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1. Introduction. In [8], Holzer proved that if the equation aX2 +bY 2 +
cZ2 = 0, where a, b, c ∈ Z, has a non-trivial solution in integers, then a so-
lution (x, y, z) exists with |x| ≤ |bc|1/2, |y| ≤ |ac|1/2, |z| ≤ |ab|1/2. Later,
Mordell [12] gave a simple elementary proof of this result. Let K be an
algebraic number field. In case where a, b, c are integers of K, Siegel [20]
obtained a very sharp estimate for the size of the “smallest” solution of the
above equation in integers of K. In this work we generalize these results.
Let F (X,Y ) be an absolutely irreducible polynomial of K[X,Y ] such that
the equation F (X,Y ) = 0 defines a curve C of genus 0. Suppose that C
has a non-singular point defined over K. Then we calculate an explicit up-
per bound for the size of the “smallest” non-singular point of C over K.
Furthermore, we obtain an effective parametrization of C.

A fundamental result due to Hilbert and Hurwitz [6] says that any curve
of genus 0 defined over Q is birationally equivalent to either a line or a conic.
The same result was obtained independently by Poincaré [13]. Furthermore,
in [13], Poincaré proved, by another method, that any curve of genus 0
defined over Q is birationally equivalent to a conic. In Sections 3 and 4 we
give an effective proof of these results. In Section 3, we deal with curves of
genus 0 defined over K with only ordinary singular points. We prove that
every curve of this class is birationally equivalent over K to a conic, giving
explicit estimates on the size of the conic, the birational isomorphism and
its inverse. In the case where the curve has odd degree we prove that it
is birationally equivalent over K to a line giving explicit estimates for the
birational isomorphism and its inverse.

A classical result asserts that any curve A is birationally equivalent to
a plane curve E with at most ordinary double points as singularities. In
Section 4, we give an effective proof of this result for the case of curves of
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genus 0 defined over K and we obtain explicit estimates about the size of
E, the birational isomorphism and its inverse. Finally, in Section 5, Siegel’s
estimate for the size of the “smallest” solution of equation aX2+bY 2+cZ2 =
0 and the results of Sections 3 and 4 imply an upper bound for the size of the
“smallest” solution over K of equations defining curves of genus 0 over K.
Moreover, these results give an effective parametrization of curves of genus 0.
Hence, if we know that a curve of genus 0 defined over K has a non-singular
point over K, then we have an effective characterization of all its points
over K.

2. Statement of the main results. Let K be an algebraic number
field of degree d and of discriminant DK . We consider the set of standard
absolute values on Q containing the ordinary absolute value |·| and for every
prime p the p-adic absolute value | · |p. If x = pra/b, where a, b are integers
not divisible by p, then by definition |x|p = p−r. By an absolute value of K
we will always understand an absolute value that extends one of the above
absolute values of Q. We denote by M(K) a set of symbols v such that with
every v ∈M(K) there is associated precisely one absolute value | · |v on K.
For every v ∈ M(K) we denote by Kv the completion of K at v and by dv
the degree of Kv over Qv. Let x = (x0 : . . . : xn) be a point of the projective
space Pn(K) over K. We define the field height HK(x) of x by

HK(x) =
∏

v∈M(K)

max{|x0|v, . . . , |xn|v}dvv ,

and the absolute height H(x) by H(x) = HK(x)1/d. Further, for x ∈ K we
define HK(x) = HK((1 : x)) and H(x) = H((1 : x)). Let G be a polynomial
in one or several variables and with coefficients in K. We define the field
height HK(G) and the absolute height H(G) of G to be respectively the field
height and the absolute height of the point in a projective space having as
coordinates the coefficients of G (in any order). Given v ∈M(K), we denote
by |G|v the maximum of |c|v over all the coefficients c of G. For an account
of the properties of heights see [21, Chap. VIII; 10, Chap. 3].

Let us now state our main results.

Theorem 2.1. Let F (X,Y ) be an absolutely irreducible polynomial in
K[X,Y ] of degree N ≥ 3 such that the curve C defined by the equation
F (X,Y ) = 0 is of genus 0. Then there is a conic Γ defined over K of
equation G(X,Y ) = 0 with

H(G) < (9N5N+4H(F ))13·104N28

and a birational map Φ : C → Γ given by

Φ(X,Y ) =
(
φ1(X,Y )
φ3(X,Y )

,
φ2(X,Y )
φ3(X,Y )

)
,
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where φi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3) with deg φi < 3N3 and

H(φi) < (9N5N+4H(F ))980N13
(i = 1, 2, 3).

The inverse map of Φ is given by

Φ−1(X,Y ) =
(
τ1(X,Y )
τ2(X,Y )

,
τ3(X,Y )
τ4(X,Y )

)
,

where τi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3, 4) with deg τi < 15N3 and

H(τi) <
{

(9N5N+4H(F ))5355N16
(i = 1, 3),

(N + 1)295N12
H(F )118N12

(i = 2, 4).

Theorem 2.2. Let F (X,Y ) be an absolutely irreducible polynomial in
K[X,Y ] of odd degree N ≥ 3 such that the curve C defined by the equation
F (X,Y ) = 0 is of genus 0. Then there is a birational map Ψ : C → P1

given by

Ψ(X,Y ) =
ψ1(X,Y )
ψ2(X,Y )

,

where ψi(X,Y ) ∈ K[X,Y ] (i = 1, 2) with degψi < 3N3 and

H(ψi) < (9N5N+4H(F ))980N13
.

The inverse map of Ψ is given by

X =
σ1(T )
σ2(T )

, Y =
σ3(T )
σ4(T )

,

where σi(T ) ∈ K[T ] (i = 1, 2, 3, 4) with deg σi < 8N3 and

H(σi) <
{

(9N5N+4H(F ))5530N16
(i = 1, 3),

(N + 1)445N16
H(F )180N16

(i = 2, 4).

Theorem 2.3. Let F (X,Y, Z) be a homogeneous absolutely irreducible
polynomial in K[X,Y, Z] of degree N ≥ 2 such that the curve C defined by
the equation F (X,Y, Z) = 0 is of genus 0. Suppose that C has a non-singular
point defined over K. Then there exists a non-singular point P of C defined
over K such that

H(P ) < |DK |90N3/d(9N5N+4H(F ))18·106N31
.

Moreover , the curve F (X,Y, 1) = 0 has a parametrization given by

X =
g1(T )
g2(T )

, Y =
g3(T )
g4(T )

,

where gi(T ) ∈ K[T ] (i = 1, 2, 3, 4) with deg gi < 30N3 and

H(gi) < |DK |225N3/d(9N5N+4H(F ))3·107N31
.
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3. Curves with only ordinary singular points

3.1. Statement of the results. In this section we give an effective proof
of the fact that a curve with only ordinary singular points is birationally
equivalent to a conic. Our method develops some arguments that go back
to some ideas of Poincaré [13]. Furthermore, a variant of our method gives
an effective proof of the fact that a curve with only ordinary singular points
and odd degree is birationally equivalent to a line. More precisely, we prove
the following results:

Theorem 3.1. Let F (X,Y ) be an absolutely irreducible polynomial in
K[X,Y ] of degree N ≥ 3 such that the curve C defined by the equation
F (X,Y ) = 0 is of genus 0. Suppose that C has only ordinary multiple points.
Then there is a conic Γ defined over K of equation G(X,Y ) = 0 with

H(G) < (N + 1)40N12
H(F )16N12

and a birational map Ψ : C → Γ defined by

Ψ(X,Y ) =
(
ψ1(X,Y )
ψ3(X,Y )

,
ψ2(X,Y )
ψ3(X,Y )

)
,

where ψi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3) with degψi ≤ N − 1 and

H(ψi) < (N + 1)5N9
H(F )2N9

(i = 1, 2, 3).

The inverse map of Ψ is given by

Ψ−1(X,Y ) =
(
ω1(X,Y )
ω2(X,Y )

,
ω3(X,Y )
ω4(X,Y )

)
,

where ωi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3, 4) with degX ωi ≤ N , degY ωi ≤ N
and

H(ωi) < (N + 1)20N10
H(F )8N10

.

Theorem 3.2. Let F (X,Y ) be an absolutely irreducible polynomial in
K[X,Y ] of odd degree N ≥ 3 such that the curve C defined by the equation
F (X,Y ) = 0 is of genus 0. Suppose that C has only ordinary multiple points.
Then there is a birational map Ψ : C → P1 defined by

Ψ(X,Y ) =
ψ1(X,Y )
ψ2(X,Y )

,

where ψi(X,Y ) ∈ K[X,Y ] (i = 1, 2) with degψi ≤ N − 2 and

H(ψi) < (N + 1)15N13
H(F )6N13

(i = 1, 2).

The inverse map of Ψ is given by

X =
ω1(T )
ω2(T )

, Y =
ω3(T )
ω4(T )

,
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where ωi(T ) ∈ K[T ] (i = 1, 2, 3, 4) with degωi ≤ N and

H(ωi) < (N + 1)30N14
H(F )12N14

(i = 1, 2, 3, 4).

3.2. Auxiliary lemmas. We give some lemmas which will be useful for the
proof of our results. We prove only those which are not yet in the literature.

Lemma 3.1. Let F (X) = c0X
n + c1X

n−1 + . . . + cn be a polynomial in
K[X]−K and let α be one of its roots. Then

H(α) < 2H(F ).

P r o o f. See [11; 14, Lemma 4].

Lemma 3.2. Let P (X,Y, V ), Q(X,Y,W ) ∈ K[X,Y, V,W ] − K. Denote
by R(X,V,W ) the resultant of P (X,Y, V ) and Q(X,Y,W ), considered as
polynomials with coefficients in K[X,V,W ]. Put degX P = m1, degY P =
n1, degV P = r1 and degX Q = m2, degY Q = n2, degW Q = r2. Assume
R(X,V,W ) 6= 0. Then

H(R) ≤ (n1 + n2)!((r1 + 1)(m1 + 1))n2((r2 + 1)(m2 + 1))n1H(P )n2H(Q)n1 .

P r o o f. Write

P (X,Y, V ) = Pn1(X,V )Y n1 + . . .+ P0(X,V ),

Q(X,Y,W ) = Qn2(X,W )Y n2 + . . .+Q0(X,W ),

where Pi(X,V ) ∈ K[X,V ] (i = 0, . . . , n1) and Qi(X,W ) ∈ K[X,W ]
(i = 0, . . . , n2). The polynomial R(X,V,W ) is homogeneous of degree n2

in Pn1(X,V ), . . . , P0(X,V ) and of degree n1 in Qn2(X,W ), . . . , Q0(X,W )
with coefficients in Z. If | · |v is a non-archimedean absolute value, then

|R|v ≤ |P |n2
v |Q|n1

v .

Let | · |v be an archimedean absolute value. If M(X,V,W ) is a monomial
of degree n2 in Pn1(X,V ), . . . , P0(X,V ) and of degree n1 in Qn2(X,W ), . . .
. . . , Q0(X,W ), then

|M(X,V,W )|v ≤ ((r1 + 1)(m1 + 1))n2((r2 + 1)(m2 + 1))n1 |P |n2
v |Q|n1

v .

Thus

|R|v ≤ (n1 + n2)!((r1 + 1)(m1 + 1))n2((r2 + 1)(m2 + 1))n1 |P |n2
v |Q|n1

v .

Therefore

H(R) ≤ (n1 + n2)!((r1 + 1)(m1 + 1))n2((r2 + 1)(m2 + 1))n1H(P )n2H(Q)n1 .

Lemma 3.3. Let f and g be two polynomials of K[X1, . . . , Xm]−K such
that g(X) divides f(X). Then

H(g) ≤ 4(deg f+1)mH(f).
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P r o o f. Let h be a polynomial in K[X1, . . . , Xm] such that gh = f . By
[10, Proposition 2.4, p. 57], we get

H(g)H(h) ≤ 4(deg f+1)mH(f).

The lemma follows.

If G(X,Y, Z) ∈ K[X,Y, Z], then by GXaY bZc(X,Y, Z) we denote, as
usual, the (a, b, c)-partial derivative of G(X,Y, Z) with respect to X,Y
and Z.

Lemma 3.4. Let F (X,Y, Z) be an irreducible homogeneous polynomial in
K[X,Y, Z]. Let P be a singular point of the projective curve F (X,Y, Z) = 0.
Then

H(P ) < 4(N + 1)10N−4H(F )4N−2.

P r o o f. Suppose P = (a : b : 1). Then

F (a, b, 1) = FY (a, b, 1) = FX(a, b, 1) = 0.

We denote byR1(X) the resultant of F (X,Y, 1) and FY (X,Y, 1) with respect
to Y and by R2(Y ) the resultant of F (X,Y, 1) and FX(X,Y, 1) with respect
to X. Thus R1(a) = R2(b) = 0. Lemma 3.1 yields

H(P ) ≤ H(a)H(b) < 4H(R1)H(R2).

By Lemma 3.2,

H(Ri) < N4N−1(N + 1)N−1H(F )2N−1 (i = 1, 2).

Hence

H(P ) < 4(N + 1)10N−4H(F )4N−2.

Finally, if P = (a : b : 0), then H(P ) < 2H(F ). The lemma follows.

In the above proof we have used the inequality m! < ((m + 1)/2)m, for
every positive integer m (see A. Cauchy, Exercices d’Analyse, Vol. 4, Paris,
1847, p. 106). Throughout the paper we shall use this inequality without
further mention.

Lemma 3.5. Let F (X,Y ) be a polynomial in K[X,Y ] of degree m > 0 in
X and n > 0 in Y . Let x, y ∈ K satisfy F (x, y) = 0 and degF (x, Y ) = n.
Then

H(y) < 2(m+ 1)H(F )H(x)m.

P r o o f. See [15, Lemma 7].

Lemma 3.6. Let Ai = (ai1, . . . , aiµ) (i = 1, . . . , ν) be ν linearly inde-
pendent vectors in Kµ (ν < µ) and V be the K-vector space generated by
Ai (i = 1, . . . , ν). Let G be the Galois group of K over K. Suppose that
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σ(V ) = V for every σ ∈ G. Then there are µ − ν linearly independent
vectors xi = (xi1, . . . , xiµ) (i = 1, . . . , µ− ν) in K such that

H(xi) ≤ ν!H(A1) . . .H(Aν) (i = 1, . . . , µ− ν),

satisfying the linear system

ai1X1 + . . .+ aiµXµ = 0 (i = 1, . . . , ν).

P r o o f. Let A be the matrix with rows Ai (i = 1, . . . , ν). We may sup-
pose, without loss of generality, that the ν × ν-matrix ∆ formed by the
ν first columns of A has rank ν. Thus |∆| 6= 0. We denote by ∆j,k (j =
1, . . . , ν, k = ν + 1, . . . , µ) the matrix obtained from ∆ by replacing the jth
column by the kth column of A. Now the linear system is equivalent to

|∆|Xj = −|∆j,ν+1|Xν+1 − . . .− |∆j,µ|Xµ (j = 1, . . . , ν).

Taking (Xν+1, . . . , Xµ) = (−1, . . . , 0), . . . , (0, . . . ,−1), we have respectively
the solutions

x1 =
( |∆1,ν+1|
|∆| , . . . ,

|∆ν,ν+1|
|∆| ,−1, 0, . . . , 0

)
,

...

xµ−ν =
( |∆1,µ|
|∆| , . . . ,

|∆ν,µ|
|∆| , 0, . . . , 0,−1

)

which are linearly independent elements of Kµ.
Let σ ∈ G. Since σ(V ) = V , the vectors σ(Ai) = (σ(ai1), . . . , σ(aiµ))

(i = 1, . . . , ν) form a basis of V . Then there is an invertible ν × ν-matrix B
such that

(σ(A1), . . . , σ(Aν)) = (A1, . . . , Aν)B.

If σ(∆) and σ(∆j,k) are the matrices obtained by the action of σ on the
entries of ∆ and ∆j,k respectively, then σ(∆) = BT∆ and σ(∆j,k) = BT∆j,k

(where BT is the transpose of B). It follows that

σ

( |∆j,k|
|∆|

)
=
|σ(∆j,k)|
|σ(∆)| =

|B| · |∆j,k|
|B| · |∆| =

|∆j,k|
|∆| .

Hence, |∆j,k|/|∆| ∈ K (j = 1, . . . , ν, k = ν + 1, . . . , µ), whence xi ∈ Kµ

(i = 1, . . . , µ− ν).
The v-adic absolute value of a minor of A of order ν is

≤ |A1|v . . . |Aν |vv(ν!),

where v(ν!) = ν! if | · |v is archimedean and v(ν!) = 1 otherwise. Thus,

H(xi) ≤ ν!H(A1) . . . H(Aν) (i = 1, . . . , µ− ν).
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Lemma 3.7. Let φ : C1 → C2 be a rational map of algebraic curves.
Suppose that φ is defined and injective on an open subset U of C1. Then φ
is a birational map.

P r o o f. Let C̃i be a non-singular model of Ci and fi be a birational
morphism from C̃i onto C. Then f−1

2 ◦ φ ◦ f1 : C̃1 → C̃2 is a non-constant
morphism of smooth curves and its restriction to the open set f−1

1 (U) is
injective. By [21, Proposition 2.6(b), p. 28], for all but finitely many Q ∈ C̃2,

deg(f−1
2 ◦ φ ◦ f1) = ](f−1

2 ◦ φ ◦ f1)−1(Q).

Since the restriction of φ◦f1 to f−1
1 (U) is injective, we deduce that deg f−1

2 ◦
φ ◦ f1 = 1. Thus, f−1

2 ◦ φ ◦ f1 is birational and so is φ.

Lemma 3.8. Let C : F (X,Y ) = 0 be a plane algebraic curve defined over
K of degree N. Then there is a plane model G(X,Y ) = 0 of C defined over
K with degG = degY G = N and

H(G) < N5N−4H(F ),

having N simple points at infinity.

P r o o f. Suppose that degY F < N and degX F < N . Then

F (X,Y ) = XaY bG(X,Y ) + FN−1(X,Y ) + . . .+ F0(X,Y ),

where a, b are positive integers,

G(X,Y ) = c(X + %1Y ) . . . (X + %N−a−bY )

with c ∈ K, %i ∈ K − {0} and Fi(X,Y ) is a homogeneous polynomial of
degree i (i = 0, . . . , N − 1). Putting X = U + mV and Y = V , where m is
a non-zero integer with |m| < N/2 and G(m, 1) 6= 0, we have

F1(U, V ) = (U +mV )aV bG(U +mV, V )

+ FN−1(U +mV, V ) + . . .+ F0(U +mV, V ),

with degV F1 = N . The height of F1(U, V ) satisfies

H(F1) < (N/2)N−1(N − 1)!NH(F ).

Suppose next that the curve F1(U, V ) = 0 does not have N points at
infinity. Write

F1(U, V ) = fN (U, V ) + . . .+ f0(U, V ),

where fi(U, V ) is a homogeneous polynomial of degree i (i = 0, . . . , N).
Putting U = 1/W , we see that the curve F1(U, V ) = 0 is birationally equiv-
alent to

F2(W,V ) = fN (1, V ) +WfN−1(1, V ) + . . .+ f0(U, V )WN = 0.
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Let α be an integer with |α| < N2 such that there is no ramification above
W = α. Set W = T + α. It follows that the curve
F3(Π,Ξ, T ) = fN (Π,Ξ)

+ (T + αΠ)fN−1(Π,Ξ) + . . .+ f0(Π,Ξ)(T + αΠ)N = 0

has N points with T = 0. The height of F3(Π,Ξ, T ) satisfies

H(F3) < N2NN !(N + 1)H(F1) < N5N−4H(F ).

3.3. K-rational sets. Let F (X,Y, Z) be a homogeneous absolutely irre-
ducible polynomial in K[X,Y, Z] of degree N ≥ 3 such that the curve C
defined by F (X,Y, Z) = 0 is of genus 0. We denote by S the set of singular
points of C and for every P ∈ S let mP be the multiplicity of C at P .
Suppose that C has no singularities other than ordinary multiple points. By
Noether’s formula [4, Chap. 8, p. 199; 2, Chap. III, p. 614], we have

∑

P∈S
mP (mP − 1) = (N − 1)(N − 2).

Let K be an algebraic closure of K. We denote by G the Galois group of
K over K. A subset E of the projective plane P2 over K is called K-rational
if σ(E) = E for every σ ∈ G. The set S of singular points of C is determined
by equations defined over K, whence S is K-rational.

Let ν ∈ {N − 1, N − 2} and Eν be a K-rational subset of C − S having
|Eν | = εν with 0 ≤ εN−2 ≤ N − 2 and 0 ≤ εN−1 ≤ 2N − 2. We denote by
W (ν,Eν) the space of homogeneous polynomials ψ(X,Y, Z) in K[X,Y, Z] of
degree ν such that the curve ψ(X,Y, Z) = 0 contains every point P ∈ S with
multiplicity ≥ mP − 1 and passes through the points of Eν . Put δ(ν,Eν) =
dimW (ν,Eν) and M(ν,Eν) = max{H(Q)/Q ∈ S ∪ Eν}. If Eν = ∅, then
we write W (ν) = W (ν, ∅), δ(ν) = δ(ν, ∅) and M(ν) = M(ν, ∅). We call, as
usual, the points (x : y : z) on C with z = 0, points at infinity . We denote
by C∞ the set of those points.

Lemma 3.9. Under the above assumptions, we have

δ(ν,Eν) = Nν − (N − 1)(N − 2)− εν + 1

and there is a basis {ψ1(X,Y, Z), . . . , ψδ(ν,Eν)(X,Y, Z)} of W (ν,Eν), satis-
fying

H(ψi) < N2N2
M(ν,Eν)ν((N−1)(N−2)+2εν)/2 (i = 1, . . . , δ(ν,Eν)).

P r o o f. We can suppose, without loss of generality, that F (0, 1, 0) 6= 0
and that none of the points of S ∪ Eν is at infinity (if this is not the case,
then we choose an appropriate projective coordinate system). Let E(X,Y, Z)
be a polynomial in W (ν). Denote by R(X) the resultant of E(X,Y, 1) and
F (X,Y, 1) with respect to Y . By [22, Theorem 5.3, p. 111], the multiplicity
of the root a of R(X) is equal to the sum of the intersection numbers of
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the curves C and E(X,Y, Z) = 0 on the line X = a. Let P (i) = (αi : βi : 1)
(i = 1, . . . , s) be the points of S. The polynomial Π(X) = R(X)/π(X),
where

π(X) =
s∏

i=1

(X − αi)mP (i)(mP (i)−1),

is of degree Nν − (N − 1)(N − 2). By [4, Chap. 5, Sect. 2, p. 110] the
dimension of the space W (ν) is

≥ (ν + 1)(ν + 2)
2

− (N − 1)(N − 2)
2

≥ N − 1.

Thus, we can choose E(X,Y, Z) such that αi (i = 1, . . . , s) are not zeros
of Π(X) and the discriminant of Π(X) has all its roots simple. Hence,
Π(X) has Nν − (N − 1)(N − 2) zeros pairwise distinct and different from
αi (i = 1, . . . , s), whence the curve E(X,Y, Z) = 0 intersects C in Nν −
(N − 1)(N − 2) pairwise distinct points apart from the points of S. Hence,
W (ν) cuts out on C a linear series of order Nν−(N−1)(N−2) and no cycles
of this series contain points of S. By [19, Chap. XII, Sect. 4, p. 379], this
linear series is complete. Since C is of genus 0, [22, Chap. VI, Sect. 7, p. 187]
implies that its dimension is Nν− (N − 1)(N − 2). It follows that W (ν,Eν)
cuts out on C a linear series grn of order n = Nν − (N − 1)(N − 2)− εν and
dimension r ≥ Nν − (N − 1)(N − 2)− εν . By [22, Chap. VI, Theorem 2.5,
p. 168], we have r = n = Nν − (N − 1)(N − 2) − εν . Therefore δ(ν,Eν) =
Nν − (N − 1)(N − 2)− εν + 1.

For every P ∈ S∪Eν we write P = (xP : yP : zP ) with one of xP , yP , zP
being equal to 1. By [22, Theorem 2.4, p. 55], W (ν,Eν) is the space of
polynomials

G(X,Y, Z) =
ν∑

i+j=0

aijX
iY jZN−1−(i+j)

with coefficients in K such that

G(xQ, yQ, zQ) = 0

for every Q ∈ Eν and

GXαY βZγ (xP , yP , zP ) = 0

for every P ∈ S and every triple of non-negative integers α, β, γ with α+β+
γ = mP − 2. Thus, we have a linear system in unknowns aij . The number
of unknowns is (ν + 1)(ν + 2)/2. It follows that the rank % of the matrix of
the above system is

% =
(N − 1)(N − 2)

2
+ εν .

We consider % rows of this matrix, A1, . . . , A%, which are linearly indepen-
dent. Since S∪Eν is K-rational, Lemma 3.6 implies that there exists a basis
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{ψ1(X,Y, Z), . . . , ψδ(ν,Eν)(X,Y, Z)} of W (ν,Eν) satisfying

H(ψi) < %!H(A1) . . . H(A%) (i = 1, . . . , δ(ν,Eν)).

We easily deduce
H(Ai) < ν!M(ν,Eν)ν .

Thus
H(ψi) < %!ν!M(ν,Eν)ν% (i = 1, . . . , δ(ν,Eν)).

For every λ = (λ1, . . . , λδ(ν,Eν)) ∈ Kδ(ν,Eν) we set

φλ(X,Y, Z) = λ1ψ1(X,Y, Z) + . . .+ λδ(ν,Eν)ψδ(ν,Eν)(X,Y, Z)

and we denote by κ(λ) the curve defined by the equation φλ(X,Y, Z) = 0. If
C1 and C2 are two curves in P2, we denote by I(P,C1∩C2) their intersection
number at the point P of P2. For every positive integer r, we define B(r) to
be the set

B(r) = {(x1, . . . , xδ(ν,Eν)) ∈ Zδ(ν,Eν) | |xj | ≤ r, j = 1, . . . , δ(ν,Eν)}.
Lemma 3.10. Let Γ (r) be the set of δ(ν,Eν)-tuples λ ∈ B(r) such that

the curve κ(λ) fails at least one of the following properties:

(a) I(P,C ∩ κ(λ)) = mP (mP − 1) for every P ∈ S.
(b) I(P,C ∩ κ(λ)) = 1 for every P ∈ Eν .
(c) I(P,C ∩ κ(λ)) = 0 for every P ∈ C∞ − (S ∪ Eν).
(d) The point (0 : 1 : 0) is not on κ(λ).

Then the number of elements of Γ (r) is

≤ (2r + 1)δ(ν,Eν)−1
(
|S|+N + 1 + 2εν +

∑

P∈S
mP

)
.

P r o o f. Set nP = mP −1 for every P ∈ S and nP = 1 for every P ∈ Eν .
Suppose that there is Q ∈ S ∪ Eν such that for every k ∈ {1, . . . , δ(ν,Eν)}
the curve ψk(X,Y, Z) = 0 has multiplicity > nQ at Q. Consider δ(ν,Eν)−1
arbitrary points Q1, . . . , Qδ(ν,Eν)−1 on C−(S∪Eν) (j = 1, . . . , δ(ν,Eν)−1).
Then there is µ ∈ Kδ(ν,Eν) such that the curve κ(µ) passes through the
points of S ∪ Eν and Q1, . . . , Qδ(ν,Eν)−1. By Bezout’s theorem,

∑

R

I(R,C ∩ κ(µ)) = Nν.

On the other hand, since the multiplicity of κ(µ) at Q is > nQ, we have
∑

R

I(R,C∩κ(µ)) >
∑

P∈S
mP (mP −1)+εν+Nν−(N−1)(N−2)−εν = Nν,

which is a contradiction. So, for every P ∈ S ∪ Eν there is j(P ) ∈ {1, . . .
. . . , δ(ν,Eν)} such that the curve ψj(P )(X,Y, Z) = 0 has multiplicity nP
at P .
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Let P ∈ S ∪ Eν with P = (xP : yP : 1). For every j ∈ {1, . . . , δ(ν,Eν)}
and k ∈ {0, . . . , nP } we put

ψ(P, j, k) = ψj,XnP+1−kY k(xP , yP , 1).

Then there is j(P ) ∈ {1, . . . , δ(ν,Eν)} and k(P ) ∈ {0, . . . , nP +1} such that

ψ(P, j(P ), k(P )) 6= 0.

If P = (xP : 1 : 0) or (1 : 0 : 0), then we define the quantity ψ(P, j, k)
to be ψj,XnP+1−kZk(xP , 1, 0) or ψj,Y nP+1−kZk(1, 0, 0) respectively. For every
δ(ν,Eν)-tuple λ = (λ1, . . . , λδ(ν,Eν)) in Kδ(ν,Eν) we set

ΛP (λ) = λ1ψ(P, 1, k(P )) + . . .+ λδ(ν,Eν)ψ(P, δ(ν,Eν), k(P )).

The number of solutions λ ∈ B(r) of the equation ΛP (λ) = 0 is ≤
(2r + 1)δ(ν,Eν)−1. Note that if ΛP (λ) 6= 0, then the multiplicity of k(λ)
at P is nP .

If f(X,Y ) ∈ K[X,Y ] and Q is a point on the curve f(X,Y ) = 0 which
is not at infinity, then we write

Ts(f(X,Y ), Q)(λ, µ) =
s∑

i=0

s!
(s− i)!i!fXs−iY i(Q)λs−iµi.

Let P ∈ S − C∞. Since P is an ordinary multiple point, we have

TmP (F (X,Y, 1), P )(λ, µ) = (α1λ+ β1µ) . . . (αmP λ+ βmP µ),

where the factors αiλ + βiµ (i = 1, . . . ,mP ) are pairwise distinct. Further-
more,

TmP−1(φλ(X,Y, 1), P )(−βj , αj) =
∑

k

λkTmP−1(ψk(X,Y, 1), P )(−βj , αj)

(j = 1, . . . ,mP ).

For λ = (λ1, . . . , λδ(ν,Eν)) ∈ Kδ(ν,Eν) we write

LP,j(λ) =
∑

k

λkTmP−1(ψk(X,Y, 1), P )(−βj , αj).

Hence, the curves C and κ(λ) have distinct tangents at P if and only if

LP,j(λ) 6= 0 (j = 1, . . . ,mP ).

If P is a point of S at infinity, then we consider the polynomial F (X, 1, Z)
or F (1, Y, Z). Let now P ∈ Eν − C∞. Then P is a non-singular point of C
and thus

T1(F (X,Y, 1), P )(λ, µ) = ζλ+ ηµ.

Set

LP (λ) =
∑

k

λkT1(ψk(X,Y, 1), P )(−ζ, η).
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The curves C and κ(λ) have distinct tangents at P if and only if LP (λ) 6= 0.
Hence, for P ∈ Eν we have the linear equation

LP (λ) = 0

and for every P ∈ S the mP linear equations

LP,j(λ) = 0 (j = 1, . . . ,mP ),

in unknowns λ1, . . . , λδ(ν,Eν). The number of solutions λ ∈ B(r) of each of
the above equations is ≤ (2r+1)δ(ν,Eν)−1. Note that if P ∈ S with LP,j(λ) 6=
0 (j = 1, . . . ,mP ) and ΛP (λ) 6= 0, then I(P,C ∩ κ(λ)) = mP (mP − 1).
Similarly, if P ∈ Eν with LP (λ) 6= 0 and ΛP (λ) 6= 0, we get I(P,C ∩
κ(λ)) = 1.

Let FN (X,Y ) be the homogeneous part of degree N of F (X,Y, 1). The
points at infinity of C are Si = (ai : bi : 0) with FN (ai, bi) = 0 (i = 1, . . . , s).
Let ψk,ν(X,Y ) be the homogeneous part of degree ν of ψk(X,Y, 1). For
λ = (λ1, . . . , λδ(ν,Eν)) in Kδ(ν,Eν) we write

Θi(λ) = λ1ψ1,ν(ai, bi) + . . .+ λδ(ν,Eν)ψδ(ν,Eν),ν(ai, bi) (i = 1, . . . , s).

Then φλ(Si) = 0 if and only if Θi(λ) = 0. The number of solutions λ ∈ B(r)
of the equation Θi(λ) = 0 is ≤ (2r + 1)δ(ν,Eν)−1. Finally, φλ(0, 1, 0) 6= 0 if
and only if

λ1ψ1,ν(0, 1) + . . .+ λδ(ν,Eν)ψδ(ν,Eν),ν(0, 1) 6= 0.

Combining the above estimates yields the lemma.

Proposition 3.1. Let Σ be a finite subset of C. Then there is λ ∈ B(r),
where

r =
1
2

(∑

P∈S
mP + |Σ|+N2δ(ν,Eν)−3 + |S|+ 2N + 2εν

)
+ 1,

such that the curve κ(λ) meets C in δ(ν,Eν) − 1 distinct points Q1, . . .
. . . , Qδ(ν,Eν)−1 which are not in S ∪ Eν ∪Σ ∪ C∞ and satisfy

H(Qi) < ΞH(F )2νM(ν,Eν)νN((N−1)(N−2)+2εν)δ(ν,Eν),

where

Ξ ≤ N6N4
(δ(ν,Eν)r)2N .

P r o o f. Let r be a positive integer with

r >
1
2

(
|S|+N + 2εν +

∑

P∈S
mP

)
.

Then the set Γ (r) of Lemma 3.10 is a proper subset of B(r). Hence, there
exists λ = (λ1, . . . , λδ(ν,Eν)) ∈ B(r) such that the curve κ(λ) : φλ(X,Y, Z) =
0 has the properties (a), (b), (c) and (d) of Lemma 3.10. Let T be the set of



64 D. Poulakis

those points of intersection of C and κ(λ) which are not contained in S∪Eν .
By (c), the points of T are not at infinity. Bezout’s theorem yields

∑

Q∈T
I(Q,C ∩ κ(λ)) = Nν −

∑

P∈S∪Eν
I(P,C ∩ κ(λ))

= Nν − (N − 1)(N − 2)− εν = δ(ν,Eν)− 1.

We can suppose, without loss of generality, that F (0, 1, 0) 6= 0. Denote
by R(X) the resultant of φλ(X,Y, 1) and F (X,Y, 1) with respect to Y .
By [21, Theorem 5.3, p. 111], the multiplicity of the root a of R(X) is
equal to the sum of the intersection numbers of C and κ(λ) on the line
X = a. Let P (i) = (ai : bi : 1) (i = 1, . . . , s) be the points of S − C∞ and
P (i) = (ai : bi : 1) (i = s+ 1, . . . , t) be the points of Eν − C∞. Put

π(X) =
s∏

i=1

(X − ai)mP (i)(mP (i)−1)
t∏

i=s+1

(X − ai)

and consider the polynomial

Π(X) =
R(X)
π(X)

= s0(λ1, . . . , λδ(ν,Eν))X
δ(ν,Eν)−1 + . . .+ sδ(ν,Eν)−1(λ1, . . . , λδ(ν,Eν)).

The coefficients sj(λ1, . . . , λδ(ν,Eν)) are polynomials in λ1, . . . , λδ(ν,Eν) of
degree ≤ N . The discriminant ∆Π(λ1, . . . , λδ(ν,Eν)) of Π(X) is a polynomial
in λ1, . . . , λδ(ν,Eν) of degree ≤ N2δ(ν,Eν)−3. We have |T | = δ(ν,Eν) − 1 if
and only if Π(X) has δ(ν,Eν) − 1 pairwise distinct roots. Hence, |T | =
δ(ν,Eν)−1 if and only if s0(λ1, . . . , λδ(ν,Eν)) 6= 0 and ∆Π(λ1, . . . , λδ(ν,Eν)) 6=
0. Furthermore, the number of δ(ν,Eν)-tuples (λ1, . . . , λδ(ν,Eν)) ∈ B(r) such
that

∆Π(λ1, . . . , λδ(ν,Eν)) = 0 or s0(λ1, . . . , λδ(ν,Eν)) = 0

is at most (2r + 1)δ(ν,Eν)−1(N2δ(ν,Eν)−3 +N).
Denote by S1, . . . , Sσ the elements of Σ. The number of solutions λ ∈

B(r) of the equation φλ(Sj) = 0 is ≤ (2r + 1)δ(ν,Eν)−1. Thus, the number
of δ(ν,Eν)-tuples λ ∈ B(r) which do not have the required properties is

≤ (2r + 1)δ(ν,Eν)−1Ω

where

Ω =
(
|Σ|+N2δ(ν,Eν)−3 + |S|+ 2N + 1 + 2εν +

∑

P∈S
mP

)
.

Thus, if we take r = (Ω + 1)/2, then there exists λ ∈ B(r) such that the
curve φλ(X,Y, Z) = 0 intersects C in δ(ν,Eν) − 1 pairwise distinct points
Qi = (xi : yi : 1) (i = 1, . . . , δ(ν,Eν)− 1) which are not in S ∪ Eν ∪Σ.
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We may assume, without loss of generality, that one of the coefficients
of each ψj is 1. Then

H(φλ) <
Ω + 1

2
δ(ν,Eν)H(ψ1) . . . H(ψδ(ν,Eν))

and Lemma 3.9 yields

H(φλ) <
Ω + 1

2
δ(ν,Eν)(N2N2

M(ν,Eν)ν((N−1)(N−2)+2εν)/2)δ(ν,Eν).

The resultant R(X) of F (X,Y, 1) and φλ(X,Y, 1) satisfies

R(xi) = 0 (i = 1, . . . , δ(ν,Eν)− 1).

Thus, Lemma 3.1 implies

H(xi) < 2H(R) (i = 1, . . . , δ(ν,Eν)− 1).

By Lemma 3.2, we have

H(R) < (N + ν)!(N + 1)ν(ν + 1)NH(F )νH(φλ)N .

Thus,

H(xi) < N4NH(F )νH(φλ)N .

Interchanging the roles of xi and yi we obtain the same bound for H(yi).
Therefore

H(Qi) < ΞH(F )2νM(ν,Eν)Nν((N−1)(N−2)+2εν)δ(ν,Eν),

where

Ξ ≤ N6N4
(
δ(ν,Eν)

Ω + 1
2

)2N

.

Corollary 3.1. For every positive integer % there are % K-rational sub-
sets Σi (i = 1, . . . , %) of C such that Σi ∩ (S ∪ Eν ∪ C∞) = ∅, Σi ∩Σj = ∅
for i 6= j, |Σi| = δ(ν,Eν)− 1, and for every Q ∈ Σi we have

H(Q) < ΞiH(F )2νM(ν,Eν)Nν((N−1)(N−2)+2εν)δ(ν,Eν),

where

Ξi ≤ N6N4
δ(ν,Eν)2N4−N

×
(
N2δ(ν,Eν)−3 + |S|+ 2N + 2εν +

∑

P∈S
mP + (i− 1)(δ(ν,Eν)− 1) + 2

)2N
.

P r o o f. For Σ = ∅, Proposition 3.1 implies that there is λ ∈ B(r1),
where

r1 =
1
2

(
N2δ(ν,Eν)−3 + |S|+ 2N + 2εν +

∑

P∈S
mP

)
+ 1,
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such that the curve φλ(X,Y, Z) = 0 meets C in δ(ν,Eν)−1 pairwise distinct
points Q1, . . . , Qδ(ν,Eν)−1 which are not in S ∪ E ∪ C∞ and satisfy

H(Qi) < Ξ1H(F )2νM(ν,Eν)νN((N−1)(N−2)+2εν)δ(ν,Eν),

where

Ξ1 ≤ N6N4
(δ(ν,Eν)r1)2N .

Since F (X,Y, Z) and φλ(X,Y, Z) are in K[X,Y, Z], the intersection of the
two curves is K-rational. In addition, S ∪ Eν is K-rational. Hence, so is
{Q1, . . . , Qδ(ν,Eν)−1}.

Next, take Σ1 = {Q1, . . . , Qδ(ν,Eν)−1}. Proposition 3.1 implies that there
exists µ ∈ B(r2), where

r2 =
1
2

(
δ(ν,Eν)− 1 +N2δ(ν,Eν)−3 + |S|+ 2N + 2εν +

∑

P∈S
mP

)
+ 1,

such that the curve φµ(X,Y, Z) = 0 meets C in δ(ν,Eν)−1 pairwise distinct
points S1, . . . , Sδ(ν,Eν)−1 which are not at infinity and satisfy

H(Si) < Ξ2H(F )2νM(ν,Eν)Nν((N−1)(N−2)+2εν)δ(ν,Eν),

where

Ξ2 ≤ N6N4
(δ(ν,Eν)r2)2N .

Furthermore, the points S1, . . . , Sδ(ν,Eν)−1 are not in S ∪Eν ∪Σ1. Since S,
Eν and Σ1 are K-rational, so is {S1, . . . , Sδ(ν,Eν)−1}. Repeating the above
procedure yields the assertion.

3.4. Proof of Theorem 3.1. Take ν = N −2 and EN−2 = ∅. Corollary 3.1
implies that there are two K-rational subsets Σi (i = 1, 2) of C with |Σi| =
N − 2 and Σ1 ∩Σ2 = ∅ such that for every Q ∈ Σ1 ∪Σ1 we have

H(Q) < N7N4
H(F )2N−4M(N − 2)N(N−1)2(N−2)2

.

By Lemma 3.4,

M(N − 2) < 4(N + 1)10N−4H(F )4N−2.

Thus, for every Q ∈ Σ1 ∪Σ2 we have

H(Q) < (N + 1)10N6
H(F )4N6

.

Next, let ν = N −1 and EN−1 = Σ1∪Σ2. Then Lemma 3.7 implies that
there is a basis {ψ1(X,Y, Z), ψ2(X,Y, Z), ψ3(X,Y, Z)} of W (N−1, Σ1∪Σ2)
such that

H(ψi) < N2N2
M(N − 1, EN−1)(N3−7N+6)/2 (i = 1, 2, 3).

Combining Lemma 3.4 and the above inequalities, we get

H(ψi) < (N + 1)5N9−30N8
H(F )2N9−12N8

(i = 1, 2, 3).
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The set of common zeros of ψ1(X,Y, Z), ψ2(X,Y, Z), ψ3(X,Y, Z) in P2 is
V = Σ1 ∪Σ2 ∪ S. Put U = C − V and consider the morphism ψ : U → P2

given by

ψ(P ) = (ψ1(P ) : ψ2(P ) : ψ3(P )) for every P ∈ U.
We denote by C̃ the closure of ψ(U) in P2. The morphism ψ defines a rational
map Ψ from C to C̃. First, we prove that C̃ is a conic.

Consider the set S̃ of singular points of ψ(U). By Proposition 3.1, there
is λ = (λ1, λ2, λ3) ∈ Z3 such that the curve κ(λ) defined by

φλ(X,Y, Z) = λ1ψ1(X,Y, Z) + λ2ψ2(X,Y, Z) + λ3ψ3(X,Y, Z) = 0

meets C in two distinct points Γ1, Γ2 which are not in S ∪EN−1 ∪ ψ−1(S̃).
Thus, the points ψ(Γ1) and ψ(Γ2) are simple and I(Γi, C ∩ κ(λ)) = 1
(i = 1, 2). Denote by L the line in P2 defined by

ε(X,Y, Z) = λ1X + λ2Y + λ3Z = 0.

Put ∆i = ψ(Γi) (i = 1, 2). Then L ∩ S̃ = {∆1,∆2}. Let O∆i(C̃) be the
local ring of C̃ at ∆i and OΓi(C) be the local ring of C at Γi (i = 1, 2). The
morphism ψ induces a ring monomorphism ψ∗ : O∆i(C̃)→ OΓi(C) given by

ψ ∗ (f) = f ◦ ψ for every f ∈ O∆i(C̃).

Since Γi and ∆i are non-singular points of C and C̃ respectively, it follows
that O∆i(C̃) and OΓi(C) are discrete valuation rings. We denote by ordCΓi
and ordC̃∆i the order functions defined by OΓi(C) and O∆i(C̃) respectively.
Then

ordCΓi(ψ ∗ (ε)) = ordCΓi(φλ) = I(Γi, C ∩ κ(λ)) = 1.

Since ordC̃∆i(ε) ≤ ordCΓi(ψ ∗ (ε)), it follows that ordC̃∆i(ε) = 1, whence
I(∆i, C̃ ∩ L) = 1 (i = 1, 2). By Bezout’s theorem, we get

deg C̃ = I(∆1, C̃ ∩ L) + I(∆2, C̃ ∩ L) = 2.

Hence C̃ is a conic.
Let G(X,Y, Z) = 0 be the equation defining C̃. We now calculate an

upper bound for H(G). Let (x, y) ∈ K2 satisfy F (x, y, 1) = 0 and ψ3(x, y, 1)
6= 0. Put

µ =
ψ1(x, y, 1)
ψ3(x, y, 1)

, ξ =
ψ2(x, y, 1)
ψ3(x, y, 1)

.

Then (x, y, µ) is a solution of the system

F (X,Y, 1) = 0, Ψ1(X,Y,M) = ψ1(X,Y, 1)−Mψ3(X,Y, 1) = 0

and (x, y, ξ) is a solution of the system

F (X,Y, 1) = 0, Ψ2(X,Y,Ξ) = ψ2(X,Y, 1)−Ξψ3(X,Y, 1) = 0.
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We denote by R1(X,M) and R2(X,Ξ), respectively, the resultants of
F (X,Y, 1), Ψ1(X,Y,M) and F (X,Y, 1), Ψ2(X,Y,Ξ) with respect to Y . It
follows that

R1(x, µ) = 0, R2(x, ξ) = 0.

Thus, if R(M,Ξ) is the resultant of R1(X,M) and R2(X,Ξ) with respect to
X, then R(µ, ξ) = 0. We conclude that the points of C̃ belong to the projec-
tive closure of the curve R(M,Ξ) = 0. Hence G(X,Y, 1) divides R(M,Ξ).

By Lemma 3.2, the height of Ri satisfies

H(Ri) < (2N −1)!(N +1)N−1(2N)NH(F )N−1(H(ψi)H(ψ3))N (i = 1, 2).

We deduce that

H(Ri) < (N + 1)10N10−50N9
H(F )4N10

(i = 1, 2).

Further, we have degX Ri ≤ 2N(N − 1) (i = 1, 2), degM R1 ≤ N and
degΞ R2 ≤ N . It follows that degM R ≤ 2N2(N − 1) and degΞ R ≤
2N2(N − 1). Lemma 3.2 yields

H(R) < (4N2 − 4N)!(N + 1)4N(N−1)(H(R1)H(R2))2N(N−1).

Thus, we obtain

H(R) < (N + 1)40N12−39N11
H(F )16N12

.

Finally, Lemma 3.3 implies

H(G) < (N + 1)40N12
H(F )16N12

.

Next, we prove that Ψ is birational. Suppose that there exist P1, P2 ∈ U
with P1 6= P2 and ψ(P1) = ψ(P2). If P is an arbitrary point of U with
P 6= P1, P 6= P2 and ψ(P ) 6= ψ(P1), then we consider the line in P2 defined
by the equation αX + βY + γZ = 0 passing through ψ(P1) and ψ(P ).
It follows that the curve κ(α, β, γ) meets C in the three points P, P1, P2

apart from the points of S ∪Σ1 ∪Σ2. On the other hand, Bezout’s theorem
implies that C meets κ(α, β, γ) at most in two points apart from the points
of S ∪ Σ1 ∪ Σ2, which is a contradiction. Thus, ψ(P1) 6= ψ(P2). Therefore,
ψ is injective. Hence, Lemma 3.7 shows that Ψ is birational.

For every µ, ξ ∈ K, the curves

F (X,Y, 1) = 0, Ψ1(X,Y, µ) = 0, Ψ2(X,Y, ξ) = 0

pass through the points of S∪Σ1∪Σ2 which are not in C∞. The multiplicity
of the root of R1(X,µ) is equal to the sum of the intersection numbers
of C and the curve Ψ1(X,Y, µ) = 0 on the line X = α. Let P (i) = (αi :
βi : 1) (i = 1, . . . , s) be the points of S, and P (i + s) = (αi+s : βi+s : 1)
(i = 1, . . . , 2N − 4) be the points of Σ1 ∪Σ2 which are not in C∞. Then for
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every µ ∈ K the polynomial

Π(X) =
∏

1≤i≤s
(X − αi)mP (i)(mP (i)−1)

∏

1≤i≤2N−4

(X − αs+i)

divides R1(X,µ). It follows that Π(X) divides R1(X,M). Similarly, Π(X)
divides R2(X,Ξ). Put

S1(X,M) =
R1(X,M)
Π(X)

, S2(X,Ξ) =
R2(X,Ξ)
Π(X)

.

By Bezout’s theorem, the degree of the polynomials S1(X,µ) and S2(X, ξ)
is 2, whence degX S1 = degX S2 = 2.

Let (µ : ξ : 1) ∈ ψ(U − C∞). Since (µ : ξ : 1) ∈ ψ(U − C∞) and ψ is
injective, there is exactly one pair (x0, y0) such that

F (x0, y0, 1) = 0, Ψ1(x0, y0, µ) = 0, Ψ2(x0, y0, ξ) = 0.

Then S1(x0, µ) = S2(x0, ξ) = 0. Write

S1(X,M) = a0(M)X2 + a1(M)X + a2(M),

S2(X,Ξ) = b0(Ξ)X2 + b1(Ξ)X + b2(Ξ).

Let f be the set of points (µ : ξ : 1) ∈ ψ(U − C∞) such that

a0(µ)
b0(ξ)

=
a1(µ)
b1(ξ)

=
a2(µ)
b2(ξ)

.

Then S1(X,µ) and S2(X, ξ) have the same roots if and only if (µ : ξ : 1) ∈ f.
If (µ : ξ : 1) is not in f, then X − x0 is the greatest common divisor of
S1(X,µ) and S2(X, ξ).

Consider S1(X,M) and S2(X,Ξ) as elements of K(M,Ξ)[X]. Then
there are A(M,Ξ) ∈ K(M,Ξ) and B(X,M,Ξ) ∈ K(M,Ξ)[X] with
degX B(X,M,Ξ) = 1 such that

S1(X,M) = A(M,Ξ)S2(X,Ξ)−B(X,M,Ξ).

Let (µ : ξ : 1) be a point which is not in f and x0, y0 ∈ K with ψ(x0 :
y0 : 1) = (µ : ξ : 1). Then B(x0, µ, ξ) = 0. Similarly, we deduce that there is
Γ (Y,M,Ξ)∈K(M,Ξ)[Y ] with degY (Y,M,Ξ) = 1 such that Γ (y0, µ, ξ) = 0.
Write

B(X,M,Ξ) = B0(M,Ξ)X −B1(M,Ξ),

Γ (Y,M,Ξ) = Γ0(M,Ξ)Y − Γ1(M,Ξ).
Thus

x0 =
B1(µ, ξ)
B0(µ, ξ)

and y0 =
Γ1(µ, ξ)
Γ0(µ, ξ)

.

Hence, the rational map Ψ−1 is given by the map

C̃ − f→ C, (µ, ξ)→
(
B1(µ, ξ)
B0(µ, ξ)

,
Γ1(µ, ξ)
Γ0(µ, ξ)

)
.
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Finally, we calculate a bound for the heights of Bi(M,Ξ), Γi(M,Ξ)
(i = 1, 2). It is easily seen that

B1(M,Ξ)
B0(M,Ξ)

=
ω1(M,Ξ)
ω2(M,Ξ)

,

where
ω1(M,Ξ) = a0(M)b2(Ξ)− a2(M)b0(Ξ),

ω2(M,Ξ) = a1(M)b0(Ξ)− a0(M)b1(Ξ).

We have degM ωi ≤ N , degΞ ωi ≤ N (i = 1, 2) and

H(ωi) < 2H(S1)H(S2) (i = 1, 2).

By Lemma 3.3, we get

H(Sj) < 4(2N2−N)2
H(Rj) (j = 1, 2).

Thus

H(Sj) < (N + 1)10N10−49N9
H(F )4N10

(j = 1, 2),

whence

H(ωi) < (N + 1)20N10
H(F )8N10

(i = 1, 2).

Similarly, we have
Γ1(M,Ξ)
Γ0(M,Ξ)

=
ω3(M,Ξ)
ω4(M,Ξ)

with degM ωi ≤ N , degΞ ωi ≤ N (i = 3, 4) and

H(ωi) < (N + 1)20N10
H(F )8N10

(i = 3, 4).

3.5. Proof of Theorem 3.2. Suppose that N is odd. At the beginning of
the proof of Theorem 3.1 we have seen that there exists a K-rational subset
Σ of C with |Σ| = 2N − 4 and Σ ∩ S = ∅ such that for every Q ∈ Σ we
have

H(Q) < (N + 1)10N6
H(F )4N6

.

Now if we take ν = N − 1 and EN−1 = Σ, Corollary 3.1 implies that there
are (N − 3)/2 K-rational subsets Σi (i = 1, . . . , (N − 3)/2) of C such that
|Σi| = 2, Σi ∩ (S ∪Σ ∪C∞) = ∅, Σi ∩Σj = ∅ for i 6= j and for every Q ∈ Σi
we have

H(Q) < N7N4
H(F )2N−2M(N − 1, Σ)3N(N3−7N+6).

Using Lemma 3.4, we get

M(N − 1, Σ) < (N + 1)10N6
H(F )4N6

.

Then for every Q ∈ Σi we obtain

H(Q) < (N + 1)30N10
H(F )12N10

.
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Next, let ν = N − 2 and EN−2 = Σ1 ∪ . . . ∪Σ(N−3)/2. Then Lemma 3.7
implies that there is a basis {ψ1(X,Y, Z), ψ2(X,Y, Z)} of W (N − 2, EN−2)
such that

H(ψi) < N2N2
M(N − 2, EN−2)(N3−3N2−2N+8)/2 (i = 1, 2).

Since

M(N − 2, EN−2) < (N + 1)30N10
H(F )12N10

,

we get

H(ψi) < (N + 1)15N13−40N12
H(F )6N13−16N12

(i = 1, 2).

The set of common zeros of ψ1(X,Y, Z) and ψ2(X,Y, Z) in P2 is EN−2 ∪S.
Put U = C − (EN−2 ∪ S) and consider the morphism ψ : U → P1 given by

ψ(P ) = (ψ1(P ) : ψ2(P )) for every P ∈ U.
Thus ψ defines a rational map Ψ from C to P1. We now prove that Ψ is a
birational map and we determine Ψ−1.

Put

Ψ1(X,Y,M) = ψ1(X,Y, 1)−Mψ2(X,Y, 1) = 0.

We denote by R1(X,M) and R2(Y,M), respectively, the resultants of
F (X,Y, 1) and Ψ1(X,Y,M) with respect to Y and X. We have degX R1 ≤
2N(N − 2), degY R2 ≤ 2N(N − 2) and degM Ri ≤ N (i = 1, 2). Using
Lemma 3.2, we get

H(Ri) < (N + 1)30N14−70N13
H(F )12N14

(i = 1, 2).

For every µ ∈ K, the curves F (X,Y, 1) = 0 and Ψ1(X,Y, µ) = 0 pass
through the points of the set (S ∪EN−2)−C∞. The multiplicity of the root
a of R1(X,µ) is the sum of the intersection numbers of C and the curve
Ψ1(X,Y, µ) = 0 on the line X = a. Let P (i) = (ai : bi : 1) (i = 1, . . . , s) be
the points of S and P (i + s) = (ai+s : bi+s : 1) (i = 1, . . . , N − 3) be the
points of EN−2 which are not at infinity. Then the polynomial

Π(X) =
s∏

i=1

(X − ai)mP (i)(mP (i)−1)
N−3∏

i=1

(X − ai+s)

divides R1(X,µ). It follows that Π(X) divides R1(X,M). Put

S1(X,M) =
R1(X,M)
Π(X)

.

By Bezout’s theorem, degS1(X,µ) = 1, whence degX S1 = 1. Similarly,
there is a polynomial S2(Y,M) dividing R2(Y,M) with degY S2 = 1.

Write

S1(X,M) = a0(M)X − a1(M), S2(Y,M) = b0(M)Y − b1(M).
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Let (µ : 1) ∈ ψ(U − C∞). Then there is a pair (x0, y0) such that

F (x0, y0, 1) = 0, Ψ1(x0, y0, µ) = 0.

We have S1(x0, µ) = 0 and S2(y0, µ) = 0, whence

x0 =
a1(µ)
a0(µ)

, y0 =
b1(µ)
b0(µ)

.

Hence, the rational map given by

X =
a1(M)
a0(M)

, Y =
b1(M)
b0(M)

is the inverse rational map of Ψ . Therefore, Ψ is a birational map. Since
S1(X,M) divides R1(X,M) and S2(Y,M) divides R2(Y,M), Lemma 3.3
yields

H(ai),H(bi) < H(Si) < 44N4
H(Ri) < (N + 1)30N14

H(F )12N14
(i = 1, 2).

4. Reduction of singularities to double ordinary points

4.1. Statement of the results. It is well known that every curve has a
plane model having no singularities other than double ordinary points [1,
Chap. VIII, Theorem 58.1; 5, Chap. IV, Corollary 3.11]. In this section
we give an effective proof of this result for the case of curves of genus 0
following the main arguments of Theorem 58.1 of [1]. More precisely we
prove the following result:

Theorem 4.1. Let F (X,Y ) be an absolutely irreducible polynomial in
K[X,Y ] of degree N ≥ 3 such that the curve C defined by the equation
F (X,Y ) = 0 is of genus 0. Then C is birational to a plane curve C̃ given by
G(X,Y ) = 0, where G(X,Y ) is a polynomial of K[X,Y ] of degree N having

H(G) < (9N5N+4H(F ))7810N16
,

such that C̃ has no singularities other than double ordinary points. More-
over , there is a birational map Ψ : C → C̃ given by

Ψ(X,Y ) =
(
ψ1(X,Y )
ψ3(X)

,
ψ2(X,Y )
ψ3(X)

)
,

where ψi(X,Y ) ∈ K[X,Y ] (i = 1, 2) and ψ3(X) ∈ K[X] with degX ψi(X,Y )
≤ 2N2 + 4N , degY ψi < N (i = 1, 2), degψ3 ≤ N2 and

H(ψi) < (9N5N+4H(F ))490N12
(i = 1, 2),

H(ψ3) < (N + 1)10N4
H(F )2N3

.

The inverse map of Ψ is given by

Ψ−1(X,Y ) =
(
ω1(X,Y )
ω2(X)

,
ω3(X,Y )
ω4(X)

)
,
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where ωi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3, 4) with degX ωi ≤ 2N2 + 4N ,
degY ωi < N (i = 1, 3), degωi ≤ N2 (i = 2, 4) and

H(ωi) <
{

(9N5N+4H(F ))5352N16
(i = 1, 3),

(N + 1)10N4
H(F )2N3

(i = 2, 4).

Combining Theorems 3.1, 3.2 and 4.1, we obtain Theorems 2.1 and 2.2.

4.2. Puiseux expansions for algebraic functions. Let F (X,Y ) be an ir-
reducible polynomial in K[X,Y ] of degree m > 0 in X and n > 0 in Y .
Write

F (X,Y ) = An(X)Y n +An−1(X)Y n−1 + . . .+A0(X).
Put ta = X − a if a ∈ K and ta = 1/X if a =∞. By Puiseux’s theorem [1,
Chap. II; 3, Chap. III; 22, Chap. IV, Sect. 3], for every a ∈ K ∪ {∞} there
are n distinct formal power series

yi,k =
∑

s≥s(i)
ci,sζ

ks
i t

s/ei
a (i = 1, . . . , r; k = 0, . . . , ei − 1),

where e1, . . . , er are positive integers with e1 + . . .+ er = n and ζi is an eith
primitive root of 1, satisfying

F (X,Y ) = An(X)
∏

i,k

(Y − yi,k(X)).

The coefficients ci,s lie in a finite extension Li of K and ci,s(i) 6= 0 (i =
1, . . . , r). Moreover, any series y(X) of this form satisfying F (X,y(X)) = 0,
must be one of the series yi,k(X) (i = 1, . . . , r; k = 0, . . . , ei−1). The series
yi,k are known as Puiseux expansions at X = a of the algebraic function y
defined by F (X,y) = 0 and e1, . . . , er are called the ramification indices of y
at X = a. Systematic methods for computing ei and ci,s are known (see [1],
[7], [17], [22]). If [Li : K] = l(i) and σ1, . . . , σl(i) denote the K-isomorphisms
of Li into C, then each of the conjugate series

yi,k,σj (X) =
∑

s≥s(i)
σj(ci,s)ζksi t

s/ei
a (j = 1, . . . , l(i); k = 0, . . . , ei−1)

represents one of the Puiseux expansions at X = a. Thus, we conclude that
for every s the coefficients c1,s, . . . , cr,s form a K-rational set. We denote by
N the total degree of F and suppose that N ≥ 3.

Denote by C the curve defined by F (X,Y ) = 0. Let U be the set of
discrete valuation rings V of K(C) such that K ⊂ V . A divisor D on C is
a formal sum

D = a1V1 + . . .+ asVs,

where a1, . . . , as ∈ Z and V1, . . . , Vs are pairwise distinct elements of U.
Given f ∈ K(C) and V ∈ U, we denote by ordV (f) the order of the function
f at V . Let L(D) be the set of functions f ∈ K(C) having ordVi(f) ≥ −ai
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and ordV (f) ≥ 0 for every V ∈ U, with V 6= Vi (i = 1, . . . , s). Then L(D) is
a finite-dimensional vector space over K (see [9]). Furthermore, the divisor
of a function f ∈ K(C) is defined to be the sum

(f) =
∑

V

ordV (f)V.

Lemma 4.1. Let D = a1V1 + . . .+ asVs be a divisor on C and σ1, . . . , σµ
(µ ≥ 2) be a basis of L(D). Let ξ ∈ L(D) have ordVj (ξ) = −1 (j = 1, . . . , s).
Then for every v = (v1, . . . , vµ) ∈ Zµ the function η(v) = v1σ1 + . . .+ vµσµ
has s expansions in powers of 1/ξ of the form

ηj(v) = dj,−1ξ + dj,0 + . . . (j = 1, . . . , s).

If A is a positive integer , then there are at most Aµ−1s(s − 1)/2 µ-tuples
v = (v1, . . . , vµ) ∈ Zµ with |vi| ≤ A (i = 1, . . . , µ) such that the leading
coefficients dj,−1 (j = 1, . . . , s) of the above expansions are not all distinct.
Moreover , if dj,−1 (j = 1, . . . , s) are pairwise distinct , then K(C) = K(ξ, η).

P r o o f. Let tj be a local parameter at Vj (j = 1, . . . , s). Since ξ, σi ∈
L(D), we have

σi = ci,j,−1t
−1
j + ci,j,0 + ci,j,1tj + . . . , ξ = bj,−1t

−1
j + bj,0 + bj,1tj + . . .

Since ordVj (ξ) = −1, it follows that bj,−1 6= 0 (j = 1, . . . , s). Then we may
write tj as an expansion in powers of 1/ξ of the form

tj = bj,−1ξ
−1 + . . . (j = 1, . . . , s).

Therefore, η(v) has an expansion in powers of 1/ξ of the form

η(v) = dj,−1ξ + dj,0 + . . . ,

where

dj,−1 =
µ∑

i=1

vi
ci,j,−1

bj,−1
.

Thus, we have dk,−1 = dl,−1 if and only if
µ∑

i=1

vi

(
ci,k,−1

bk,−1
− ci,l,−1

bl,−1

)
= 0.

By [1, Corollary to Lemma 26.2, p. 74], the vectors

(c1,j,−1, . . . , cµ,j,−1) (j = k, l)

are linearly independent, whence the above linear equation is not trivial.
The number of solutions v = (v1, . . . , vµ) ∈ Zµ with |vi| ≤ A (i = 1, . . . , µ)
is at most Aµ−1 and we have s(s − 1)/2 such equations. It follows that
there are at most Aµ−1s(s − 1)/2 µ-tuples v = (v1, . . . , vµ) ∈ Zµ with
|vi| ≤ A (i = 1, . . . , µ) such that dj,−1 (j = 1, . . . , s) are not all distinct.
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Finally, [1, Corollary 1, p. 136] implies that if dj,−1 (j = 1, . . . , s) are pairwise
distinct, then K(C) = K(ξ, η).

Lemma 4.2. Let D = V1 + . . . + VN be a divisor on C and ξ, η ∈ K(C)
be such that K(C) = K(ξ, η). Suppose that ξ, η ∈ L(D) and ordVi(ξ) =
ordVi(η) = −1 (i = 1, . . . , N). Let

ξ =
f1(X,Y )
f0(X,Y )

, η =
f2(X,Y )
f0(X,Y )

,

where fi(X,Y ) (i = 0, 1, 2) are polynomials of K[X,Y ]−K of degree ≤M .
Then there is an absolutely irreducible polynomial

G(X,Y ) = Y N +B1(X)Y N−1 + . . .+BN (X),

where Bi(X) ∈ K[X] with degBi ≤ i (i = 1, . . . , N − 1) and degBN = N ,
such that G(ξ, η) = 0. Moreover ,

H(G) ≤ c(M,N)H(F )4NM2
H(f0)4N2M (H(f1)H(f2))2N2M ,

where

c(M,N) ≤ (N + 1)4NM2(M+1)(M + 1)4NM2

× 42N2M+(4N2M+1)2
(4MN)!(N +M)!4NM .

P r o o f. Since ξ ∈ L(D) and ordVi(ξ) = −1 (i = 1, . . . , N), we deduce
that [K(C) : K(ξ)] = N . Let

G(ξ, Y ) = Y N +B1(ξ)Y N−1 + . . .+BN (ξ)

be the irreducible polynomial of η over K(ξ). The function has no poles
except those of ξ, whence Bi(ξ) ∈ K[ξ] (i = 1, . . . , N). The rings V1, . . . , VN
are all the elements of U lying above the ring of K(ξ) defined by 1/ξ. Thus
η has N conjugates over K(ξ) which are given by the Puiseux expansions
of η at infinity:

ηj = ηj,−1ξ + ηj,0 + ηj,1(1/ξ) + . . . (j = 1, . . . , N),

with ηj,−1 6= 0. Hence, Bi(ξ) is, up to sign, the ith elementary symmetric
polynomial in N quantities ηj , whence degBi(ξ) ≤ i (i = 1, . . . , N − 1) and
degBN (ξ) = N .

Consider the polynomials

Φ1(X,Y, ξ) = f1(X,Y )− ξf0(X,Y ), Φ2(X,Y, η) = f2(X,Y )− ηf0(X,Y ).

We denote by R1(X, ξ) and R2(X, η), respectively, the resultants of F (X,Y ),
Φ1(X,Y, ξ) and F (X,Y ), Φ2(X,Y, η). We have degξ R1 ≤ N , degη R2 ≤ N
and degX Ri ≤ 2NM (i = 1, 2). Lemma 3.2 yields

H(Ri) ≤ (N +M)!(N + 1)M (2(M + 1))NH(F )MH(Φi)N (i = 1, 2).
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Let S(ξ, η) be the resultant of R1(X, ξ) and R2(X, η) with respect to X. We
have degξ S ≤ 2N2M , degη S ≤ 2N2M and Lemma 3.2 implies

H(S) ≤ (4NM)!(N + 1)4NM (H(R1)H(R2))2NM .

Combining the above inequalities, we deduce

H(S) ≤ Λ(M,N)H(F )4NM2
H(f0)4N2M (H(f1)H(f2))2N2M ,

where

Λ(M,N) ≤ (N + 1)4NM2(M+1)(M + 1)4NM2
16N

2M (4MN)!(N +M)!4NM .

For every x, y ∈ K with f0(x, y) 6= 0 the elements

ξ(x, y) =
f1(x, y)
f0(x, y)

and η(x, y) =
f2(x, y)
f0(x, y)

satisfy G(ξ(x, y), η(x, y)) = 0. On the other hand, we have Φ1(x, y, ξ(x, y)) =
0 and Φ2(x, y, η(x, y)) = 0, whence S(ξ(x, y), η(x, y)) = 0. So G(X,Y ) di-
vides S(X,Y ). Then Lemma 3.3 implies that H(G) ≤ 4(4N2M+1)2

H(S). The
assertion follows.

Lemma 4.3. Suppose that C is of genus 0. Let D = V1 + . . . + VN be
a divisor on C and {σ1, . . . , σN+1} be a basis of L(D). Let ξ ∈ L(D) with
ordVj (ξ) = −1 (j = 1, . . . , N). For every v = (v1, . . . , vN+1) in ZN+1 denote
by Φv(ξ, T ) = 0 the irreducible equation of the function

η(v) = v1σ1 + . . .+ vN+1σN+1

over K(ξ) and by Dv(ξ) the discriminant of Φv(ξ, T ) considered as a poly-
nomial with coefficients in K(ξ). Let Θ(ξ) be the product of the factors
(ξ − a)ea,i−1 where a ∈ C and ea,1, . . . , ea,r(a) are the ramification in-
dices of η(v) at ξ = a. If A is a positive integer , then there are at most
5(2A + 1)NN2(N − 1)2 (N + 1)-tuples v = (v1, . . . , vN+1) ∈ ZN+1 with
|vi| ≤ A (i = 1, . . . , µ) such that Dv(ξ) is not of the form

Dv(ξ) = Uv(ξ)2Θ(ξ),

where Uv(ξ) ∈ K[ξ] has pairwise distinct roots and distinct from the roots
of Θ(ξ).

P r o o f. The function η(v) has no poles except those of ξ and [K(C) :
K(ξ)] = N . Thus, there are Bi(ξ, v) ∈ K[ξ, v] (i = 1, . . . ,M ≤ N) such that

Φv(ξ, T ) = B0(ξ, v)TM +B1(ξ, v)TM−1 + . . .+BM (ξ, v).

Since Bi(ξ, v) is, up to sign, the ith elementary symmetric polynomial of
the expansions of η(v) in powers of 1/ξ, we deduce that degξ Bi ≤ i
(i = 1, . . . ,M) and the degree of Bi(ξ, v) in v1, . . . , vN+1 is at most i. Fur-
thermore, note that Vi (i = 1, . . . , N) are all the rings lying above the
discrete valuation ring of K(ξ) defined by 1/ξ.
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Let a ∈ K. The conjugates of η(v) over K(ξ) are given by the Puiseux
expansions of η(v) at ξ = a which are of the form

hi,k(ξ, v) = ci,0(v) + ci,1(v)ζki (ξ − a)1/ea,i + . . .

where i = 1, . . . , r(a), k = 0, . . . , ea,i − 1. It follows that the discriminant
Dv(ξ) of Φv(ξ, T ) is

Dv(ξ) =
∏

(i,k)≤(j,l)

(hi,k(ξ, v)− hj,l(ξ, v))2,

where (i, k) ≤ (j, l) means that i < j or i = j and k < l. For every index i,
there is Di(ξ) in K[ξ] such that

∏

k<l

(hi,k(ξ)− hi,l(ξ))2 = (ξ − a)ea,i−1Di(ξ).

Let Γ be the set of a ∈ C such that there is i ∈ {1, . . . , r(a)} with ea,i > 1.
Hence

Dv(ξ) = W (ξ, v)
∏

a∈Γ
(ξ − a)(ea,1−1)+...+(ea,r(a)−1),

where W (ξ, v) ∈ K[ξ, v]. When the coefficients v1, . . . , vN+1 are indetermi-
nates with cκ,0(v) 6= cλ,0(v) for κ, λ ∈ {1, . . . , r(a)}, κ 6= λ and ci,1(v) 6= 0
for i ∈ {1, . . . , r(a)}, then W (ξ, v) does not contain factors ξ−a with a ∈ Γ .

The Puiseux expansions of σj at ξ = a are of the form

σj,i,k(ξ) = τj,i,0 + τj,i,1ζ
k
i (ξ − a)1/ea,i + . . .

where j = 1, . . . , N+1, i = 1, . . . , r(a), k = 0, . . . , ea,i−1. By [1, Corollary to
Lemma 26.2, p. 74], any two of the vectors (τ1,i,0, . . . , τN+1,i,0) are linearly
independent. Thus, for κ, λ ∈ {1, . . . , r(a)} and κ 6= λ the equations

E(κ, λ)(v) = (τ1,κ,0 − τ1,λ,0)v1 + . . .+ (τN+1,κ,0 − τN+1,λ,0)vN+1 = 0

are non-trivial. So, cκ,0(v) = cλ,0(v) if and only if E(κ, λ)(v) = 0. Fur-
thermore, [1, Corollary to Lemma 26.2, p. 74] implies that for every i ∈
{1, . . . , r(a)} the coefficients τ1,i,1, . . . , τN+1,i,1 are not all zero. Thus, the
equations

Zi(v) = τ1,i,1v1 + . . .+ τN+1,i,1vN+1 = 0 (i = 1, . . . , r(a))

are non-trivial. Hence, ci,1(v) = 0 if and only if Zi(v) = 0. For a posi-
tive integer A the number of v = (v1, . . . , vN+1) ∈ ZN+1 with |vi| ≤ A
(i = 1, . . . , N + 1) such that at least one of the equations E(κ, λ)(v) = 0,
Zi(v) = 0 has a solution is at most (2A+ 1)N (N +N(N − 1)/2).

Let % be a zero of W (ξ, v). Then % must be a zero of one of the factors
hi,k(ξ)−hj,l(ξ) and each such factor occurs twice in Dv(ξ). Hence the factor
ξ − % occurs an even number of times in Dv(ξ). It follows that there is
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a polynomial U(ξ, v) such that W (ξ, v) = U(ξ, v)2. Since degξDv(ξ) ≤
2N(N − 1), we get |Γ | ≤ 2N(N − 1). Furthermore, the degree of U(ξ, v)
in v1, . . . , vN+1 is at most N(N − 1). We deduce that the number of v =
(v1, . . . , vN+1) with vi ∈ Z and |vi| ≤ A (i = 1, . . . , N + 1) satisfying one of
the equations

U(a, v) = 0, a ∈ Γ,
is at most (2A+ 1)N2N2(N − 1)2. Let ∆(v) be the discriminant of U(ξ, v)
considered as a polynomial with coefficients in K[v]. Since the degree of ∆(v)
in v1, . . . , vN+1 is at most 2N2(N − 1)2, the number of v = (v1, . . . , vN+1)
with vi ∈ Z and |vi| ≤ A (i = 1, . . . , N + 1) such that ∆(v) = 0 is at
most (2A+ 1)N2N2(N − 1)2. Therefore, the number of v = (v1, . . . , vN+1)
with vi ∈ Z and |vi| ≤ A (i = 1, . . . , N + 1) such that U(ξ, v) has no
distinct roots or there is a ∈ Γ satisfying U(a, v) = 0 is at most
(2A+ 1)N4N2(N − 1)2. Finally, there are at most 5(2A + 1)NN2(N − 1)2

(N + 1)-tuples v = (v1, . . . , vN+1) ∈ ZN+1 with |vi| ≤ A (i = 1, . . . , µ) such
that Dv(ξ) is not of the form

Dv(ξ) = U(ξ, v)2
∏

a∈Γ
(ξ − a)ea,1+...+ea,r(a)−r(a),

with U(ξ, v) having pairwise distinct roots and distinct from the elements
of Γ .

Lemma 4.4. Let f(X,Y ) = 0 be an irreducible curve of degree n in Y
defined over K. For a ∈ C denote by ea,1, . . . , ea,r(a) the ramification indices
of Y at X = a. Assume that the following conditions are satisfied :

(a) The Puiseux expansions yi(X) (i = 1, . . . , n) at X = ∞ of the
algebraic function Y defined by f(X,Y ) = 0 are

yi(X) = bi,−1X + bi,0 + bi,1X
−1 + . . . (i = 1, . . . , n)

with leading coefficients bi,−1 pairwise distinct , and Y has no other poles.
(b) The discriminant of f(X,Y ), considered as a polynomial with coef-

ficients in K[X], is of the form

D(X) = U(X)2Θ(X)

where Θ(X) is the product of the factors (X − a)ea,i−1 with a ∈ C, i =
1, . . . , r(a), and U(X) has pairwise distinct roots and distinct from the roots
of Θ(X).

Then the curve f(X,Y ) = 0 has no singularities other than double ordi-
nary points.

P r o o f. See [1, Theorem 57.1, p. 161].
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4.3. On the bases of Riemann–Roch spaces. Let F (X,Y, Z) be a homoge-
neous absolutely irreducible polynomial in K[X,Y, Z] of degree N ≥ 3 such
that the curve C defined by F (X,Y, Z) = 0 is of genus 0. If P is a point on
C, we denote by OP the local ring of C at P .

Lemma 4.5. Let {P1, . . . , PN} be a K-rational subset of simple points
of C. Put D = OP1 + . . .+OPN . Let T be the set of a ∈ K such that there is
a ring OPi lying above X = a. Denote by M(T ) and Π(T ), respectively , the
maximum and the product of H(a) with a ∈ T . Then there exist polynomials
Gi(X,Y ) ∈ K[X,Y ] (i = 1, . . . , N + 1) and E(X) ∈ K[X] with degX Gi ≤
2N2 + 4N , degY Gi < N , degE ≤ N2 and

H(Gi) < (9N6H(F )M(T ))366N11
, H(E) < (N + 1)5N3

H(F )2N3
Π(T ),

such that the functions φi (i = 1, . . . , N + 1) on C defined by the fractions
Gi/E (i = 1, . . . , N + 1) form a basis of the space L(D).

P r o o f. By the Riemann–Roch theorem, the space L(D) has dimension
N + 1. By [18, Theorem A2], there are polynomials E(X) and Gi(X,Y )
(i = 1, . . . , N + 1) such that Gi(X,Y )/E(X) (i = 1, . . . , N + 1) represent a
basis of L(D). Since the divisor D is defined over K, [18, Theorem B2]
implies that we may take the polynomials E(X) and Gi(X,Y ) (i = 1, . . .
. . . , N + 1) to have coefficients in K.

Let D(X) be the discriminant of F (X,Y, 1) considered as a polynomial
with coefficients inK[X]. We have degD ≤ 2N(N−1). By [18, Theorem A2],
we get

degE ≤ degD
2

+N ≤ N2

and the roots of E(X) are among the roots of D(X) and the elements of T .
Further, we can assume that the leading coefficient of E(X) is 1. Let

E(X) = (X − %1) . . . (X − %r).
Let R(X) be the resultant of F (X,Y, 1) and FY (X,Y, 1) with respect to Y . If
%i is a root of D(X), then R(%i) = 0 and Lemma 3.1 yields H(%i) ≤ 2H(R).
By [21, Theorem 5.9, p. 211], we have

H(E) ≤ 2N
2−1H(%1) . . . H(%r) ≤ 4N

2
H(R)N

2
Π(T ).

Lemma 3.2 implies

H(R) < (N + 1)5N−2H(F )2N−1.

Hence

H(E) < (N + 1)5N3−N2
H(F )2N3

Π(T ).

By [18, Theorem A2], we have

degX Gi ≤ 2N2 + 4N.
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Let F (X,Y, 1) = a0(X)Y n + . . .+ an(X). Following the notation of [17], we
have

Gi(X,Y ) = bi1(X) + bi2(X)y2(X,Y ) + . . .+ bin(X)yn(X,Y )

(i = 1, . . . , N + 1),

where

yj(X,Y ) = a0(X)Y j−1 + a1(X)Y j−2 + . . .+ aj−2(X)Y (j = 2, . . . , n)

and bij(X) ∈ L[X]. From [18, pp. 204, 209 and 196], we get

bij(X) = δij0 + δij1X + . . .+ δijνX
ν

with ν ≤ 2N2 + 3N . By [18, Lemma 26] the vector δi = {δijp}1≤j≤n,0≤p≤ν
has height

H(δi) < (9N6H(F )M(T ))365N11
.

We have

Gi(X,Y ) =
n∑

j=1

bij(X)yj(X,Y )

= bi1(X) + (bi2(X)a0(X) + . . .+ bin(X)an−2(X))Y

+ . . .+ bin(X)a0(X)Y n−1.

By the proof of Theorem C2 of [18], we can choose a vector δi such that one
of the δijp is 1. Further, we may suppose, without loss of generality, that
one of the coefficients of F (X,Y ) is 1. Then we obtain

H(Gi) < 7N3H(δi)H(F ) < (9N6H(F )M(T ))366N11
.

Lemma 4.6. Let B = {P1, . . . , PN} and Γ = {Q1, . . . , QN} be two K-
rational subsets of simple points of C with B ∩ Γ = ∅. Let T be the set of
a ∈ K such that there exists a local ring OP with P ∈ B lying above X = a.
Denote by M(B) and M(Γ ), respectively , the maximum of H(a) with a ∈ T
and the maximum of H(Qj) (j = 1, . . . , N). Then there are two polynomials
G ∈ K[X,Y ], E(X) ∈ K[X] with degX G ≤ 2N2 + 4N , degY G < N ,
degE ≤ N2 and heights satisfying

H(G) < (9N6H(F )M(B))655N13
M(Γ )5N4

and

H(E) < (N + 1)5N3
H(F )2N3 ∏

a∈T
H(a)

such that the fraction G/E defines a function φ on C with divisor

(φ) = OQ1 + . . .+OQN −OP1 − . . .−OPN .
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P r o o f. By Lemma 4.5, there exist polynomials Gi(X,Y ) ∈ K[X,Y ]
(i = 1, . . . , N + 1) and E(X) ∈ K[X] with degX Gi ≤ 2N2 + 4N , degY Gi <
N , degE ≤ N2 and

H(Gi) < (9N6H(F )M(B))366N11
,

H(E) < (N + 1)5N3
H(F )2N3 ∏

a∈T
H(a),

such that the functions φi (i = 1, . . . , N + 1) on C defined by the fractions
Gi/E (i = 1, . . . , N + 1) form a basis of the space L(OP1 + . . .+OPN ). Let
Gh,i be the homogenization of Gi. Consider the linear system

Gh,1(Qj)X1 + . . .+Gh,N+1(Qj)XN+1 = 0 (j = 1, . . . , N).

Let r be the rank of the system and suppose that the vectors

Zj = (Gh,1(Qj), . . . , Gh,N+1(Qj)) (j = 1, . . . , r)

are linearly independent. Since Γ is a K-rational set, Lemma 3.6 implies
that the system has a non-trivial solution x1, . . . , xN+1 ∈ K satisfying

H(x1, . . . , xN+1) ≤ N !H(Z1) . . .H(Zr).

We have

H(Gh,i(Qj)) < 8N4H(Gi)H(Qj)2N2+5N ,

whence
H(Zj) < H(Gh,1(Qj)) . . . H(Gh,N+1(Qj))

< (9N6H(F )M(B))489N12
M(Γ )5N3

.

Hence

H(x1, . . . , xN+1) < (9N6H(F )M(B))490N13
M(Γ )5N4

.

Thus, the polynomial G = x1G1 + . . .+ xN+1GN+1 has

H(G) < (N + 1)H(x1, . . . , xN+1)H(G1) . . .H(GN+1)

< (9N6H(F )M(B))655N13
M(Γ )5N4

and satisfies G(Qj) = 0 (j = 1, . . . , N). Therefore, the function φ on C
defined by the fraction G/E has divisor

(φ) = OQ1 + . . .+OQN −OP1 − . . .−OPN .

4.4. Proof of Theorem 4.1. First, suppose that degY F = N and C∞ has
N simple points. Since the resultant R(X) of F (X,Y ) and FY (X,Y ) with
respect to Y has degree < 2N2, there is an integer a with |a| < N2 such
that the points Pi = (ai : bi : 1) (i = 1, . . . , N) on C above X = a are all
simple. Put D = OP1 + . . . + OPN . By Lemma 4.5, there exist Gi(X,Y ) ∈
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K[X,Y ] (i = 1, . . . , N + 1) and E(X) ∈ K[X] with degX Gi ≤ 2N2 + 4N ,
degY Gi < N , degE ≤ N2 and

H(Gi) < (9N8H(F ))366N11
, H(E) < (N + 1)5N3

H(F )2N3
,

such that the functions φi (i = 1, . . . , N + 1) on C defined by the fractions
Gi/E (i = 1, . . . , N + 1) form a basis of L(D).

For simplicity we denote by ordi(f) the order of a function f at OPi .
Suppose that there is j ∈ {1, . . . , N} with ordj(φk) ≥ 0 (k = 1, . . . , N + 1).
Then L(D) = L(D−Vj), which is a contradiction, because by the Riemann–
Roch theorem dimL(D−Vj) = dimL(D)−1. Thus, for every j ∈ {1, . . . , N}
there is k(j) ∈ {1, . . . , N + 1} such that ordj(φk(j)) = −1. The Puiseux
expansion of φr at OPi is of the form

φr,i = cr,i,−1t
−1
i + cr,i,0 + cr,i,1ti + . . . ,

where ti is a local parameter at OPi . The coefficients cr,i,−1 (r = 1, . . . , N+1)
are not all zero. For every (N + 1)-tuple λ = (λ1, . . . , λN+1) ∈ ZN+1, put
η(λ) = λ1φ1 + . . .+λN+1φN+1. If A is a positive integer, then the number of
(N + 1)-tuples λ = (λ1, . . . , λN+1) ∈ ZN+1 with |λj | < A (j = 1, . . . , N + 1)
satisfying at least one of the equations

λ1c1,i,−1 + . . .+ λN+1cN+1,i,−1 = 0 (i = 1, . . . , N)

is at most (2A + 1)NN . Hence, the number of (N + 1)-tuples λ = (λ1, . . .
. . . , λN+1) ∈ ZN+1 with |λj | ≤ A (j = 1, . . . , N + 1) such that η(λ) has
ordVi(η(λ)) ≥ 0 for some i ∈ {1, . . . , N}, is at most (2A+1)NN . Then there
is µ = (µ1, . . . , µN+1) in ZN+1 with |µj | ≤ (N + 1)/2 (j = 1, . . . , N + 1),
such that the function ξ = η(µ) has ordi(ξ) = −1 (i = 1, . . . , N). Then ξ is
defined by the fraction Ξ/E where Ξ ∈ K[X,Y ] with degX Ξ ≤ 2N2 + 4N ,
degY Ξ < N and height

H(Ξ) < N2(9N8H(F ))366N11(N+1).

Lemma 4.1 implies that for every λ = (λ1, . . . , λN+1) ∈ ZN+1 the func-
tion η(λ) has N expansions in powers of 1/ξ of the form

ηj(λ) = dj,−1ξ + dj,0 + . . . (j = 1, . . . , N)

and there are at most (2A + 1)NN(N − 1)/2 (N + 1)-tuples λ = (λ1, . . .
. . . , λN+1) ∈ ZN+1 with |λi| ≤ A (i = 1, . . . , N + 1), such that the leading
coefficients dj,−1 (j = 1, . . . , N) of the above expansions are not all distinct.
Hence, for A ≥ 1 + N(N − 1)/2 there is v = (v1, . . . , vN+1) in ZN+1 with
|vi| ≤ A (i = 1, . . . , N + 1) such that the coefficients dj,−1 (j = 1, . . . , N) of
the expansions of η(v) are pairwise distinct. Then Lemma 4.1 yields K(C) =
K(ξ, η(v)). Since we have ordVi(ξ) = −1 (i = 1, . . . , N) and ξ has no other
poles, it follows that [K(C) : K(ξ)] = N .
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We denote by Φv(ξ, T ) = 0 the absolutely irreducible equation satisfied
by η(v) over K(ξ), and let Dv(ξ) be the discriminant of Φv(ξ, T ) consid-
ered as a polynomial with coefficients in K(ξ). Let Θ(ξ) be the product
of the factors (ξ − a)ea,i−1 where a ∈ C and ea,1, . . . , ea,r(a) are the rami-
fication indices of η(v) at ξ = a. By Lemma 4.3, there are at most
5(2A + 1)NN2(N − 1)2 (N + 1)-tuples v = (v1, . . . , vN+1) ∈ ZN+1 with
|vi| ≤ A (i = 1, . . . , µ) such that Dv(ξ) is not of the form

Dv(ξ) = Uv(ξ)2Θ(ξ),

where Uv(ξ) has pairwise distinct roots which are distinct from the roots of
Θ(ξ). Then there exists v = (v1, . . . , vN+1) in ZN+1 with |vi| ≤ 3N2(N−1)2

(i = 1, . . . , N + 1) such that η(v) generates K(C) over K(ξ), ordVi(η(v)) =
−1 (i = 1, . . . , N), and the discriminant Dv(ξ) of the irreducible polynomial
Φv(ξ, T ) of η(v) over K(ξ) has the form

Dv(ξ) = Uv(ξ)2Θ(ξ),

where Uv(ξ) has pairwise distinct roots which are distinct from the roots of
Θ(ξ). By Lemma 4.4, the equation Φv(ξ, T ) = 0 is a model of the curve C
having no singularities other than double ordinary points.

Put η = η(v) and Φ(ξ, T ) = Φv(ξ, T ). The function η is defined by the
fraction Θ/E where Θ ∈ K[X,Y ] with degX Θ ≤ 2N2 + 4N , degY Θ < N
and height

H(Θ) < 3N5(9N8H(F ))366N11(N+1).

By Lemma 4.2,

H(Φ) < 4217N8
(N + 1)257N7

H(F )54N5
H(E)15N4

(H(Θ)H(Ξ))8N4
.

Furthermore, degΦ = N . Using the inequalities for the heights of Θ, Ξ and
E we obtain

H(Φ) < (9N8H(F ))7810N16
.

We denote by Φh(U, V,W ) the homogenization of the polynomial Φ. Thus,
we have a birational map Ω from the plane curve F (X,Y, Z) = 0 to
Φh(U, V,W ) defined by Ω(x : y : 1) = (ξ(x, y) : η(x, y) : 1).

Next, we determine the inverse map of Ω. Let B = {Ω(P1), . . . , Ω(PN )}
and Γ = Ω(C∞) = {Q1, . . . , QN}. Since we have ordi(ξ) = ordi(η) = −1
(i = 1, . . . , N), the points Ω(Pi) on the curve Φh(U, V,W ) = 0 are at infinity.
Furthermore,

H(Qj) < (9N8H(F ))367N11(N+1) (j = 1, . . . , N).

Thus, Lemma 4.6 implies that there are G ∈ K[X,Y ] and J(X) ∈ K[X]
with degX G ≤ 2N2 + 4N , degY G < N , deg J ≤ N2 and heights

H(G) < (9N8H(F ))2475N16
, H(J) < (N + 1)5N3

H(F )2N3
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such that the fraction G/J defines a function φ on C with divisor

(φ) = OQ1 + . . .+OQN −OΩ(P1) − . . .−OΩ(PN ).

The divisor of the function φ ◦Ω coincides with the divisor of x−a, whence
there is c ∈ K such that x− a = cφ(ξ, η). Thus

x =
cG(ξ, η) + aJ(ξ)

J(ξ)
.

Suppose that a 6= 0. Let P0 be a point on C with x-coordinate equal to 0.
Then H(P0) < 2H(F ). We have

H(Ω(P0)) < 9N4H(Ξ)H(Θ)H(E)(2H(F ))2N2+5N

and
H(φ(Ω(P0))) < 9N4H(G)H(J)H(Ω(P0))2N2+5N .

Combining the above inequalities, we obtain

H(φ(Ω(P0))) < (9N8H(F ))2875N16
.

Thus
H(c) ≤ H(a)H(φ(Ω(P0))) < (9N8H(F ))2876N16

.

So, we deduce that

H(cG+ aJ) < 2N2H(c)H(G)H(J) < (9N8H(F ))5352N16
.

In the same way, we deduce a similar expression for y. Finally, Lemma 3.7
yields the assertion.

5. Rational points on conics and proof of Theorem 2.3

5.1. Conics. In this section we obtain an upper bound for the minimal
solution of a homogeneous quadratic form in three variables. Using this
result and Theorem 2.1 we prove Theorem 2.3.

Lemma 5.1. Let

G(X,Y, Z) = AX2 +BXY + CY 2 +DXZ + EY Z + FZ2 = 0,

be a (non-zero) quadratic form in X,Y, Z with A,B,C,D,E, F ∈ K. Sup-
pose that the equation G(X,Y, Z) = 0 has a solution in K. Then there exist
x, y, z ∈ K such that G(x, y, z) = 0 and

H(x, y, z) ≤ 45 · 104|DK |15/(2d)H(G)11.

When K = Q, we have

H(x, y, z) < 30H(G).

P r o o f. If a is an algebraic number and a = a(1), . . . , a(s) are its conju-
gates, then we put ‖a‖ = max{|a(1)|, . . . , |a(s)|}. Consider the equation

aX2 + bY 2 + cZ2 = 0,
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where a, b, c are integers in K, and suppose that it has a solution in integers
of K. Then [20] implies that there exists a solution of the above equation in
integers x, y, z of K satisfying

max{‖x/
√
bc‖, ‖y/√ac‖, ‖z/

√
ab‖} < 6|DK |2/d.

So, for every archimedean absolute value | · |v of K we have

max{|x|v, |y|v, |z|v} < 6|DK |2/d max{|a|v, |b|v, |c|v}.
It follows that

H(x, y, z) < 6|DK |2/dH(a, b, c, 1).
Consider now the conic given by the equation

G(X,Y, Z) = αX2 + βXY + γY 2 + δXZ + εY Z + ζZ2 = 0,

where α, β, γ, δ, ε, ζ are integers ofK, and suppose that it has a point rational
over K. We have the following cases:

(i) β = 0 and αγ 6= 0. Putting X = X ′+hZ ′, Y = Y ′+kZ ′ and Z = Z ′

we take

G(X ′, Y ′, Z ′) = αX ′2+γY ′2+(2αh+δ)X ′Z ′+(2γk+ε)Y ′Z ′+G(h, k, 1)Z ′2.

Next, setting h = −δ/(2α), k = −ε/(2γ) and multiplying by 4αγ we obtain
the equation

Γ (X ′, Y ′, Z ′) = 4α2γX ′2 + 4αγ2Y ′2 + (−δ2γ − ε2α+ 4αγζ)Z ′2 = 0.

Putting U = 2αX ′, V = 2γY ′ and W = Z ′, we get the equation

Θ(U, V,W ) = γU2 + αV 2 + (−δ2γ − ε2α+ 4αγζ)W 2 = 0.

Then the equation Θ(U, V,W ) = 0 has a solution in integers of K. It follows
that there are integers u, v, w of K such that Θ(u, v, w) = 0 and

H(u, v, w) < 6|DK |2/dH(α, γ,−δ2γ − ε2α+ 4αγζ, 1).

Thus x = (u − δw)/(2α), y = (v − εw)/(2γ) and z = w is a solution of
G(X,Y, Z) = 0 with

H(x, y, z) < 2H(u, v, w)H(α, γ, δ, ε, 1)2.

Since
H(α, γ,−δ2γ − ε2α+ 4αγζ, 1) ≤ 6H(α, γ, δ, ε, ζ, 1)3,

we deduce that

H(x, y, z) < 72|DK |2/dH(α, γ, δ, ε, ζ, 1)5.

(ii) β = 0 and αγ = 0. If β = α = 0, then the rational solutions of the
equation G(X,Y, Z) = 0 over K are the triples (x, y, z) with y, z ∈ K and
δx = −(γy2 + εyz + ζz2)/z. Taking y = 0 and z = 1, we have x = ζ/δ and
the height of this solution is H(ζ/δ, 0, 1) ≤ H(G). If β = γ = 0, then we
similarly obtain a solution of G(X,Y, Z) = 0 over K with height ≤ H(G).
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(iii) β 6= 0 and α = γ = 0. Putting X = X ′ − Y ′, Y = X ′ + Y ′ and
Z = Z ′ we have the equation

Γ (X ′, Y ′, Z ′) = βX ′2 − βY ′2 + (δ + ε)X ′Z ′ + (ε− δ)Y ′Z ′ + ζZ ′2 = 0.

Furthermore, H(β, δ+ ε, ε− δ, ζ, 1) ≤ 2H(β, δ, ε, ζ, 1). By the case (i), there
are integers u, v, w of K with

H(u, v, w) < 2304|DK |2/dH(α, γ, δ, ε, ζ, 1)5

such that Γ (u, v, w) = 0. Thus, x = u− v, y = u+ v and z = w is a solution
of the equation G(X,Y, Z) = 0 satisfying

H(x, y, z) < 2H(u, v, w) < 4608|DK |2/dH(α, γ, δ, ε, ζ, 1)5.

(iv) β 6= 0 and α 6= 0. The transformation X = X ′ − βY ′/(2α), Y = Y ′

and Z = Z ′ gives the equation

Γ (X ′, Y ′, Z ′) = αX ′2 + (γ + (−β2/(4α)))Y ′2

+δX ′Z ′ + (ε+ (−δβ/(2α)))Y ′Z ′ + ζZ ′2.

Multiplying by 4α and putting U = 2αX ′, V = Y ′ and W = 2Z ′, we get
the equation

Θ(U, V,W ) = U2 + (4αγ − β2)V 2 + δUW + (2αε− δβ)VW + αζW 2 = 0.

We have

H(1, 4αγ − β2, δ, 2αε− δβ, αζ) ≤ 5H(α, β, γ, δ, ε, ζ, 1)2.

By (i), there are integers u, v, w of K such that Θ(u, v, w) = 0 and

H(u, v, w) < 72|DK |2/dH(1, 4αγ − β2, δ, 2αε− δβ, αζ)5.

Hence
H(u, v, w) < 225000|DK |2/dH(α, β, γ, δ, ε, ζ, 1)10.

Thus x = (u− βv)/(2α), y = v and z = w/2 is a solution of G(X,Y, Z) = 0
having

H(x, y, z) ≤ 2H(u, v, w)H(α, β, γ, δ, ε, ζ, 1)

< 450000|DK |2/dH(α, β, γ, δ, ε, ζ, 1)11.

(v) β 6= 0 and γ 6= 0. We obtain the same bound as in (iv).

Next, consider

G(X,Y, Z) = AX2 +BXY + CY 2 +DXZ + EY Z + FZ2 = 0

with A,B,C,D,E, F ∈ K. Let A 6= 0. By the proof of [14, Lemma 1], there
is an integer ∆ of K such that ∆B/A, ∆C/A, ∆D/A, ∆E/A, ∆F/A are
integers of K and

H(1,∆,∆B/A,∆C/A,∆D/A,∆E/A,∆F/A)

< |DK |1/(2d)H(1, B/A,C/A,D/A,E/A,F/A).
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We put

g(X,Y, Z) = αX2 + βXY + γY 2 + δXZ + εY Z + ζZ2 = 0,

where α = ∆, β = ∆B/A, γ = ∆C/A, δ = ∆D/A, ε = ∆E/A and ζ =
∆F/A. Suppose that the equation G(X,Y, Z) = 0 has a solution in K. It
follows that there are x1, x2, x3 ∈ K such that g(x1, x2, x3) = 0 and

H(x1, x2, x3) < 450000|DK |2/dH(α, β, γ, δ, ε, ζ, 1)11

< 450000|DK |15/(2d)H(G)11.

When K = Q, [16, Theorem 1] implies that there are x1, x2, x3 ∈ K satis-
fying

H(x1, x2, x3) < 30H(G).

Remark. In [16], there is a generalization of the result of [20] in the case
of a homogeneous quadratic form in many variables. Using [16, Theorem 1]
we deduce that there exist x, y, z ∈ K such that G(x, y, z) = 0 and

H(x, y, z) ≤ 30|DK |(3+d)/(2d)H(G)d.

Note that Lemma 5.1 gives better estimates for the exponents of H(G) and
|DK |.

Lemma 5.2. Let

G(X,Y ) = αX2 + βXY + γY 2 + δXZ + εY Z + ζZ2 = 0

be a (non-zero) quadratic form in X, Y with α, β, γ, δ, ε, ζ ∈ K. Suppose
that the equation G(X,Y ) = 0 has a solution (x, y) with x, y ∈ K. Then
there are polynomials f1(T ), f2(T ), f3(T ) ∈ K[T ] of degree ≤ 2 with

H(f1),H(f2) ≤ 3H(x, y, 1)H(G), H(f3) ≤ H(G)

such that

X =
f1(T )
f3(T )

, Y =
f2(T )
f3(T )

.

P r o o f. Putting Y = y+ T (X − x) in the equation G(X,Y ) = 0, we get
X = f1(T )/f3(T ) and Y = f2(T )/f3(T ), where

f1(T ) = αxT 2 − (2αy + ε)T − βx− γy,
f2(T ) = (−αy + ε+ γx)T 2 − 2βxT + βy,

f3(T ) = T 2 + γT + β.

We easily obtain

H(f1),H(f2) ≤ 3H(x, y, 1)H(G), H(f3) ≤ H(G).

5.2. Proof of Theorem 2.3. If N = 2, then Lemmas 5.1 and 5.2 give the
result. Thus, suppose N ≥ 3. By Theorem 2.1, there is a conic Γ defined
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over K of equation G(X,Y ) = 0 with

H(G) < (9N5N+4H(F ))13·104N28

and a birational map Φ : C → Γ given by

Φ(X,Y ) =
(
φ1(X,Y )
φ3(X,Y )

,
φ2(X,Y )
φ3(X,Y )

)
,

where φi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3) with deg φi < 3N3 and

H(φi) < (9N5N+4H(F ))980N13
(i = 1, 2, 3).

The inverse map of Φ is given by

Φ−1(X,Y ) =
(
τ1(X,Y )
τ2(X,Y )

,
τ3(X,Y )
τ4(X,Y )

)
,

where τi(X,Y ) ∈ K[X,Y ] (i = 1, 2, 3, 4) with deg τi < 15N3 and

H(τi) <
{

(9N5N+4H(F ))5355N16
(i = 1, 3),

(N + 1)295N12
H(F )118N12

(i = 2, 4).

Suppose that C has a non-singular point P defined over K which is not
at infinity. If φi(P ) = 0 (i = 1, 2, 3), then we choose a uniformizer t ∈ K(C)
for P and we put π = min{ordP (φ1), ordP (φ2), ordP (φ3)}. Hence

Φ(P ) = ((t−πφ1)(P ) : (t−πφ2)(P ) : (t−πφ3)(P ))

is a point of Γ defined overK. If one of the φi(P ) is non-zero, we immediately
see that Φ(P ) is a point of E defined over K. By Lemma 5.1, there exists a
point Q = (u : v : w) of E defined over K with

H(Q) ≤ 450000|DK |15/(2d)H(G)11.

If ordQ(τ1/τ2) < 0 or ordQ(τ3/τ4) < 0, then Φ−1(Q) is a point of C∞. Next,
suppose that ordQ(τ1/τ2) ≥ 0 and ordQ(τ3/τ4) ≥ 0. We denote by τi,h the
homogenization of τi. Hence, Φ−1(Q) = (τ1,h(Q)/τ2,h(Q), τ3,h(Q)/τ4,h(Q))
is a point of C − C∞. We have

H(Φ−1(Q)) ≤ 19N6H(Q)12N3H(τ1)2H(τ2)2H(τ3)2H(τ4)2,

whence

H(Φ−1(Q)) < |DK |90N3/d(9N5N+4H(F ))18·106N31
.

Furthermore, Lemma 5.2 implies that there are polynomials f1(T ), f2(T ),
f3(T ) ∈ K[T ] of degree ≤ 2 with

H(f1),H(f2) ≤ 3H(Q)H(G), H(f3) ≤ H(G),

such that the conic G(X,Y ) = 0 has a parametrization given by

X =
f1(T )
f3(T )

, Y =
f2(T )
f3(T )

.
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Thus, the curve F (X,Y, 1) = 0 has a parametrization given by

X =
g1(T )
g2(T )

, Y =
g3(T )
g4(T )

,

where gi(T ) ∈ K[T ] (i = 1, 2, 3, 4) with deg gi < 30N3 and

H(gi) < |DK |225N3/d(9N5N+4H(F ))3·107N31
.
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