally, in Section 5, Siegel’s
estimate for the size of the “smallest” solution of equation a X?+bY24cZ? =
0 and the results of Sections 3 and 4 imply an upper bound for the size of the
“smallest” solution over K of equations defining curves of genus 0 over K.
Moreover, these results give an effective parametrization of curves of genus 0.
Hence, if we know that a curve of genus 0 defined over K has a non-singular
point over K, then we have an effective characterization of all its points
over K.

2. Statement of the main results. Let K be an algebraic number
field of degree d and of discriminant Dg. We consider the set of standard
absolute values on Q containing the ordinary absolute value |-| and for every
prime p the p-adic absolute value | - |,. If x = p"a/b, where a,b are integers
not divisible by p, then by definition |z|, = p~". By an absolute value of K
we will always understand an absolute value that extends one of the above
absolute values of Q. We denote by M (K) a set of symbols v such that with
every v € M(K) there is associated precisely one absolute value |- |, on K.
For every v € M(K) we denote by K, the completion of K at v and by d,
the degree of K, over Q,. Let x = (x¢ : ... : x,) be a point of the projective
space P™(K) over K. We define the field height Hx (z) of x by

HK(JZ) = H max{|xo|u,~.-7‘$n’v}g”v
veEM(K)

and the absolute height H(x) by H(z) = Hy(z)'/¢. Further, for z € K we
define Hi(z) = Hi((1: z)) and H(z) = H((1 : z)). Let G be a polynomial
in one or several variables and with coefficients in K. We define the field
height Hy (G) and the absolute height H(G) of G to be respectively the field
height and the absolute height of the point in a projective space having as
coordinates the coefficients of G (in any order). Given v € M (K), we denote
by |G|, the maximum of |c|, over all the coefficients ¢ of G. For an account
of the properties of heights see [21, Chap. VIII; 10, Chap. 3].
Let us now state our main results.

THEOREM 2.1. Let F(X,Y) be an absolutely irreducible polynomial in
K[X,Y] of degree N > 3 such that the curve C defined by the equation
F(X,Y) = 0 is of genus 0. Then there is a conic I' defined over K of
equation G(X,Y) = 0 with

H(G) < (9N5N+4H(F))13-104N28

and a birational map @ : C — I given by

([ 1(X,Y) $a(X,Y)
P(X,Y) = <¢3(X,Y)’ ¢3(X’Y)>’
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where ¢;(X,Y) € K[X,Y] (i =1,2,3) with deg ¢; < 3N and
H(d) < (ONSNTAE(F))98ONY (= 1,2, 3).
The inverse map of @ is given by
71 (X,Y) Tg(X,Y))

PHX,Y) =
( 7 ) (TQ(X7Y)77—4(X7Y)
where 7;(X,Y) € K[X,Y] (i = 1,2,3,4) with deg7; < 15N3 and
9N5N+4H(F))5355N16 (i=1,3)
H(r) < ( o
( ) { (N + 1)295N12H(F)118N12 (Z — 274)
THEOREM 2.2. Let F(X,Y) be an absolutely irreducible polynomial in
K[X,Y] of odd degree N > 3 such that the curve C defined by the equation

F(X,Y) = 0 is of genus 0. Then there is a birational map ¥ : C — P!
given by

le (X7 Y)
U(XY)= ——"—=,
( ) ¢2 (Xv Y)
where 1;(X,Y) € K[X,Y] (i = 1,2) with deg; < 3N and
H() < (9N5N+4H(F))980N13'
The inverse map of ¥ is given by
_o(T) v — a3(7T)
oo(T)’ oa(T)’
where o;(T) € K[T] (i = 1,2,3,4) with dego; < 8N3 and
H(oy) < { (ONSNHLH(F))P30N™ (= 1,3),
' (N + 1)M5N (F)18ONT (= 2, 4),
THEOREM 2.3. Let F(X,Y,Z) be a homogeneous absolutely irreducible
polynomial in K[X,Y,Z] of degree N > 2 such that the curve C' defined by
the equation F(X,Y, Z) = 0 is of genus 0. Suppose that C' has a non-singular

point defined over K. Then there exists a non-singular point P of C' defined
over K such that

H(P) < ‘DK‘90N3/d(9N5N+4H(F))18-106N31.
Moreover, the curve F(X,Y,1) =0 has a parametrization given by

ol s
92(T)’ 94(T)’
where g;(T) € K[T] (i = 1,2,3,4) with degg; < 30N? and

3 107 n31
H(gz) < |DK|225N /d(9N5N+4H(F))3 10'N )
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3. Curves with only ordinary singular points

3.1. Statement of the results. In this section we give an effective proof
of the fact that a curve with only ordinary singular points is birationally
equivalent to a conic. Our method develops some arguments that go back
to some ideas of Poincaré [13]. Furthermore, a variant of our method gives
an effective proof of the fact that a curve with only ordinary singular points
and odd degree is birationally equivalent to a line. More precisely, we prove
the following results:

THEOREM 3.1. Let F(X,Y) be an absolutely irreducible polynomial in
K[X,Y] of degree N > 3 such that the curve C defined by the equation
F(X,Y) =0 is of genus 0. Suppose that C has only ordinary multiple points.
Then there is a conic I' defined over K of equation G(X,Y) = 0 with

H(G) < (N + 1)V g (F)1oN"
and a birational map ¥ : C — I' defined by

_ wl(X’Y) sz) (va)
PEY) = (w3<X, V) ol X, Y))’

where ;(X,Y) € K[X,Y] (i =1,2,3) with degy; < N —1 and
H(W) < (N+ 1N H(F)?2N (1=1,2,3).

The inverse map of ¥ is given by

v1(X,Y) = <w1(X’Y) wa(X, Y)),

w2 (X,Y)" wa(X,Y)
where w;(X,Y) € K[X,Y] (i = 1,2,3,4) with degx w; < N, degy w; < N
and
H(w;) < (N +1)20N [ (F)8N",
THEOREM 3.2. Let F(X,Y) be an absolutely irreducible polynomial in
K[X,Y] of odd degree N > 3 such that the curve C defined by the equation

F(X,Y) =0 is of genus 0. Suppose that C has only ordinary multiple points.
Then there is a birational map ¥ : C — P defined by
?/)1 (Xv Y)
U(X,Y)=—"+F,
( ) d}Z (Xv Y)
where ¥;(X,Y) € K[X,Y] (i = 1,2) with degv; < N —2 and
H(i;) < (N +1)SNPH(F)NY  (1=1,2).

The inverse map of ¥ is given by
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where w;(T) € K[T] (i =1,2,3,4) with degw; < N and
H(w;) < (N + 1PN H(F)12NY (G=1,2,3,4).
3.2. Auziliary lemmas. We give some lemmas which will be useful for the
proof of our results. We prove only those which are not yet in the literature.

LEMMA 3.1. Let F(X) = coX" +c1 X" L+ ... + ¢, be a polynomial in
K[X] — K and let « be one of its roots. Then

H(a) < 2H(F).
Proof. See [11; 14, Lemma 4].

LEMMA 3.2. Let P(X,Y,V),Q(X,Y, W) € K[X,Y,V,W]| — K. Denote
by R(X,V,W) the resultant of P(X,Y,V) and Q(X,Y, W), considered as
polynomials with coefficients in K[X,V,W]. Put degxy P = mq, degy P =
ny, degy P = r1 and degy QQ = ma, degy Q = no, degy, Q = ra2. Assume
R(X,V,W) #0. Then
H(R) < (n1+n2)/((r1 +1)(m1 +1))" ((r2 + 1)(m2 + 1)) H(P)" H(Q)"™ .

Proof. Write

P(X,Y,V) =P, (X,V)Y™ + ...+ Py(X,V),
QX Y, W) = Qun, (X, W)Y™ 4+ ... 4+ Qo(X, W),
where P;(X,V) € K[X,V] (i = 0,...,n1) and Q;(X, W) € K[X, W]
(¢ = 0,...,n2). The polynomial R(X,V,W) is homogeneous of degree nq
in P, (X,V),...,Py(X,V) and of degree n; in Q,,(X,W),...,Qo(X,W)
with coefficients in Z. If | - |,, is a non-archimedean absolute value, then
[Rlo < |P[2|QI"

Let | - |, be an archimedean absolute value. If M (X, V, W) is a monomial
of degree ng in P,, (X, V),..., Po(X,V) and of degree ny in Q,,(X,W),...
cey Qo(X, W), then

(M (X, V,W)ly < ((r1+1)(m1 +1))"2((r2 + 1) (m2 + 1)) [P? Q"
Thus

[Rly < (n1 +n2)!((r1 + 1) (ma + 1)) ((r2 + 1)(ma2 + 1)) |[P[32|Q]5"
Therefore
H(R) < (n1+n2)!((r1 + 1)(m1 +1))"((r2 + 1)(me + 1)) H(P)" H(Q)"™*.

LEMMA 3.3. Let f and g be two polynomials of K[X1,..., X — K such
that g(X) divides f(X). Then

H(g) < 4(deg f+1)mH(f)_



56 D. Poulakis

Proof. Let h be a polynomial in K[X;,...,X,,] such that gh = f. By
[10, Proposition 2.4, p. 57], we get
H(g) H(h) < 44T+ B (f),
The lemma follows.
If G(X,Y,Z) € K[X,Y,Z], then by Gxayvz(X,Y,Z) we denote, as

usual, the (a,b,c)-partial derivative of G(X,Y,Z) with respect to X,Y
and Z.

LEMMA 3.4. Let F(X,Y, Z) be an irreducible homogeneous polynomial in
K[X,Y,Z]. Let P be a singular point of the projective curve F(X,Y,Z) = 0.
Then

H(P) < 4(N 4 1)10N=4g ()N -2,
Proof. Suppose P = (a:b:1). Then
F(a,b,1) = Fy(a,b,1) = Fx(a,b,1) = 0.

We denote by R;(X) the resultant of F/(X,Y, 1) and Fy (X,Y, 1) with respect
to Y and by Ra(Y') the resultant of F'(X,Y,1) and Fx(X,Y,1) with respect
to X. Thus Ry(a) = R2(b) = 0. Lemma 3.1 yields

H(P) < H(a)H(b) < 4H(R1)H(R>).
By Lemma 3.2,
H(R;)) < N*N"YUN + )N H(F) N (i=1,2).
Hence
H(P) < 4(N + 1)' V=4[ (F)*N =2,

Finally, if P = (a: b:0), then H(P) < 2H(F). The lemma follows.

In the above proof we have used the inequality m! < ((m + 1)/2)™, for
every positive integer m (see A. Cauchy, Ezercices d’Analyse, Vol. 4, Paris,

1847, p. 106). Throughout the paper we shall use this inequality without
further mention.

LEMMA 3.5. Let F(X,Y) be a polynomial in K[X,Y] of degree m > 0 in
X andn>0inY. Let x,y € K satisfy F(x,y) =0 and deg F(z,Y) = n.
Then
H(y) <2(m+ 1)H(F)H(xz)™.
Proof. See [15, Lemma 7].

LEMMA 3.6. Let A; = (aj,...,a;,) (i = 1,...,v) be v linearly inde-
pendent vectors in KM (v < p) and V be the K -vector space generated by
A; (i =1,...,v). Let G be the Galois group of K over K. Suppose that
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o(V) =V for every o € G. Then there are u — v linearly independent
vectors ; = (zi1,...,xy) (i=1,...,u0—v) in K such that

H(z;) <viH(Ay)...H(4,) (@=1,...,u—v),
satisfying the linear system
ai1X1+...+CLiHXM:O (izl,...,V).

Proof. Let A be the matrix with rows A; (i = 1,...,v). We may sup-
pose, without loss of generality, that the v x v-matrix A formed by the
v first columns of A has rank v. Thus |A| # 0. We denote by A, (j =
1,...,v, k=v+1,..., 1) the matrix obtained from A by replacing the jth
column by the kth column of A. Now the linear system is equivalent to

AL = =41l Xogr — o = Al X (G=1,...,0).

Taking (X,41,...,X,) = (—1,...,0),...,(0,...,—1), we have respectively
the solutions

|A1 V+1| ‘A,, u+1| )

T = RTINS R A
< Al A
|A1 u| |AV,M| >
Ty_y = o — 0,...,0,—1
o < 1Al Al

which are linearly independent elements of K.

Let 0 € G. Since o(V) = V, the vectors o(A4;) = (0(a;1),...,0(aiu))
(¢ =1,...,v) form a basis of V. Then there is an invertible v x v-matrix B
such that

(0(A1),...,0(A,)) = (41,...,A,))B.
If 0(A) and (A4, ) are the matrices obtained by the action of o on the
entries of A and A; ;, respectively, then o(A) = BT Aand 0(A; ;) = BTAj 1
(where BT is the transpose of B). It follows that

U(\Aj,u) ol 1Bl 1Al 1A

A o (A)] B[ - 4] |A|
Hence, |A;;l/|Al € K (j =1,...,v, k =v+1,...,u), whence z; € K*
(i=1,....,p—v).

The v-adic absolute value of a minor of A of order v is

< |Aily - JAu|ov(V)),

where v(v!) = v! if | - |, is archimedean and v(v!) = 1 otherwise. Thus,

H(z;) <v'H(Ay)...H(4,) (=1,...,u—v).
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LEMMA 3.7. Let ¢ : C1 — Cs be a rational map of algebraic curves.
Suppose that ¢ is defined and injective on an open subset U of Cy. Then ¢
1$ a birational map.

Proof. Let @ be a non-singular model of C; and f; be a birational
morphism from C; onto C. Then f, Lo ¢o f1 : C1 — Cy is a non-constant
morphism of smooth curves and its restriction to the open set f; (U) is

injective. By [21, Proposition 2.6(b), p. 28], for all but finitely many @ € Cs,

deg(fy ' odo fi) =4(fs  odo f1)HQ).

Since the restriction of ¢o f1 to f; *(U) is injective, we deduce that deg f; *o
$o fi =1. Thus, f; ' o¢o f) is birational and so is ¢.

LEMMA 3.8. Let C : F(X,Y) =0 be a plane algebraic curve defined over
K of degree N. Then there is a plane model G(X,Y) = 0 of C defined over
K with deg G = degy G = N and

H(G) < N°N=4H(F),
having N simple points at infinity.
Proof. Suppose that degy F' < N and degy F' < N. Then
F(X,)Y)=XYV°G(X,Y)+ Fy_1(X,Y) +... + Fp(X,Y),
where a, b are positive integers,
GX,)Y)=c(X+01Y)...(X+on-a-bY)
with ¢ € K, o; € K — {0} and F;(X,Y) is a homogeneous polynomial of
degree i (1 =0,...,N —1). Putting X = U +mV and Y =V, where m is
a non-zero integer with |m| < N/2 and G(m,1) # 0, we have
Fy(U,V) = (U +mV)*V*GU +mV, V)
+Fna(U+mV,V)+ ...+ Fo(U+mV,V),
with degy F1 = N. The height of F; (U, V) satisfies
H(F) < (N/2)N YN —=1)INH(F).
Suppose next that the curve Fy(U,V) = 0 does not have N points at
infinity. Write
(U V)= fNUV)+...+ fo(U,V),

where f;(U,V) is a homogeneous polynomial of degree i (i = 0,...,N).
Putting U = 1/W, we see that the curve F; (U, V') = 0 is birationally equiv-
alent to

(W, V)= fnL,V)+ Winv (L, V) + ...+ fo(UVIYWN =0.
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Let a be an integer with |a| < N2 such that there is no ramification above
W =a. Set W =T + «. It follows that the curve

F3(I1,Z,T) = fn(II, )
+ (T +al)fn 1(IIE) + ...+ foII, E)(T + oIl)N =0
has N points with 7" = 0. The height of F5(II, =,T) satisfies
H(F3) < N*NNYN +1)H(F,) < NN H(F).

3.3. K-rational sets. Let FI(X,Y,Z) be a homogeneous absolutely irre-
ducible polynomial in K[X,Y,Z] of degree N > 3 such that the curve C
defined by F(X,Y,Z) = 0 is of genus 0. We denote by S the set of singular
points of C and for every P € S let mp be the multiplicity of C' at P.
Suppose that C' has no singularities other than ordinary multiple points. By
Noether’s formula [4, Chap. 8, p. 199; 2, Chap. III, p. 614], we have

> mp(mp—1) = (N - 1)(N —2).
pPes

Let K be an algebraic closure of K. We denote by G the Galois group of
K over K. A subset E of the projective plane P? over K is called K-rational
if o(E) = E for every o € G. The set S of singular points of C' is determined
by equations defined over K, whence S is K-rational.

Let v € {N — 1, N — 2} and E, be a K-rational subset of C'— S having
|E,| =¢, with0 <eny_2 < N—-2and 0 <eny_1 <2N — 2. We denote by
W (v, E,) the space of homogeneous polynomials ¢(X,Y, Z) in K[X,Y, Z] of
degree v such that the curve ¢ (X, Y, Z) = 0 contains every point P € S with
multiplicity > mp — 1 and passes through the points of E,. Put §(v, E,) =
dimW (v, E,) and M(v,E,) = max{H(Q)/Q € SUE,}. If E, = (), then
we write W(v) = W(v,0), 6(v) = 6(v,0) and M(v) = M(v,()). We call, as
usual, the points (z : y : z) on C with z = 0, points at infinity. We denote
by C« the set of those points.

LEMMA 3.9. Under the above assumptions, we have
S(v,E,) =Nv—(N—-1)(N—-2)—¢,+1

and there is a basis {11(X,Y, Z),...,%s0,E,)(X,Y,2)} of W(v, E,), satis-
fying

H(yy) < N*¥ M(v, B,)/(N-0W=24220/2 (5 =1, §(v, E,)).

Proof. We can suppose, without loss of generality, that F'(0,1,0) # 0
and that none of the points of S U F, is at infinity (if this is not the case,
then we choose an appropriate projective coordinate system). Let F(X,Y, Z)
be a polynomial in W (v). Denote by R(X) the resultant of E(X,Y,1) and

F(X,Y,1) with respect to Y. By [22, Theorem 5.3, p. 111], the multiplicity
of the root a of R(X) is equal to the sum of the intersection numbers of
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the curves C and F(X,Y,Z) = 0 on the line X =a. Let P(i) = (a; : §; : 1)
(¢ = 1,...,s) be the points of S. The polynomial II(X) = R(X)/n(X),

where
S

(X) = H(X — ai)mm)(mp(irl)’
i=1
is of degree Nv — (N — 1)(N — 2). By [4, Chap. 5, Sect. 2, p. 110] the
dimension of the space W (v) is
> (y+1)2(u+2) (V- 1)2(N—2) SN L
Thus, we can choose E(X,Y,Z) such that a; (i = 1,...,s) are not zeros
of I1(X) and the discriminant of I7(X) has all its roots simple. Hence,
II(X) has Nv — (N — 1)(IN — 2) zeros pairwise distinct and different from
a; (1 =1,...,s), whence the curve E(X,Y,Z) = 0 intersects C' in Nv —
(N —1)(N — 2) pairwise distinct points apart from the points of S. Hence,
W (v) cuts out on C a linear series of order Nv— (N —1)(N —2) and no cycles
of this series contain points of S. By [19, Chap. XII, Sect. 4, p. 379], this
linear series is complete. Since C' is of genus 0, [22, Chap. VI, Sect. 7, p. 187]
implies that its dimension is Nv — (N —1)(N — 2). It follows that W (v, E,)
cuts out on C' a linear series g/, of order n = Nv — (N —1)(N —2) —¢, and
dimension r > Nv — (N — 1)(N — 2) — ¢,.. By [22, Chap. VI, Theorem 2.5,
p. 168], we have r = n = Nv — (N — 1)(N — 2) — ¢,. Therefore §(v, E,) =
Nv—(N-1)(N-2)—¢e, +1.
For every P € SUE, we write P = (zp : yp : zp) with one of zp,yp, zp
being equal to 1. By [22, Theorem 2.4, p. 55], W(v, E,) is the space of
polynomials

GX.Y,Z)= > ayX'y/zN-1=0H)
i+j=0
with coefficients in K such that
for every Q € E, and
Gxayszv(zp,yp,2p) =0

for every P € S and every triple of non-negative integers «, 3,y with a+ G+
v = mp — 2. Thus, we have a linear system in unknowns a;;. The number
of unknowns is (v + 1)(v + 2)/2. It follows that the rank g of the matrix of
the above system is

N-1)(N-2
PSSR
We consider ¢ rows of this matrix, Aq,..., A,, which are linearly indepen-

dent. Since SUE), is K-rational, Lemma 3.6 implies that there exists a basis
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{1(X,Y, Z), ... Ysw.p,)(X,Y,Z)} of W(v, E,) satisfying
H(;) < 0'H(A1)...H(A,) (i=1,...,6(v,E))).
We easily deduce
H(A;)) <vIM(v,E,)".
Thus
H(%) < Q!V!M(Va EV)VQ (Z: 17"'75(7/7 Eu))
For every A = (A1,...,As(,E,)) € KWEv) we set
¢>\(X7 Y, Z) = )\1¢1(X7 Y, Z) +.oot )‘5(1/,E,,)1/}5(1/,E,,)(X’ Y, Z)

and we denote by x(\) the curve defined by the equation ¢)(X,Y, Z) = 0. If
C; and C5 are two curves in P2, we denote by I(P, C;NC5) their intersection
number at the point P of P2. For every positive integer 7, we define B(r) to
be the set

B(T) = {(xlv s 7$§(V,E,/)) € Za(y,EV) ’ ‘.’E]’ < T, .] = 17 cee 75(1/7 El/)}

LEMMA 3.10. Let I'(r) be the set of 6(v, E,)-tuples A € B(r) such that
the curve k() fails at least one of the following properties:

(a) I(P,C N k(X)) =mp(mp — 1) for every P € S.

(b) I(P,C N k(X)) =1 for every P € E,,.

(c) I(P,CNK(A) =0 for every P € Cox — (SUE,).

(d) The point (0:1:0) is not on k(A).

Then the number of elements of I'(r) is

< (2r +1)0 B0 (|S| +N+1+2+ > mp>.
pPeS

Proof. Set np =mp—1forevery P € S and np =1 for every P € E,,.
Suppose that there is Q € S U E, such that for every k € {1,...,d(v,E,)}
the curve ¥4 (X, Y, Z) = 0 has multiplicity > n¢g at Q. Consider 6(v, E,) — 1
arbitrary points Q1, ..., Qsw,p,)—1 on C—(SUE,) (j =1,...,0(v,E,)—1).
Then there is p € K%“Fv) such that the curve (i) passes through the

points of SU E, and Q1,...,Qs,E,)—1- By Bezout’s theorem,

Y I(R,CNk(p) = Nv.
R

On the other hand, since the multiplicity of k(i) at @ is > ng, we have

Y I(R,CNk(p) > Y mp(mp—1)+e,+Nv—(N-1)(N—-2)—¢, = Nv,
R Pes

which is a contradiction. So, for every P € S U E, there is j(P) € {1,...
...,0(v,E,)} such that the curve v¢;(p)(X,Y,Z) = 0 has multiplicity np
at P.
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Let P € SUE, with P = (zp :yp : 1). For every j € {1,...,6(v,E,)}
and k € {0,...,np} we put
¢(P7j7 k) = ¢j,X”P+1*"'Y’€ (:EvaPa 1)
Then there is j(P) € {1,...,d(v, E,)} and k(P) € {0,...,np+1} such that

V(P (P, K(P) #0,
If P=(zp:1:0)o0r (1:0:0), then we define the quantity ¥ (P, j, k)
to be ¥, ynpt1-kzi(Tp,1,0) or P; ynpi1-kzi(1,0,0) respectively. For every
§(v, By )-tuple A = (A1, ..., A5, ,)) in KWE) we set
AP()‘) = >‘1¢(P7 1, k(P)) +...t )‘5(U,EV)¢(P? 5(Va El/)’ k(P))

The number of solutions A € B(r) of the equation Ap(A) = 0 is <
(2r + 1)°E)=1 Note that if Ap(\) # 0, then the multiplicity of k()\)
at Pis np.

If f(X,Y) e K[X,Y] and @ is a point on the curve f(X,Y) = 0 which
is not at infinity, then we write

S

TGV, Q00 =3 ((S;S!Z.),Z.,sziYi<Q>As—iui.
2 oo

Let P € .S — C. Since P is an ordinary multiple point, we have
TmP (F(X7 K 1)7 P)()\?lu) = (a1>‘ + 61:“) e (OéfnpA + /Brnp:u‘)7

where the factors a; A + Gip (i = 1,...,mp) are pairwise distinct. Further-
more,

TmP_1(¢/\(X7 Y, 1)7P)(_ﬁj7aj) = Z)‘kTmP—l(wk(X7 Y7 1)7P)(_ﬁj7aj)
k

For A = (A1,..., As,E,)) € KWEv) we write

Lpi(N) =Y MTmp-1(9r(X, Y, 1), P) (=B, ).
k

Hence, the curves C and x(\) have distinct tangents at P if and only if

LP,]()\)#O (]:]-ava)
If P is a point of S at infinity, then we consider the polynomial F(X, 1, 7)

or F(1,Y,Z). Let now P € E,, — C. Then P is a non-singular point of C'
and thus

TI(F(X7 Y, 1)? P)<)‘7:UJ) = A+ np.
Set
Lp(A) =Y MTi(We(X,Y,1), P)(=(,m).

k
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The curves C and () have distinct tangents at P if and only if Lp(\) # 0.
Hence, for P € F,, we have the linear equation
Lp(A\) =0

and for every P € S the mp linear equations

LP,]'()\):O (jzl,...,mp),
in unknowns Ay, ..., As(,E,). The number of solutions A € B(r) of each of
the above equations is < (2r+1)°*F»)=1 Note that if P € S with Lp;()\) #
0( =1,....,mp) and Ap(N) # 0, then I(P,C N k(\)) = mp(mp — 1).
Similarly, if P € E, with Lp(A) # 0 and Ap(\) # 0, we get I(P,C N
k(A\)) = 1.

Let Fx(X,Y) be the homogeneous part of degree N of F(X,Y,1). The
points at infinity of C are S; = (a; : b; : 0) with Fn(a;,b;) =0 (i=1,...,s).
Let 1y, (X,Y) be the homogeneous part of degree v of ¢, (X,Y,1). For
A= (A1, A5(,E,)) I KOoWEv) we write

Oi(A) = M1 (@i bi) + - oo+ As, B Vs, By (@i b))  (E=1,...,8).
Then ¢, (S;) = 0 if and only if ©;(\) = 0. The number of solutions A € B(r)
of the equation ©;(\) = 0is < (2r + 1)°™F)=1 Finally, ¢,(0,1,0) # 0 if
and only if

/\1¢1,u(0, 1) + .+ Aé(u,E,)wé(u,E,,),v(Oy 1) 7£ 0.
Combining the above estimates yields the lemma.

PROPOSITION 3.1. Let X be a finite subset of C. Then there is A € B(r),
where

1
r= (X me+ |5+ NBOEI S 8] L oN 122,) + 1,
PesS
such that the curve k(X) meets C in (v, E,) — 1 distinct points Q1,. ..
s Qs(v,B,)—1 which are not in SU E, U X U Cy and satisfy
H(Qz) < EH(F)ZVM(V, EV)VN((N—1)(N—2)+26V)6(V,EV)7
where
= < NN'(§(v, E,)r)2N.
Proof. Let r be a positive integer with
1
"> 5(15| +N+2e,+ > mp>.
PeS

Then the set I'(r) of Lemma 3.10 is a proper subset of B(r). Hence, there
exists A = (A1,..., Asu,m,)) € B(r) such that the curve x(A) : oA(X,Y, Z) =
0 has the properties (a), (b), (c¢) and (d) of Lemma 3.10. Let T" be the set of
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those points of intersection of C' and k() which are not contained in SUFE,,.
By (c), the points of T" are not at infinity. Bezout’s theorem yields

Y IQ.Cnk(\)=Nv— > I(P,CNk(N)
QeT PESUE,
=Nv—(N-1)(N—-2)—¢,=06(v,E,)) — 1.
We can suppose, without loss of generality, that F'(0,1,0) # 0. Denote
by R(X) the resultant of ¢,(X,Y,1) and F(X,Y,1) with respect to Y.
By [21, Theorem 5.3, p. 111], the multiplicity of the root a of R(X) is
equal to the sum of the intersection numbers of C' and k(A) on the line
X =a. Let P(i) = (a; : b; : 1) (i =1,...,s) be the points of S — C, and
P(i)=(a;:b;:1) (i=s+1,...,t) be the points of F, — C. Put
s t
7(X) = [J(X = apymromeo=0 [T (X - a)
i=1 i=s+1

and consider the polynomial

R(X)
IH(X)=
= 50()\1’ e )\6(V7EU))X5(V,EV)*1 “+ ...+ Sé(u,EV)—l(/\la c. 7)\6(V,El,))‘
The coefficients s;(A1,...,A5,k,)) are polynomials in Ai,..., A, g,y of

degree < N. The discriminant A (A1, ..., As,E,)) of II(X) is a polynomial
in Ai,..., As,m,) of degree < N20W:E)=3 We have |T| = §(v, B,) — 1 if
and only if IT(X) has 6(v, E,) — 1 pairwise distinct roots. Hence, |T| =
§(v, E,)—1ifand only if so(A1, ..., Asu,E,)) # 0and A (A, ..., As,E,)) 7
0. Furthermore, the number of 6(v, £, )-tuples (A1, ..., Asqu,g,)) € B(r) such
that

AH(Al, PN 7)\6(V,EV)) =0 or 50()\1, ey )\5(V7Eu)) =0

is at most (2r + 1)°Ev)—1(N20E)=3 4 N7,

Denote by S1,...,S5, the elements of . The number of solutions A €
B(r) of the equation ¢,(S;) = 0 is < (2r + 1)°F)~1 Thus, the number
of §(v, E,)-tuples A € B(r) which do not have the required properties is

< (2r +1)°EI)=10
where
0= (|2] + N2WE)S L 1G] 4 ON 41428, + > mp).
Pes

Thus, if we take r = ({2 + 1)/2, then there exists A\ € B(r) such that the
curve ¢ (X,Y,Z) = 0 intersects C' in (v, E,)) — 1 pairwise distinct points
Qi=(zityi:1) (t=1,...,6(v,E,) — 1) which are not in SUE, U X.
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We may assume, without loss of generality, that one of the coefficients
of each v; is 1. Then

72+1

H(py) <

and Lemma 3.9 yields
NN+1

5(V7 EV)H(¢1> cee H(wé(y,EV))

H(¢>\) < 5(1/, EV)(N2N2M(Z/, EV)V((N_1)(N_2)+25”)/2)6(V’E”).

The resultant R(X) of F(X,Y,1) and ¢, (X,Y, 1) satisfies
R(z;)=0 (i=1,...,0(v,E))—1).

Thus, Lemma 3.1 implies

H(xz;)) <2H(R) (i=1,...,0(v,E,)—1).
By Lemma 3.2, we have

H(R) < (N +v)I(N +1)*(v+ 1)NH(F)"H(ox)N.
Thus,
H(z;) < N*NH(F)"H(ox)N.

Interchanging the roles of x; and y; we obtain the same bound for H(y;).
Therefore

H(Qz) < EH(F)2VM<V, EV)NV((N*1)(N*2)+2£p)5(V7EV)’
where

2N
= < NSV <(5(1/, EI,)QH) .

COROLLARY 3.1. For every positive integer o there are ¢ K -rational sub-
sets Xy (i =1,...,0) of C such that Z,N(SUE,UCx) =0, X,NX; =0
fori#j, | X =0(v,E,) — 1, and for every Q € X; we have

H(Q) < EZ‘H(F)QVM(V, EU)NV((N*1)(N72)+281,)5(1/,E,,),
where
= < NN'§(, B,)2N4—N
26(v,E,)—3 . - N
x(N +1S|+2N 426, + Y mp+ (i — 1), E) —1)+2) .
pes

Proof. For X = (), Proposition 3.1 implies that there is A € B(ry),
where

1
ry = 7(N26(V7Eu)_3 + |S| + 2N +2¢, + Z mp> +1,
2 Pes
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such that the curve ¢ (X, Y, Z) = 0 meets C in §(v, E,)) — 1 pairwise distinct
points Q1, ..., Qs(,E,)—1 Which are not in S U F'U C and satisfy

H(Qz) < ElH(F)2VM(V, EV)VN((N—l)(N—2)+2€y)5(V,EU)’
where
2y < NN (6(v, B,)ri )Y,
Since F(X,Y,Z) and ¢, (X,Y, Z) are in K[X,Y, Z], the intersection of the

two curves is K-rational. In addition, S U E, is K-rational. Hence, so is

{Q1,. .., Qs5(,E,)—1}
Next, take Xy = {Q1,...,Qs(,5,)—1}- Proposition 3.1 implies that there
exists u € B(ry), where

1
Ty = 5(5(% E,)) —1+ N®WEI)=3 L 1G] L 9N + 2¢, + Z mp> +1,

pPesS
such that the curve ¢,(X,Y, Z) = 0 meets C in 6(v, E,)) —1 pairwise distinct
points Si,...,S5,E,)—1 Which are not at infinity and satisfy

H(Sz) < EQH(F)2VM(V, EV)NV((N—l)(N—2)+2€y)5(l/,Ey)’
where
S5 < NV (3, B,)ro)™.
Furthermore, the points Sy, ..., Ss,g,)-1 are not in SU FE, U Xy. Since S,

E, and X are K-rational, so is {S1,..., 5, 5,)-1}. Repeating the above
procedure yields the assertion.

3.4. Proof of Theorem 3.1. Take v = N —2 and Ex_5 = (. Corollary 3.1
implies that there are two K-rational subsets X; (i = 1,2) of C with |X;| =
N — 2 and X7 N Xy = () such that for every Q € X1 U X; we have

H(Q) < N7N4H(F)2N—4M(N . 2)N(N—1)2(N—2)2.
By Lemma 3.4,
M(N —2) < 4(N + 1)V =4[ (F)N =2,
Thus, for every @ € X1 U X5 we have
H(Q) < (N +1)10N° g(F)*N°,

Next, let v = N —1and Ex_1; = X1 UX5. Then Lemma 3.7 implies that
there is a basis {1 (X, Y, Z),¥2(X,Y, Z),¥3(X, Y, Z)} of W(N —1, X1 UX5)
such that

H(yy;) < NPV M(N — 1, Ey_ )NV =™N+0/2 (1 =1,2,3).
Combining Lemma 3.4 and the above inequalities, we get

H (i) < (N + 1)SN" 730N p(p)2N =128 (=1 9 3),
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The set of common zeros of ¥1(X,Y, Z),92(X,Y, Z),¢3(X,Y, Z) in P? is
V =X1UX,US.Put U= C —V and consider the morphism ¢ : U — P?
given by

Y(P) = (Y1(P) : Yo(P) : 3(P)) for every P € U.
We denote by C the closure of ¥ (U) in P2. The morphism 1) defines a rational
map ¥ from C' to C. First, we prove that C is a conic.

Consider the set S of singular points of ¥(U). By Proposition 3.1, there
is A = (A1, A2, A3) € Z3 such that the curve x(\) defined by

INX,Y, Z) = M1 (XY, Z) 4+ Moo (X, Y, Z) + A3y3(X,Y, Z) =0
meets C in two distinct points I7, I5 which are not in SU En_1 U 1/1_1(5).

Thus, the points ¢(I7) and (I3) are simple and I(I;,C N k(A)) 1
(i = 1,2). Denote by L the line in P? defined by

E(X, Y, Z) = AlX + )\QY + )\3Z =0.
Put A; = ¢(I3) (i = 1,2). Then LN S = {Ay, Ay}, Let O4,(C) be the
local ring of C at A; and Or,(C') be the local ring of C at I (i = 1,2). The
morphism 9 induces a ring monomorphism ¥x : Ox,(C) — Op, (C) given by

Yx(f)=fot forevery f e On,(C).

Since I; and A; are non-singular points of C' and C respectively, it follows
that Ox,(C) and Op,(C) are discrete valuation rings. We denote by ordlqi

and ordgi the order functions defined by Op,(C) and O, (C) respectively.
Then
ordf, (1 * (¢)) = ord{. (¢x) = I(I;,C N k(A )) 1.

Since ordg () < ord% (¥ * (¢)), it follows that ordA (¢) = 1, whence
I(A;,CNL)=1 (i =1,2). By Bezout’s theorem, we get

degC’:I(Al,C’ﬂL)—i—I(Ag,CﬂL):2

Hence C is a conic. _

Let G(X,Y,Z) = 0 be the equation defining C. We now calculate an
upper bound for H(G). Let (z,y) € K? satisfy F(z,y,1) = 0 and 93(z,y, 1)
# 0. Put
Ya(z,y,1)

_ wl(xa Y, 1)
w?)(may: 1) .

- . &=
¢3 ({Ba Y, 1)
Then (z,y, 1) is a solution of the system

F(X,Y,1)=0, W(X,Y,M)=¢:(X,Y, 1)~ Mis(X,Y,1) =0
and (z,y,&) is a solution of the system
F(X,Y,1) =0, W(X,Y,Z)=1s(X,Y,1) - Z5(X,Y,1) = 0.
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We denote by Ri(X,M) and Ry(X, =), respectively, the resultants of
F(X,Y,1), V1 (X,Y, M) and F(X,Y,1), ¥(X,Y,Z) with respect to V. It
follows that
Ri(x,pu) =0, Ro(z,&) =0.
Thus, if R(M, Z) is the resultant of Ry (X, M) and R2(X, =) with respect to
X, then R(u,&) = 0. We conclude that the points of C belong to the projec-
tive closure of the curve R(M, =) = 0. Hence G(X,Y, 1) divides R(M, =).
By Lemma 3.2, the height of R; satisfies

H(R;) < @N — DN+ DN @N)Y BEN T (H@)HW)Y (= 1,2).
We deduce that

H(R;) < (N + 1)10N"=50N fr(pyaN"" ;=1 9).
Further, we have degy R; < 2N(N — 1) (: = 1,2), degp; R1 < N and

deg= Ry < N. It follows that deg,; R < 2N?(N — 1) and deg= R <
2N?2(N —1). Lemma 3.2 yields

H(R) < (4N2 —AN)I(N + 1)4N(N71)(H(RI)H<R2))2N(N—1).
Thus, we obtain
H(R) < (N + 1)40N12—39N11H(F)16N12'
Finally, Lemma 3.3 implies
H(G) < (N + 1)V g (F)1oN",

Next, we prove that ¥ is birational. Suppose that there exist Py, P, € U
with P; # P and ¢(P1) = ¥(P,). If P is an arbitrary point of U with
P # Py, P # P, and ¥(P) # 1(Py), then we consider the line in P? defined
by the equation aX + Y + vZ = 0 passing through (P;) and (P).
It follows that the curve k(c,3,7) meets C in the three points P, P, P,
apart from the points of SU X7 U X5, On the other hand, Bezout’s theorem
implies that C' meets x(«, 3,7) at most in two points apart from the points
of SU Xy U Xy, which is a contradiction. Thus, ¢(P;) # ¢ (Ps). Therefore,
1) is injective. Hence, Lemma 3.7 shows that ¥ is birational.

For every i, & € K, the curves

F(X,Y,1)=0, ¥ (X,Y,u)=0, W (X,Y,{)=0

pass through the points of SU X, U X5 which are not in Cy,. The multiplicity
of the root of Ry(X,u) is equal to the sum of the intersection numbers
of C and the curve ¥;(X,Y, ) = 0 on the line X = a. Let P(i) = (a; :
Bi:1) (i =1,...,s) be the points of S, and P(i + s) = (its : Bits : 1)
(¢ =1,...,2N —4) be the points of X1 U Xy which are not in C. Then for
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every u € K the polynomial
II(X) = H (X — a;)mr@(mp@)-1) H (X — avgri)
1<i<s 1<i<2N—4
divides Ry (X, u). It follows that IT(X) divides Ry (X, M). Similarly, I7(X)
divides Ry(X, Z). Put
Rl(XvM) RQ(XaE)
Ix) ’ II(X)
By Bezout’s theorem, the degree of the polynomials S7(X, p) and Sa(X,€)
is 2, whence degy S; = degy S2 = 2.
Let (u:€:1) € (U —-Cy). Since (pu: £ :1) € (U — Cy) and 1 is
injective, there is exactly one pair (zg,yo) such that
F(xo’y(]?l) :Oa Epl(iﬂg,yo,/}z) =0, WQ(xO?yové) =0.
Then Sy (zo, ) = Sa(xo, &) = 0. Write
S1(X, M) = ag(M)X? + a1 (M) X + ay(M),
S2(X,5) = bo(2)X? + b1 (2)X + ba ().
Let U be the set of points (u: & : 1) € (U — Cw) such that

ao(p) _ ar(p) _ az(p)

bo(§)  bu(§)  b2(E)
Then 51 (X, ) and S2(X, €) have the same roots if and only if (1 : £ : 1) € U.
If (w:&:1)isnot in U, then X — z is the greatest common divisor of
S1(X, p) and S2(X,§).

Consider S1(X,M) and S2(X, =) as elements of K(M,Z=)[X]. Then

there are A(M,=Z) € K(M,Z) and B(X,M,=Z) € K(M,Z)[X] with
degy B(X, M, Z) =1 such that

S1(X, M) = A(M, 2)S5(X, Z) — B(X, M, E).

S1(X, M) = Sy (X, =) =

Let (1 : € : 1) be a point which is not in U and xg,yo € K with ¥(x :
) = (u ) Then B(xg, i1, &) = 0. Similarly, we deduce that there is
F( M,=)e K(M, =)[Y] with degy (Y, M, =) =1 such that I'(yo, u, &) =0
erte
B(X,M,E) = By(M, E)X — B, (M, =),
(Y, M, Z) = Iy (M, 5)Y — (M, Z).
Thus
Bl(uag) FI(M7§)
T = and yo = .
BO(Mag) FU(M?&)

Hence, the rational map ¥~! is given by the map

B Bi(p,§) Ii(p,§)
C-0-0C, (¢ — (BO(M’g)’FO(u,f))'
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Finally, we calculate a bound for the heights of B;(M, =), I;(M, %)

(i =1,2). It is easily seen that
Bl(Ma E) — wl(My
Bo(M,=Z)  we(M,

where
w1 (M, Z) = ag(M)ba(Z) — aa(M)by(=
wa (M, E) = a1 (M)b (5)—%( )b1 ().
We have deg,; w; < N, degzw; < N (i =1,2) and
H(w;) <2H(S1)H(S2) (1=1,2).
By Lemma 3.3, we get
H(S;) < 4N =N H(R))  (j=1,2).

Thus
H(S)) < (N + )N HE)PNT (= 1,2),
whence
H(w;) < (N + 12V HFBPNY  (i=1,2).

Similarly, we have

(M, =) B ws3(M, Z)

(M, Z)  wy(M,2)
with degy;w; < N, degzw; < N (i = 3,4) and

H(wi) < (N + 12V (78" (5 =3,4).

1| (1

3.5. Proof of Theorem 3.2. Suppose that N is odd. At the beginning of
the proof of Theorem 3.1 we have seen that there exists a K-rational subset
XY of C with |¥| = 2N — 4 and ¥’ NS = () such that for every Q € X we
have

H(Q) < (N + 1)10N° H(F)N°,
Now if we take v = N — 1 and Exy_1 = X, Corollary 3.1 implies that there
are (N — 3)/2 K-rational subsets X; (i = 1,...,(N — 3)/2) of C such that
|1Zi| =2, 2,N(SUXUCK) =0, Z;NX; =0 for i # j and for every Q € X;
we have

H(Q) < N7N4H(F)2N—2M(N 1, E)3N(N3—7N+6)‘
Using Lemma 3.4, we get
M(N —1,%) < (N 4 1)"0N° H(F)*N°,
Then for every @ € Y; we obtain
H(Q) < (N + 1)V H(F)12N",
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Next, let v =N —2 and Ex_2 =X U...UX(y_3)/2. Then Lemma 3.7
implies that there is a basis {1 (X,Y, Z),92(X,Y,Z)} of W(N — 2, En_2)
such that

H(ih) < NN M(N — 2, Ey o)V 3N 28492 (=1 9),
Since
M(N =2, Ex_3) < (N + 1)3N" g (F)12n"°,
we get
H(;) < (N + 1)15N13740N12H(F>6N13716N12 (i=1,2).
The set of common zeros of 11 (X,Y,Z) and 12(X,Y, Z) in P? is Ex_2US.
Put U = C — (Ex_2 U S) and consider the morphism v : U — P! given by
Y(P) = (Y1(P) : ¢o(P))  for every P € U.

Thus v defines a rational map ¥ from C to P'. We now prove that ¥ is a
birational map and we determine ¥—!.
Put
U (XY, M) =91 (X,Y,1) — My(X,Y,1) =0.

We denote by R;(X,M) and Rs(Y, M), respectively, the resultants of
F(X,Y,1) and ¥1(X,Y, M) with respect to Y and X. We have degy Ry <
2N(N — 2), degy Ry < 2N(N — 2) and degy, R, < N (i = 1,2). Using
Lemma 3.2, we get

H(R;) < (N + 1)30N"=T0N2 prpyi2hN™ - — 1 9),

For every p € K, the curves F(X,Y,1) = 0 and ¥;(X,Y,u) = 0 pass
through the points of the set (SUEn_2) — Cs. The multiplicity of the root
a of Ri(X,u) is the sum of the intersection numbers of C' and the curve
U (X,Y, ) = 0 on the line X = a. Let P(i) = (a; : b; : 1) (i =1,...,s) be
the points of S and P(i + s) = (@jys : biys : 1) (i = 1,...,N — 3) be the
points of En_o which are not at infinity. Then the polynomial

s

N-3
I(X) = H(X — a;)me@Ome(D=1) H (X — aiys)

i=1 1=1
divides Ry (X, u). It follows that I7(X) divides Ry (X, M). Put
o Rl (Xa M)

By Bezout’s theorem, degS;(X,u) = 1, whence degy S1 = 1. Similarly,
there is a polynomial S3(Y, M) dividing Ry (Y, M) with degy Sy = 1.
Write

Sl(X,M):aQ(M)X—al(M), SQ(KM):bO(M)Y—bl(M)
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Let (uu:1) € (U — Cy). Then there is a pair (g, yo) such that

F($07y071) =0, wl(xmyouu) =0.
We have S (zg, 1) = 0 and Sa(yo, 1) = 0, whence

a1 (1) _ bu(p)

ao(i) P bolp)’

Hence, the rational map given by

a(M) o (M)

ao(M)’  bo(M)

is the inverse rational map of ¥. Therefore, ¥ is a birational map. Since
S1(X, M) divides Ry(X, M) and S3(Y, M) divides Ro(Y, M), Lemma 3.3
yields

H(a;), H(b;) < H(S;) < AW H(R;) < (N + 12N g (F)2N" (1 =1,2).

o —

4. Reduction of singularities to double ordinary points

4.1. Statement of the results. It is well known that every curve has a
plane model having no singularities other than double ordinary points [1,
Chap. VIII, Theorem 58.1; 5, Chap. IV, Corollary 3.11]. In this section
we give an effective proof of this result for the case of curves of genus 0
following the main arguments of Theorem 58.1 of [1]. More precisely we
prove the following result:

THEOREM 4.1. Let F(X,Y) be an absolutely irreducible polynomial in
K[X,Y] of degree N > 3 such that the curve C defined by the equation

F(X,Y) =0 is of genus 0. Then C' is birational to a plane curve C given by
G(X,Y) =0, where G(X,Y) is a polynomial of K[X,Y] of degree N having
H(G) < (9]\75N+4H(F))7810N167

such that C has no singularities other than double ordinary points. More-
over, there is a birational map ¥ : C — C' given by

d}l(XvY) 1/)2(X7Y))
U(X,Y)=
oo = (5 )
where ;(X,Y) € K[X,Y] (i = 1,2) and ¢¥3(X) € K[X] with degy 1;(X,Y)
<2N2 44N, degy ; < N (i =1,2), degts < N? and

H(;) < (ONPNFAE(F)IONT (5 =1,92),
H(13) < (N + 1)1V g (F)2N°,

The inverse map of ¥ is given by

U1(X,Y) = <‘”1(X’Y) wa(X, Y)),

wo(X) 7 wye(X)
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where w;(X,Y) € K[X,Y] (i = 1,2,3,4) with degyw; < 2N? + 4N,
degy w; < N (i =1,3), degw; < N2 (i = 2,4) and

H(w) < { (ONPNHAH(P))T32NT (= 1,3),
' (N + 1IN ()N (=2, 4).
Combining Theorems 3.1, 3.2 and 4.1, we obtain Theorems 2.1 and 2.2.

4.2. Puiseuz expansions for algebraic functions. Let F/(X,Y’) be an ir-
reducible polynomial in K[X,Y] of degree m > 0 in X and n > 0 in Y.
Write

FX,Y)=A,(X)Y" + A, (X)Y" L 4.+ Ap(X).
Putt, =X —aifa € K and t, = 1/X if a = co. By Puiseux’s theorem |1,
Chap. II; 3, Chap. III; 22, Chap. IV, Sect. 3|, for every a € K U {co} there
are n distinct formal power series

Vik= 3 st (i=1,...,m k=0,...¢—1),
s>s(1)
where eq, ..., e, are positive integers with e; +...+ e, = n and (; is an e;th
primitive root of 1, satisfying

F(X,Y) = 4, (X) ]V = yir(X)).
ik

The coefficients ¢; s lie in a finite extension L; of K and ¢; (i) # 0 (i =
1,...,7). Moreover, any series y(X) of this form satisfying F'(X,y (X)) =0,
must be one of the series y; x(X) (¢ =1,...,7k=0,...,e;_1). The series
yi,r are known as Puiseux expansions at X = a of the algebraic function y
defined by F(X,y) = 0 and ey, ..., e, are called the ramification indices of y
at X = a. Systematic methods for computing e; and ¢; s are known (see [1],
(7], [17], [22]). If [L; : K] = I(i) and 01, ..., 0y(;) denote the K-isomorphisms
of L; into C, then each of the conjugate series

Yiko,(X) = D oj(ci )Pt/ (j=1,...,1(); k=0,...,e;i1)
s>s(1)

represents one of the Puiseux expansions at X = a. Thus, we conclude that
for every s the coefficients c; s, ..., ¢, s form a K-rational set. We denote by
N the total degree of F' and suppose that N > 3.

Denote by C' the curve defined by F(X,Y) = 0. Let U be the set of
discrete valuation rings V of K(C') such that K C V. A divisor D on C is
a formal sum

D=a1Vi+...4+a:Vs,

where ai,...,as € Z and Vi,..., Vs are pairwise distinct elements of U.
Given f € K(C) and V € U, we denote by ordy (f) the order of the function

f at V. Let L(D) be the set of functions f € K(C) having ordy,(f) > —a;
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and ordy (f) > 0 for every V € U, with V. #V; (i = 1,...,s). Then L(D) is
a finite-dimensional vector space over K (see [9]). Furthermore, the divisor
of a function f € K(C) is defined to be the sum

(f) = ordv(f)V.
%

LEMMA 4.1. Let D = a; V1 + ...+ asV; be a divisor on C and o4,...,0,
(> 2) be a basis of L(D). Let £ € L(D) have ordy, () = =1 (j = 1,...,5).

Then for every v = (vi,...,v,) € Z* the function n(v) = vior + ... +v,0,
has s expansions in powers of 1/€ of the form
T]j(’U): j,—l€+dj,0+--~ (]:1,,5)

If A is a positive integer, then there are at most A*~1s(s —1)/2 p-tuples
v = (v1,...,0,) € ZM with |v;] < A (i = 1,...,u) such that the leading
coefficients dj —1 (j =1,...,s) of the above expansions are not all distinct.
Moreover, ifd; -1 (j =1,...,s) are pairwise distinct, then K(C) = K(&,n).

Proof. Let t; be a local parameter at V; (j = 1,...,s). Since §,0; €

L(D), we have
o; = Ci7j7_1t;1 + Ci 5,0 + Ci7j71tj + ..., g = b]"_lt;l + bj70 + bj71tj 4+ ...
Since ordy, (§) = —1, it follows that b; 1 # 0 (j = 1,...,s). Then we may
write t; as an expansion in powers of 1/¢ of the form
tj:bj7_1£_1+... (jzl,...,s).
Therefore, n(v) has an expansion in powers of 1/¢ of the form
T](?)) = djﬁlf + dj70 + ... y

where
o

_Z Ci,j,—1

Clj7_1 = 4 V; b'_l .
=1 J»

Thus, we have dy, 1 = d; —; if and only if

E ik, —1 i,l,—1
vZ( ¢ J— v ) J— 0.
bl,*l

i=1 bk, —1

By [1, Corollary to Lemma 26.2, p. 74|, the vectors

(Crj—15sCuj—1)  (G=Fk1)
are linearly independent, whence the above linear equation is not trivial.
The number of solutions v = (vi,...,v,) € Z* with |v;] <A (i =1,...,p)
is at most A*~! and we have s(s — 1)/2 such equations. It follows that
there are at most A*'s(s — 1)/2 p-tuples v = (v1,...,v,) € Z* with
lvil] < A (i =1,...,u) such that d; _; (j = 1,...,s) are not all distinct.
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Finally, [1, Corollary 1, p. 136] implies that ifd; _1 (j = 1,...,s) are pairwise
distinct, then K(C) = K(&,n).

LEMMA 4.2. Let D = Vi + ...+ Vy be a divisor on C and &, € K(C)
be such that K(C) = K(§,n). Suppose that &,n € L(D) and ordy,(§) =
ordy,(n)=—-1(i=1,...,N). Let
ngl(X7Y) n:fQ(X7Y)
J(.()(—>(7}f)7 fO(X7Y),
where f;(X,Y) (i =0,1,2) are polynomials of K[X,Y]|— K of degree < M.
Then there is an absolutely irreducible polynomial
GX,Y)=YN + B (X)YV '+ ..+ By(X),
where B;(X) € K[X] with degB; <i (i=1,...,N —1) and deg By = N,
such that G(&,m) = 0. Moreover,
H(G) < e(M, N)H ()™M H(fo) N ™M (H(f1)H (f2))*N,
where
o(M,N) < (N + 1)NM*(MAD) (g 4 1)4NM°
% 42N2M+(4N2M+1)2(4MN)!(N+M)!4NM_

Proof. Since £ € L(D) and ordy,(§) = —1 (¢ = 1,...,N), we deduce

that [K(C) : K(§)] = N. Let
GEY) =YY +Bi(Y" ! +... 4+ Bn(6)
be the irreducible polynomial of 1 over K (). The function has no poles
except those of £, whence B;(¢§) € K[¢] (i = 1,...,N). Therings Vi,...,Vx
are all the elements of U lying above the ring of K'(£) defined by 1/£. Thus
1 has N conjugates over K (§) which are given by the Puiseux expansions
of n at infinity:
nj =nj,—18 + M0 +n0 1/ + ... (G=1,....N),

with n;, _1 # 0. Hence, B;(§) is, up to sign, the ith elementary symmetric
polynomial in N quantities 7;, whence deg B;(§) <i (i =1,...,N —1) and
deg By (§) = N.

Consider the polynomials
él(XaYaé) = fl(va) 7§f0(X7Y)7 @2(X7Ya77) = f2(X7Y) 7nf0(X7Y)
We denote by R;(X, &) and Ro(X,n), respectively, the resultants of F'(X,Y),
?1(X,Y,§) and F(X,Y), $2(X,Y,n). We have deg; Ry < N, deg, Ry < N
and degy R; <2NM (i =1,2). Lemma 3.2 yields

H(R;) < (N+MYN+DMM+1)YNHFWMHG)N  (i=1,2).
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Let S(&,n) be the resultant of R;(X,¢) and R2(X,n) with respect to X. We
have deg, S < 2N2M, deg, S < 2N2M and Lemma 3.2 implies

H(S) < (ANMIN + 1) (H(Ry ) H(Ry))*MM.
Combining the above inequalities, we deduce
H(S) < AM, N)H(F)'"N M H(fo) ™M (H(f1)H(f2))* M,
where
A(M,N) < (N + 1)ANM A1) (ap 4 )ANMZ1gNM (AT N)I(N + M)IANM
For every z,y € K with fo(x,y) # 0 the elements

f1($;y) f2(xay)
R e ol )
satisfy G(&(z,y),n(z,y)) = 0. On the other hand, we have &1 (z,y,£(z,y)) =
0 and Po(x,y,n(z,y)) = 0, whence S(&(x,y),n(x,y)) = 0. So G(X,Y) di-
vides S(X,Y). Then Lemma 3.3 implies that H(G) < 44N*M+1)° (§) The
assertion follows.

and  7(z,y)

LEMMA 4.3. Suppose that C is of genus 0. Let D = Vi + ...+ VN be
a divisor on C' and {o1,...,0n4+1} be a basis of L(D). Let £ € L(D) with
ordy,(§) = =1 (j =1,...,N). For everyv = (v1,...,un+1) in ZNH! denote
by @,(&,T) = 0 the irreducible equation of the function

n(v) =v101 + ... + UN+1ON+1

over K(€) and by D, (&) the discriminant of ®,(&,T) considered as a poly-
nomial with coefficients in K(£). Let ©(€) be the product of the factors
(€ —a)*~1 where a € C and eq1,...,€4,0(a) are the ramification in-
dices of n(v) at & = a. If A is a positive integer, then there are at most
524 + )NN2(N — 1)2 (N + 1)-tuples v = (v1,...,on41) € ZNTL with
lvil <A (i=1,...,pu) such that D,(§) is not of the form

D, (&) = Uu(€)*6(9),
where U, (&) € K[¢] has pairwise distinct roots and distinct from the roots
of O(¢).

_ Proof. The function n(v) has no poles except those of £ and [K(C) :
K(¢)] = N. Thus, there are B;(§,v) € K[, v] (i=1,...,M < N) such that

®,(&,T) = Bo(&0)TY + By (&,0)TM ' + ... 4+ By (&, v).

Since B;(&,v) is, up to sign, the ith elementary symmetric polynomial of
the expansions of 7(v) in powers of 1/¢, we deduce that dege B; < i
(i =1,...,M) and the degree of B;({,v) in v1,...,vn+1 is at most . Fur-
thermore, note that V; (i = 1,...,N) are all the rings lying above the
discrete valuation ring of K (&) defined by 1/€.
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Let a € K. The conjugates of n(v) over K(£) are given by the Puiseux
expansions of n(v) at £ = a which are of the form

hik(€0) = cio(v) + e (V)CEH(E —a) /oot 4

where i = 1,...,r(a), k = 0,...,e,,; — 1. It follows that the discriminant
D, (&) of @,(&,T) is

D& = T in(&v) = huul&v)),
(3,k)<(5,1)
where (i, k) < (j,1) means that i < j or i = j and k < [. For every index 1,
there is D;(§) in K[{] such that

[ (Rin(€) = hin(€))* = (€ = a)* "' Di(€).

k<l

Let I' be the set of a € C such that there is i € {1,...,r(a)} with e,; > 1.
Hence

Dv(g) = W(f,”u) H (f — a)(ea,l_l)"r...—‘r(ea’r(a)_1)’
acl’

where W (£, v) € K[, v]. When the coefficients vy, ..., vx1; are indetermi-

nates with ¢, 0(v) # cxo(v) for K, A € {1,...,r(a)}, Kk # X and ¢; 1(v) # 0

fori e {1,...,r(a)}, then W (&, v) does not contain factors { —a with a € I".
The Puiseux expansions of o; at £ = a are of the form

05,i0(€) = Tiio + TjiaCE(E — ) /o + L.
wherej=1,...,N+1,i=1,...,r(a), k=0,...,e,,—1. By [1, Corollary to
Lemma 26.2, p. 74], any two of the vectors (71,i0,...,Tn+1,,0) are linearly
independent. Thus, for k, A € {1,...,7(a)} and k # A the equations

E("i; A)(U) = (7'1,,-@,0 - 7'1,/\,0)’01 +...+ (TN+1,;«V,0 - TN+1,)\,O)UN+1 =0

are non-trivial. So, ¢, 0(v) = crpo(v) if and only if E(k,\)(v) = 0. Fur-
thermore, [1, Corollary to Lemma 26.2, p. 74] implies that for every i €

{1,...,r(a)} the coefficients 74 ;1,...,7n+1,;,1 are not all zero. Thus, the
equations
Zl(v) = T1,;,101 4+ ...+ TN+1,i,1UN+1 =0 (Z = 1, . ,r(a))

are non-trivial. Hence, ¢;1(v) = 0 if and only if Z;(v) = 0. For a posi-
tive integer A the number of v = (v1,...,vn11) € ZVNH! with |v;] < A
(¢ =1,...,N + 1) such that at least one of the equations F(x,\)(v) = 0,
Z;(v) = 0 has a solution is at most (24 + 1)V (N + N(N —1)/2).

Let o be a zero of W (£, v). Then p must be a zero of one of the factors
hi k(&) —hji(€) and each such factor occurs twice in D, (§). Hence the factor
& — o occurs an even number of times in D, (). It follows that there is
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a polynomial U(¢,v) such that W(£,v) = U(& v)?. Since dege Dy(§) <
2N(N — 1), we get |I'| < 2N(N — 1). Furthermore, the degree of U(&,v)
in vy,...,un41 is at most N(N — 1). We deduce that the number of v =
(v1,...,uvN4+1) with v; € Z and |v;| < A (i =1,..., N + 1) satisfying one of
the equations
U(a,v) =0, acl,

is at most (24 + 1)V2N2(N — 1)2. Let A(v) be the discriminant of U (&, v)
considered as a polynomial with coefficients in K [v]. Since the degree of A(v)
in vy,...,vnq1 is at most 2N2(IN — 1)2, the number of v = (v1,...,vn41)
with v; € Z and |v;|] < A (i = 1,...,N + 1) such that A(v) = 0 is at
most (24 + 1)V2N?2(N — 1)2. Therefore, the number of v = (v1,...,vn41)
with v; € Z and |v;| < A (i = 1,...,N + 1) such that U(&,v) has no
distinct roots or there is a € I satisfying U(a,v) = 0 is at most
(24 + 1)N4N?(N — 1)2. Finally, there are at most 5(2A4 + 1)V N?(N — 1)?
(N + 1)-tuples v = (vq,...,vn41) € ZVNH with |v;] < A (i =1,...,pu) such
that D, (&) is not of the form

Dv(f) = U(f7 1))2 H (5 _ a/)ea’1+"'+ea,7‘(a,)77'(a)7
acl’
with U(&,v) having pairwise distinct roots and distinct from the elements

of I'.

LEMMA 4.4. Let f(X,Y) = 0 be an irreducible curve of degree n in Y
defined over K. For a € C denote by €41, - - ., €q,r(a) the ramification indices
of Y at X = a. Assume that the following conditions are satisfied:

(a) The Puiseuz expansions y;(X) (i = 1,...,n) at X = oo of the
algebraic function' Y defined by f(X,Y) =0 are

yi(X):bi’,1X+bi70+bi,1X_1+... (2217,71)

with leading coefficients b; _1 pairwise distinct, and Y has no other poles.

(b) The discriminant of f(X,Y), considered as a polynomial with coef-
ficients in K[X], is of the form

D(X) =U(X)*0(X)

where O(X) is the product of the factors (X — a)®i~1 with a € C, i =
1,...,r(a), and U(X) has pairwise distinct roots and distinct from the roots

of O(X).

Then the curve f(X,Y) =0 has no singularities other than double ordi-
nary points.

Proof. See [1, Theorem 57.1, p. 161].
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4.3. On the bases of Riemann—Roch spaces. Let F(X,Y, Z) be a homoge-
neous absolutely irreducible polynomial in K[X,Y, Z] of degree N > 3 such
that the curve C defined by F(X,Y, Z) = 0 is of genus 0. If P is a point on
C, we denote by Op the local ring of C' at P.

LEMMA 4.5. Let {P1,...,Pn} be a K-rational subset of simple points
of C. Put D = Op, +...+Op,. Let T be the set of a € K such that there is
a ring Op, lying above X = a. Denote by M(T) and II(T), respectively, the
mazximum and the product of H(a) with a € T'. Then there exist polynomials
Gi(X,)Y)e KIX,Y]| (i=1,....,N+1) and E(X) € K[X] with degyx G; <
2N? + 4N, degy G; < N, deg E < N? and

H(G;) < (ONSH(F)M(T))*N" | H(E) < (N + 1) H(F)*N’ 11(T),

such that the functions ¢; (i =1,...,N + 1) on C defined by the fractions
Gi/E (i=1,...,N+1) form a basis of the space L(D).

Proof. By the Riemann—Roch theorem, the space L(D) has dimension
N + 1. By [18, Theorem A2], there are polynomials E(X) and G,;(X,Y)
(t=1,...,N+1) such that G;(X,Y)/E(X) (i =1,...,N + 1) represent a
basis of L(D). Since the divisor D is defined over K, [18, Theorem B2]
implies that we may take the polynomials F(X) and G;(X,Y) (1 = 1,...
..., N +1) to have coefficients in K.

Let D(X) be the discriminant of F(X,Y,1) considered as a polynomial
with coefficients in K[X|. We have deg D < 2N (N—1). By [18, Theorem A2],
we get

+ N < N?

and the roots of E(X) are among the roots of D(X) and the elements of 7.
Further, we can assume that the leading coefficient of E(X) is 1. Let

E(X)=(X—-01)...(X —0).

Let R(X) be the resultant of F/(X,Y, 1) and Fy (X, Y, 1) with respect to Y. If
0; is a root of D(X), then R(p;) = 0 and Lemma 3.1 yields H(0;) < 2H(R).
By [21, Theorem 5.9, p. 211], we have

H(E) <2V " H(p1)... H(o,) < 4N H(R)N IT(T).

Lemma 3.2 implies

deg D
deg F < eg

H(R) < (N +1)5"2H(F)?N 1,
Hence
H(E) < (N + 1N =N [ (F)2N° [1(T).
By [18, Theorem A2], we have
degy G; < 2N? +4N.
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Let F(X,Y,1) = ap(X)Y™ +...+ a,(X). Following the notation of [17], we
have
Gi(X,)Y) = b1 (X) + bia(X)y2 (X, Y) + ... 4 bin (X)yn (X, Y)
(i=1,...,N+1),
where
y;(X,Y) =ao(X)Y7 4 a(X)YI 2+ 4a; o(X)Y  (j=2,...,n)
and b;;(X) € L[X]. From [18, pp. 204, 209 and 196], we get
b”(X) = 5ij0 + (Sile + ...+ (5ijl,XV
with v < 2N? + 3N. By [18, Lemma 26] the vector §; = {;jp }1<j<n,0<p<v
has height
H(5;) < (ONSH(F)M(T))3%N""
We have

n

Gi(X,Y) = Z bij (X)y;(X,Y)

= 01 (X) + (bi2(X)ao(X) + ... + bin(X)an—2(X))Y
+ oo+ bin (X)ag(X)Y™ L
By the proof of Theorem C2 of [18], we can choose a vector §; such that one

of the d;5, is 1. Further, we may suppose, without loss of generality, that
one of the coefficients of F'(X,Y") is 1. Then we obtain

H(G;) < TN®H(8,)H(F) < (ONCH (F)M(T))?6N"".

LEMMA 4.6. Let B = {Py,...,Py} and I' = {Q1,...,Qn} be two K-
rational subsets of simple points of C with BN T = (). Let T be the set of
a € K such that there exists a local ring Op with P € B lying above X = a.
Denote by M (B) and M(I"), respectively, the mazimum of H(a) with a € T
and the mazimum of H(Q;) (j =1,...,N). Then there are two polynomials
G € K[X,Y], E(X) € K[X] with degy G < 2N? + 4N, deg,, G < N,
deg E < N? and heights satisfying

H(G) < (9N6H(F)M(B))655N13M(F)5N4

and
H(E) < (N + 1" H(F)™ ] H(a)

a€T
such that the fraction G/E defines a function ¢ on C with divisor

(gf)):OQl—l-...—f—OQN—Opl—...—OpN.
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Proof. By Lemma 4.5, there exist polynomials G;(X,Y) € K[X,Y]
(i=1,...,N+1)and E(X) € K[X] with degy G; < 2N? +4N, degy G; <
N, deg E < N? and

H(G;) < (ONOH(F)M(B))* N,
H(B) < (N + 1NV H(F)? ] H(a),
acT
such that the functions ¢; (i =1,..., N 4+ 1) on C defined by the fractions
Gi/E (i=1,...,N +1) form a basis of the space L(Op, + ...+ Op,). Let
G, be the homogenization of G;. Consider the linear system
Gha(@) X1+ ...+ Grnv1(Q) X1 =0 (F=1,...,N).

Let r be the rank of the system and suppose that the vectors
Z; = (Gra(Qy),...,Ghni1(Q))  (G=1,...,7)

are linearly independent. Since I" is a K-rational set, Lemma 3.6 implies
that the system has a non-trivial solution z1,...,zx11 € K satisfying

H(xl,...,xN+1) S N'H(Zl) H(ZT)

We have
H(Ghi(Qj)) < 8N4H(Gi)H(Qj)2N2+5N7
whence
H(Z;) < HGr1(Qj)) .- H(Ghrn+1(Q5))
< (ONSH(F)M(B))*N" pr(1)N°.
Hence

H(zy,...,on41) < (ONSH(F)M(B))*°N" M(1)5N"
Thus, the polynomial G = x1G1 + ... + xny+1G N1 has
H(G) < (N+1)H(z1,...,2n4+1)H(G1) ... H(GN+1)
< (ONSH(F)M(B))%55N" M (1)5N*

and satisfies G(Q;) = 0 (j = 1,...,N). Therefore, the function ¢ on C
defined by the fraction G/FE has divisor

(¢):OQ1+---+OQN—OP1_---—OPN-

4.4. Proof of Theorem 4.1. First, suppose that degy- F' = N and C has
N simple points. Since the resultant R(X) of F(X,Y) and Fy (X,Y) with
respect to Y has degree < 2N?, there is an integer a with |a| < N? such
that the points P, = (a; : b; : 1) (i =1,...,N) on C above X = qa are all
simple. Put D = Op, + ...+ Op,. By Lemma 4.5, there exist G;(X,Y) €
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K[X,Y] (i=1,...,N+1)and E(X) € K[X] with degy G; < 2N? + 4N,
degy G; < N, deg E < N? and

H(G;) < (ONSH(F))3N"  H(E) < (N + 1) H([F)*N’,

such that the functions ¢; (i =1,..., N + 1) on C defined by the fractions
Gi/E (i=1,...,N +1) form a basis of L(D).

For simplicity we denote by ord;(f) the order of a function f at Op,.
Suppose that there is j € {1,..., N} with ord;(¢y) >0 (k=1,...,N +1).
Then L(D) = L(D—Vj), which is a contradiction, because by the Riemann—
Roch theorem dim L(D—V}) = dim L(D)—1. Thus, for every j € {1,..., N}
there is k(j) € {1,...,N + 1} such that ord;(¢)) = —1. The Puiseux
expansion of ¢, at Op, is of the form

—1
Qbr,i = Cr,i,—lti + Cri0 + Cr,-,i71ti +...,

where t; is a local parameter at Op,. The coefficients ¢, ; _1 (r=1,..., N+1)
are not all zero. For every (N + 1)-tuple A = (A\q,..., Ayy1) € ZVNHL put
nA) = Ao1+...+Ani10n+1. If Ais a positive integer, then the number of
(N +1)-tuples A = (A1,..., An41) € ZN T with |\ < A (G =1,...,N+1)
satisfying at least one of the equations

Acli,—1+ ... FANf1CN414,-1 =0 (i=1,...,N)

is at most (24 + 1)V N. Hence, the number of (N + 1)-tuples A = (Aq, ...
ooy An1) € ZNTU with [N < A (j = 1,...,N + 1) such that n(\) has
ordy, (n(A\)) > 0 for some i € {1,..., N}, is at most (2A+1)N N. Then there
is = (p1,..., un41) in ZVT with ] < (N+1)/2 (j=1,...,N +1),
such that the function & = n(u) has ord;(§) = —1 (i =1,...,N). Then ¢ is
defined by the fraction Z/E where = € K[X,Y] with degy £ < 2N2 +4N,
degy = < N and height

H(Z) < NX(9NSH(F))306N" (V+1),

Lemma 4.1 implies that for every A = (A1,..., Ayy1) € ZV*1! the func-
tion n(A) has N expansions in powers of 1/ of the form
nj(A):dL—lg‘i‘djyg—i-... (j:L,N)

and there are at most (24 + 1)V N(N —1)/2 (N + 1)-tuples A = (Aq, ...
coANg1) € ZNT with [N < A (i =1,...,N + 1), such that the leading
coefficients d; _1 (j = 1,..., N) of the above expansions are not all distinct.
Hence, for A > 1+ N(N —1)/2 there is v = (vy,...,vy41) in ZN+! with
lvil] <A (i=1,...,N +1) such that the coefficients d; 1 (j =1,...,N) of
the expansions of 7(v) are pairwise distinct. Then Lemma 4.1 yields K(C) =
K (&,n(v)). Since we have ordy,(§) = —1 (i = 1,...,N) and £ has no other
poles, it follows that [K(C) : K(§)] = N.
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We denote by &,(£,T) = 0 the absolutely irreducible equation satisfied
by n(v) over K (&), and let D,(§) be the discriminant of ®,(&,T) consid-
ered as a polynomial with coefficients in K (). Let ©(£) be the product
of the factors (£ — a)®»i~! where a € C and e, 1, .. -3 €q,r(a) are the rami-
fication indices of n(v) at ¢ = a. By Lemma 4.3, there are at most
5(2A + 1)¥N23(N — 1)2 (N + 1)-tuples v = (v1,...,on41) € ZNT! with
lvi| <A (i=1,...,u) such that D, (&) is not of the form

Dy (&) = Uv(£)28(§)7
where U, (§) has pairwise distinct roots which are distinct from the roots of
O(€). Then there exists v = (vq,...,vy41) in ZV T with |v;] < 3N23(N —1)2
(¢=1,...,N +1) such that n(v) generates K (C) over K (&), ordy, (n(v)) =

—1(i=1,...,N), and the discriminant D, (§) of the irreducible polynomial
@, (&,T) of n(v) over K(§) has the form

Dy (&) = UU(£)2@(£)7
where U, (§) has pairwise distinct roots which are distinct from the roots of
O(¢). By Lemma 4.4, the equation @,(£,T) = 0 is a model of the curve C
having no singularities other than double ordinary points.
Put n = n(v) and @(&,T) = &,(£,T). The function 7 is defined by the
fraction ©/F where © € K[X,Y] with degy © < 2N? + 4N, degy © < N
and height

H(6) < 3NS(QNBH (F))366N" (N+1)
By Lemma 4.2,

H(®) < 427NN + 1)V {1 (F) N q(B)"N' (H(0)H(2))*.

Furthermore, deg® = N. Using the inequalities for the heights of ©, = and
E we obtain

H(®) < (ONSH(F))™810N"™
We denote by @5, (U, V, W) the homogenization of the polynomial . Thus,
we have a birational map 2 from the plane curve F(X,Y,Z) = 0 to
&y (U,V,W) defined by 2(z:y:1) = (§(z,y) : n(x,y) : 1).

Next, we determine the inverse map of (2. Let B = {2(Py),...,2(Pn)}
and I' = 2(Cx) = {Q1,...,Qn}. Since we have ord;(§) = ord;(n) = —1
(i =1,...,N), the points £2(F;) on the curve &, (U, V, W) = 0 are at infinity.
Furthermore,

H(Q;) < (ONSH(F))P™N"(N+1) (=1, N).

Thus, Lemma 4.6 implies that there are G € K[X,Y] and J(X) € K[X]
with degy G < 2N?2 + 4N, degy G < N, degJ < N? and heights

H(G) < (ONSH(F)2™N"  H(J) < (N + 1)°N H(F)2N
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such that the fraction G/J defines a function ¢ on C' with divisor
(d)) - OQl + . e + OQN - OQ(PI) — ee. OQ(PN)'

The divisor of the function ¢ o {2 coincides with the divisor of x — a, whence
there is ¢ € K such that © —a = ¢¢(£,n). Thus

_ cG(&n) +aJ(§)

J(£) '
Suppose that a # 0. Let Py be a point on C' with z-coordinate equal to 0.
Then H(Py) < 2H(F'). We have

H(Q(Py)) < IN'H(Z)H(0)H(E)(2H (F))?N"+5N

and

H(¢(2(Po))) < ONH(G)H(J)H(82(Py))?N 5N,
Combining the above inequalities, we obtain

H(6(2(Po))) < (ONSH(F))*TN",

Thus

H(c) < H(a)H(¢(2(Py))) < (INSH(F))*70N",
So, we deduce that

H(cG +aJ) < 2N2H(c)H(G)H(J) < (ONSH(F))5352N",

In the same way, we deduce a similar expression for y. Finally, Lemma 3.7
yields the assertion.

5. Rational points on conics and proof of Theorem 2.3

5.1. Conics. In this section we obtain an upper bound for the minimal
solution of a homogeneous quadratic form in three variables. Using this
result and Theorem 2.1 we prove Theorem 2.3.

LEMMA 5.1. Let
G(X,Y,Z)=AX*+ BXY +CY?> + DXZ + EYZ + FZ* =0,

be a (non-zero) quadratic form in X,Y,Z with A,B,C,D,E,F € K. Sup-
pose that the equation G(X,Y,Z) = 0 has a solution in K. Then there exist
x,y,z € K such that G(x,y,z) =0 and

H(z,y,z) <45-10*|Dg [P/ CD H(G)M.
When K = Q, we have
H(x,y,z) < 30H(G).

Proof. If a is an algebraic number and a = a(!), ..., a(®) are its conju-
gates, then we put ||a|| = max{|a™)|,...,|a(®|}. Consider the equation

aX?4+bY?+cZ% =0,
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where a, b, c are integers in K, and suppose that it has a solution in integers
of K. Then [20] implies that there exists a solution of the above equation in
integers x, y, z of K satisfying

max{||z/Vbell, |ly/vacl, |lz/Vab|[} < 6]Dx|*.

So, for every archimedean absolute value |- |, of K we have

|2/d max{|aly, |bly, |c|v}-

max{|zly, [y|v, |z]v} < 6|Dk
It follows that
H(z,y,z) < 6|Dg|**H(a,b,c,1).
Consider now the conic given by the equation
G(X,Y,Z) = aX? + XY +Y? +6XZ +eYZ +(Z? =0,

where «, 3,7, 6, €,  are integers of K, and suppose that it has a point rational
over K. We have the following cases:

(i) B=0and ary # 0. Putting X = X'+ hZ', Y =Y'+kZ' and Z = 7’
we take
GX'\Y',Z')=aX?+4Y? +(20h+8) X' Z'+(2vk+e)Y'Z' + G(h, k, 1) Z".
Next, setting h = —d/(2a), k = —¢/(2v) and multiplying by 4oy we obtain
the equation

D(X'Y', Z'") = 4027 X" + 407*Y"? + (=62~ — e2a + 4av() 2% = 0.
Putting U = 2aX’, V =27Y’" and W = Z’, we get the equation

OU, V,W) =qU? + aV? + (=6%y — e2a + 4ay)W? = 0.
Then the equation ©(U, V, W) = 0 has a solution in integers of K. It follows
that there are integers u, v, w of K such that ©@(u,v,w) =0 and
H(uv v, ’lU) < 6|DK|2/dH(a7 s _527 - 520‘ + 40‘7(7 1)
Thus ¢ = (u — dw)/(2a), y = (v — ew)/(27) and z = w is a solution of
G(X,Y,Z) =0 with
H(z,y,2) < 2H(u,v,w)H(a,7,6,¢,1)%
Since
H(Oé, Vs _627 - 52& + 40"747 1) S 6H(Oé, s 67 g, Ca 1)37
we deduce that
H(:Ea Y, Z) < 72|DK|2/dH(a7 Y5 5a &, Ca 1)5'

(ii) 8 =0 and ary = 0. If § = @ = 0, then the rational solutions of the
equation G(X,Y,Z) = 0 over K are the triples (z,y, z) with y,z € K and
dz = —(yy? + eyz + (2%)/z. Taking y = 0 and 2z = 1, we have x = (/& and
the height of this solution is H((/0,0,1) < H(G). If 3 =~ = 0, then we
similarly obtain a solution of G(X,Y, Z) = 0 over K with height < H(G).
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(iii) B #0 and « = v = 0. Putting X = X' - Y’ YV = X'+ Y’ and
Z = 7' we have the equation
D(X'\Y',Z)=pX? - Y+ (5 +e)X'Z' +(c-0)Y'Z' +(Z"? =0.
Furthermore, H((3,0 +¢,e —6,(,1) < 2H(f,0,¢,(,1). By the case (i), there
are integers u, v, w of K with
H(u,v,w) < 2304| D [ H (e, 7, 8,¢,(,1)°
such that I'(u,v,w) = 0. Thus, z = u—v, y = u+v and z = w is a solution
of the equation G(X,Y, Z) = 0 satisfying
H(z,y,2) < 2H(u,v,w) < 4608/ D |**H(ar,~,6,¢,¢,1)°.
(iv) B # 0 and « # 0. The transformation X = X' — 8Y’"/(2«), Y =Y
and Z = Z' gives the equation
D(X"Y',Z') = aX” + (v + (=6%/(4e))) Y
+6X' 7' + (e + (=68/ ()Y Z' + (2"
Multiplying by 4« and putting U = 2aX’, V =Y and W = 27/, we get
the equation
OU,V,W) =U? + (4ay — BA)V2 + 6UW + (2ae — 03) VW + aCW? = 0.
We have
H(1,4ay — (%,6,20e — §83,a() < 5H (e, 3,7,6,¢,(, 1)°.
By (i), there are integers u, v, w of K such that ©(u,v,w) =0 and
H(u,v,w) < 72|Dg|*4H (1, 4ay — 52,6, 20e — 65, aC)°.
Hence
H(u,v,w) < 225000/ Dk |>¢H (a, 3,7, 0,¢,¢, 1),
Thus z = (u — fv)/(2a), y = v and z = w/2 is a solution of G(X,Y,Z) =0
having
H(z,y,z) <2H(u,v,w)H(a, 3,7,0,¢,(, 1)
< 450000\ D [ H (e, 8,7, 6,¢,¢, 1)
(v) B # 0 and v # 0. We obtain the same bound as in (iv).
Next, consider
G(X,Y,Z)=AX>+BXY +CY?*+DXZ+EYZ+FZ*=0
with A, B,C,D,E,F € K. Let A # 0. By the proof of [14, Lemma 1], there

is an integer A of K such that AB/A, AC/A, AD/A, AE/A, AF/A are
integers of K and

H(1,A,ABJ/A,AC/A,ADJA, AE/A, AF/A)
< |Dk|YCYH(1,B/A,C/A,D/A, E/A, F/A).
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We put
g X,Y,Z) = aX? + XY +7Y? + 6XZ +eYZ + (2% =0,

where a« = A, f = ABJ/A, v = AC/A, § = AD/A, ¢ = AE/A and ¢ =
AF/A. Suppose that the equation G(X,Y,Z) = 0 has a solution in K. It
follows that there are x1,x9,x3 € K such that g(z1,z2,z3) = 0 and

H(w1,22,23) < 450000\ D[ “H (v, 8,7, 6,, ¢, 1)
< 450000\ D g ¥/ @D g (G,
When K = Q, [16, Theorem 1] implies that there are x1,x9,x3 € K satis-
fying
H(x1,x2,23) < 30H(G).
REMARK. In [16], there is a generalization of the result of [20] in the case

of a homogeneous quadratic form in many variables. Using [16, Theorem 1]
we deduce that there exist z,y,z € K such that G(z,y,z) = 0 and

H(z,y,z) < 30| Dg|CT/ED (@),

Note that Lemma 5.1 gives better estimates for the exponents of H(G) and
| Dkl

LEMMA 5.2. Let
G(X,Y)=aX?+BXY +1Y2 +0XZ+eYZ +(Z* =0

be a (non-zero) quadratic form in X, Y with o, 3,7,0,e,( € K. Suppose
that the equation G(X,Y) = 0 has a solution (x,y) with z,y € K. Then
there are polynomials f1(T), f2(T), f3(T) € K[T] of degree < 2 with

H(f1),H(f2) <3H(z,y,1)H(G), H(f3) < H(G)
such that
AT ()
f3(T)’ f3(T)
Proof. Putting Y = y+T(X — ) in the equation G(X,Y) = 0, we get
X = fi(T)/f3(T) and Y = fo(T)/ fs(T'), where
A(T) = aaT? — 20y + )T — pr — vy,
fo(T) = (—ay + & +v2)T? — 262T + By,
f3(T) =T +~T + B.
We easily obtain
H(f1), H(f2) <3H(z,y, VH(G), H(fs) < H(G).

5.2. Proof of Theorem 2.3. If N = 2, then Lemmas 5.1 and 5.2 give the
result. Thus, suppose N > 3. By Theorem 2.1, there is a conic I" defined
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over K of equation G(X,Y) = 0 with
H(G) < <9N5N+4H(F))13-104N28
and a birational map @ : C' — [ given by

[ 0i(X,)Y) ¢a(X,Y)
P(X,Y) = <¢3(X,Y)’ ¢3(X=Y)>’

where ¢;(X,Y) € K[X,Y] (i = 1,2, 3) with deg ¢; < 3N? and
H($;) < (ONPNHAH(F)PBONT (=12 3).
The inverse map of @ is given by
7 (X,Y) T3(X,Y))

oHX,)Y) =
0= (2T 2wy
where 7;(X,Y) € K[X,Y] (i = 1,2,3,4) with deg7; < 15N3 and
9N5N+4H(F))5355N16 (i=1,3)
H(r;) < ( T
() { (N + 125N g (F)H8N" (= 9 4),
Suppose that C has a non-singular point P defined over K which is not
at infinity. If ¢;(P) =0 (i = 1,2, 3), then we choose a uniformizer ¢t € K(C)
for P and we put 7 = min{ordp(¢1), ordp(¢2),ordp(¢3)}. Hence
P(P) = ((t7"¢1)(P) : (¢ 7d2)(P) : (¢ " 3)(P))
is a point of I" defined over K. If one of the ¢;(P) is non-zero, we immediately

see that @(P) is a point of F defined over K. By Lemma 5.1, there exists a
point Q = (u: v : w) of E defined over K with

H(Q) < 450000| D |*>/ ) H(G)M!.

If ordg(71/72) < 0 or ordg(73/74) < 0, then $71(Q) is a point of Cw,. Next,
suppose that ordg(7i/72) > 0 and ordg(73/74) > 0. We denote by 7, 5, the

homogenization of 7;. Hence, #~1(Q) = (11.1(Q)/72.0(Q), 73.1(Q)/T2.0(Q))
is a point of C' — C,. We have

H(®~1(Q)) <19N°H(Q)12N’H(11)*H (12)* H (73)* H (14)?,

whence

H(@_l (Q)) < ’DK|90N3/d(9N5N+4H(F))18'106N31 )
Furthermore, Lemma 5.2 implies that there are polynomials f1(7"), f2(T),
f3(T) € K[T] of degree < 2 with

H(f1), H(f2) <3H(Q)H(G),  H(fs) < H(G),
such that the conic G(X,Y) = 0 has a parametrization given by

_AM ()

=R VT R@y
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Thus, the curve F(X,Y,1) = 0 has a parametrization given by

_ g1 (T) _ gs (T)
92(T)’ 94(T)’

where g;(T) € K[T] (i = 1,2,3,4) with deg g; < 30N and

3 107 N31
H(gz) < ’DK|225N /d(9N5N+4H(F))3 10°N ]
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