A corollary to a theorem of Laurent–Mignotte–Nesterenko

by

M. MIGNOTTE (Strasbourg)

1. Introduction. For any algebraic number α of degree d on \mathbb{Q} , whose minimal polynomial over \mathbb{Z} is $a \prod_{i=1}^{d} (X - \alpha^{(i)})$ where the roots $\alpha^{(i)}$ are complex numbers, we define the *absolute logarithmic height* of α by

$$\mathbf{h}(\alpha) = \frac{1}{d} \Big(\log |a| + \sum_{i=1}^{d} \log \max(1, |\alpha^{(i)}|) \Big).$$

Let α_1 , α_2 be two non-zero algebraic numbers, and let $\log \alpha_1$ and $\log \alpha_2$ be any values of their logarithms. We consider the linear form

$$\Lambda = b_2 \log \alpha_2 - b_1 \log \alpha_1,$$

where b_1 and b_2 are positive integers. Without loss of generality, we suppose that $|\alpha_1|$ and $|\alpha_2|$ are ≥ 1 . Put

$$D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] / [\mathbb{R}(\alpha_1, \alpha_2) : \mathbb{R}].$$

The main result of [LMN] is:

THEOREM 1. Let K be an integer ≥ 3 , L an integer ≥ 2 , and R_1 , R_2 , S_1 , S_2 integers > 0. Let ϱ be a real number > 1. Put $R = R_1 + R_2 - 1$, $S = S_1 + S_2 - 1$, N = KL,

$$g = \frac{1}{4} - \frac{N}{12RS}, \quad b = \frac{\left((R-1)b_2 + (S-1)b_1\right)}{2} \left(\prod_{k=1}^{K-1} k!\right)^{-2/(K^2 - K)}$$

Let a_1 , a_2 be positive real numbers such that

 $a_i \ge \rho |\log \alpha_i| - \log |\alpha_i| + 2Dh(\alpha_i),$

for i = 1, 2. Suppose that

(1)
$$\operatorname{Card}\{\alpha_1^r \alpha_2^s : 0 \le r < R_1, \ 0 \le s < S_1\} \ge L, \\ \operatorname{Card}\{rb_2 + sb_1 : 0 \le r < R_2, \ 0 \le s < S_2\} > (K-1)L$$

1991 Mathematics Subject Classification: Primary 11J86.

and that

(2)
$$K(L-1)\log \rho - (D+1)\log N - D(K-1)\log b - gL(Ra_1 + Sa_2) > 0.$$

Then

$$|\Lambda'| \ge \varrho^{-KL+1/2} \quad with \quad \Lambda' = \Lambda \max\bigg\{\frac{LSe^{LS|\Lambda|/(2b_2)}}{2b_2}, \, \frac{LRe^{LR|\Lambda|/(2b_1)}}{2b_1}\bigg\}.$$

In the case when the numbers α_1 and α_2 are multiplicatively independent we shall deduce from Theorem 1 the following result, which is a variant of Théorème 2 of [LMN].

THEOREM 1.5. Consider the linear form

$$\Lambda = b_2 \log \alpha_2 - b_1 \log \alpha_1,$$

where b_1 and b_2 are positive integers. Suppose that α_1 and α_2 are multiplicatively independent. Put

$$D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] / [\mathbb{R}(\alpha_1, \alpha_2) : \mathbb{R}].$$

Let a_1 , a_2 , h, k be real positive numbers, and ρ a real number > 1. Put $\lambda = \log \rho$ and suppose that

(3)
$$h \ge D\left(\log\left(\frac{b_1}{a_2} + \frac{b_2}{a_1}\right) + \log\lambda + f(K)\right) + 0.023,$$

(4)
$$a_i \ge \max\{1, \varrho | \log \alpha_i| - \log |\alpha_i| + 2Dh(\alpha_i)\} \quad (i = 1, 2),$$

(5)
$$a_1 a_2 \ge \lambda^2,$$

where

$$f(x) = \log \frac{(1 + \sqrt{x - 1})\sqrt{x}}{x - 1} + \frac{\log x}{6x(x - 1)} + \frac{3}{2} + \log \frac{3}{4} + \frac{\log \frac{x}{x - 1}}{x - 1}$$

and

$$L = 2 + [2h/\lambda], \quad K = 1 + [kLa_1a_2].$$

Then we have the lower bound

 $\log|\Lambda| \ge -\lambda k L^2 a_1 a_2$

$$-\max\{\lambda(L-0.5) + \log((L^{3/2} + L^2\sqrt{k})\max\{a_1, a_2\} + L), D\log 2\},\$$

provided that k satisfies

$$kU - V\sqrt{k} - W \ge 0$$

with

$$U = (L-1)\lambda - h, \quad V = L/3, \quad W = \frac{1}{3} \left(\frac{1}{a_1} + \frac{1}{a_2} + 2\sqrt{\frac{L}{a_1 a_2}} \right).$$

REMARK 1. Put $\Delta = V^2 + 4UW$. The condition on k implies $k \ge k_0$ where

$$\sqrt{k_0} = \frac{V + \sqrt{\Delta}}{2U}, \quad k_0 = \frac{V^2 + \Delta + 2V\sqrt{\Delta}}{4U^2} = \frac{V^2}{2U^2} + \frac{W}{U} + \frac{V}{2U}\sqrt{\frac{V^2}{U^2} + \frac{4W}{U}}$$

with
$$\frac{V}{U} = \frac{1}{3} \cdot \frac{L}{\lambda L - (h + \lambda)} \ge \frac{1}{3} \cdot \frac{\lambda^{-1}2(h + \lambda)}{2(h + \lambda) - (h + \lambda)} = \frac{2}{3\lambda},$$

since $\partial(V/U)/\partial L < 0$ and $L \le 2(1 + h/\lambda)$, and
$$\frac{1}{2}\left(\frac{1}{2} - \frac{1}{2} - \sqrt{\frac{1}{2}}\right) = \frac{2}{3\lambda}$$

$$W = \frac{1}{3} \left(\frac{1}{a_1} + \frac{1}{a_2} + 2\sqrt{\frac{L}{a_1 a_2}} \right) \ge \frac{2}{3\sqrt{a_1 a_2}} (1 + \sqrt{L})$$

so that

$$\frac{W}{U} \geq \frac{2}{3\sqrt{a_1a_2}} \cdot \frac{1+\sqrt{L}}{\lambda L - (h+\lambda)} \geq \frac{4}{3\lambda\sqrt{a_1a_2}} \cdot \frac{1+\sqrt{L}}{L} \geq \frac{4}{3\lambda^2} \cdot \frac{1+\sqrt{L}}{L},$$

since $a_1a_2 \ge \lambda^2$. Hence $k \ge 4/(9\lambda^2)$ and

$$kLa_1a_2 \ge kL\lambda^2 \ge \frac{2L}{9} + \frac{4}{3}(1+\sqrt{L}) + \frac{L}{3}\sqrt{\frac{4}{9}} + \frac{16(1+\sqrt{L})}{3L} = \psi(L)$$
 (say).

Clearly ψ increases with L and computation gives $\psi(2) > 6$.

2. Proof of Theorem 1.5. We suppose that α_1 and α_2 are multiplicatively independent, and we apply Theorem 1 with a suitable choice of the parameters. The proof follows the proof of Théorème 2 of [LMN]. For the convenience of the reader we keep the numbering of formulas of [LMN], except that formula (5.i) in [LMN] is here formula (2.i); moreover, when there is some change the new formula is denoted by (2.i)'.

Put

(2.1)
$$L = 2 + [2h/\lambda], \qquad S_1 = 1 + [\sqrt{La_1/a_2}], \\ K = 1 + [kLa_1a_2], \qquad R_2 = 1 + [\sqrt{(K-1)La_2/a_1}], \\ R_1 = 1 + [\sqrt{La_2/a_1}], \qquad S_2 = 1 + [\sqrt{(K-1)La_1/a_2}].$$

Recall that

$$a_i \ge \rho |\log \alpha_i| - \log |\alpha_i| + 2Dh(\alpha_i)$$
 for $i = 1, 2$.

By the Liouville inequality,

$$\log |\Lambda| \ge -D \log 2 - Db_1 h(\alpha_1) - Db_2 h(\alpha_2) \\\ge -D \log 2 - \frac{1}{2}(b_1 a_1 + b_2 a_2) = -D \log 2 - \frac{1}{2}b'a_1 a_2,$$

where

$$b' = \frac{b_1}{a_2} + \frac{b_2}{a_1}.$$

We consider two cases:

$$b' \leq 2\lambda k L^2$$
 or $b' > 2\lambda k L^2$

In the first case, Liouville's inequality implies

 $\log |A| \ge -D \log 2 - \lambda k L^2 a_1 a_2$

and Theorem 1.5 holds.

Suppose now that $b' > 2\lambda kL^2$. Then $\max\{b_1/a_2, b_2/a_1\} > \lambda kL^2$, hence

$$b_1 > \lambda \sqrt{kL} \cdot \sqrt{(K-1)La_2/a_1}$$
 or $b_2 > \lambda \sqrt{kL} \cdot \sqrt{(K-1)La_1/a_2}$.

Since $k \ge 4/(9\lambda^2)$ and $L \ge 2$, we have $\lambda\sqrt{k}L > 1$, which proves that

Card{
$$rb_2 + sb_1 : 0 \le r < R_2, 0 \le s < S_2$$
} = R_2S_2

and, by the choice of R_2 and S_2 , this is > (K-1)L. Moreover, since α_1 and α_2 are multiplicatively independent we have

Card{
$$\alpha_1^r \alpha_2^s : 0 \le r < R_1, 0 \le s < S_1$$
} = $R_1 S_1 \ge L$.

This ends the verification of condition (1) of Theorem 1.

REMARK 2. The condition $b' > 2k\lambda L^2$ implies

$$\lambda L/D \ge 2h/D \ge 2(\log(2k\lambda L^2) + \log\lambda + f(K))$$
$$\ge 2\left(\log(2L\psi(L)) + \frac{3}{2} + \log\frac{3}{4}\right) > 8.812,$$

by Remark 1 and $L \geq 2$.

Suppose that (2) holds. Then Theorem 1 implies

$$\log |\Lambda'| \ge -KL\lambda + \lambda/2,$$

where

$$\Lambda' = \Lambda \max\left\{\frac{LSe^{LS|\Lambda|/(2b_2)}}{2b_2}, \frac{LRe^{LR|\Lambda|/(2b_1)}}{2b_1}\right\}$$

Notice that

$$R = R_1 + R_2 - 1 \le \sqrt{La_2/a_1} + \sqrt{(K-1)La_2/a_1} + 1$$

$$\le 1 + \sqrt{La_2} + \sqrt{k}La_2$$

$$\le 1 + (1/\sqrt{L} + \sqrt{k})La_2 \le 1 + (1/\sqrt{L} + \sqrt{k})LA,$$

where $A = \max\{a_1, a_2\}$ and, in the same way,

$$S = S_1 + S_2 - 1 \le 1 + (1/\sqrt{L} + \sqrt{k})LA$$

This shows that

$$\max\{LR, LS\} \le L + (1/\sqrt{L} + \sqrt{k})L^2A$$

As we may, suppose that $\log |\Lambda| \leq -\lambda k L^2 a_1 a_2 - 4$. Then

$$\max\left\{\frac{LR|\Lambda|}{2b_2}, \frac{LS|\Lambda|}{2b_1}\right\} \le \frac{(1.21 + \sqrt{k})L^2 a_1 a_2}{2} e^{-\lambda k L^2 a_1 a_2 - 4}$$
$$\le \left(0.61 + \frac{1}{3\lambda}\right) L^2 a_1 a_2 e^{-4L^2 a_1 a_2/(9\lambda) - 4},$$

since $k \ge 4/(9\lambda^2)$ and $\lambda k L^2 a_1 a_2 > 1$. The last term is an increasing function of λ , thus for $\lambda \le 1$,

$$\max\left\{\frac{LR|\Lambda|}{2b_2}, \frac{LS|\Lambda|}{2b_1}\right\} \le \left(0.61 + \frac{1}{3}\right)L^2 a_1 a_2 e^{-4L^2 a_1 a_2/9 - 4} < 0.1$$

since $L^2 a_1 a_2 \ge 4$. For $\lambda \ge 1$,

$$\max\left\{\frac{LR|\Lambda|}{2b_2}, \frac{LS|\Lambda|}{2b_1}\right\} \le \left(0.61 + \frac{1}{3}\right)L^2 a_1 a_2 e^{-4L^2 a_1 a_2/(9\lambda) - 4}$$

and, since $a_1 a_2 \ge \lambda^2$, we get

$$\max\left\{\frac{LR|\Lambda|}{2b_2}, \frac{LS|\Lambda|}{2b_1}\right\} \le \left(0.61 + \frac{1}{3}\right)L^2\lambda^2 e^{-4L^2\lambda/9 - 4} < L^2 e^{-4L^2/9 - 4} < 0.1.$$

In all cases,

$$|\Lambda'| \le |\Lambda| (L^2(1/\sqrt{L} + \sqrt{k}) \max\{a_1, a_2\} + L)$$

which implies

 $\log |\Lambda| \ge -\lambda k L^2 a_1 a_2 - \lambda (L - 0.5) - \log((L^{3/2} + L^2 \sqrt{k}) \max\{a_1, a_2\} + L)$ and Theorem 1.5 follows.

Now we have to verify that condition (2) is satisfied: we have to prove that

 $\Phi_0 = K(L-1)\log \rho - (D+1)\log N - D(K-1)\log b - gL(Ra_1 + Sa_2) > 0,$ when $b' > 2\lambda kL^2$.

We replace this condition by the two conditions $\Phi > 0$, $\Theta > 0$, where $\Phi_0 \ge \Phi + \Theta$. The term Φ is the main one, Θ is a sum of residual terms. As indicated in [LMN], the condition $\Phi > 0$ leads to the choice of the parameters (2.1), whereas $\Theta > 0$ is a secondary condition, which leads to assuming some technical hypotheses on h and a_1 , a_2 . Here, we follow the advice given in [LMN]: for some applications one can modify these technical hypotheses.

As in [LMN] (Lemme 8) we get

(2.17)
$$\log b \leq \log \left(\frac{b_1}{a_2} + \frac{b_2}{a_1}\right) + \log \lambda - \frac{\log(2\pi K/\sqrt{e})}{K-1} + f(K)$$

 $\leq \frac{h}{D} - \frac{0.023}{D} - \frac{\log(2\pi K/\sqrt{e})}{K-1},$

which follows from the condition

$$h \ge D(\log b' + \log \lambda + f(K)) + 0.023.$$

Lemme 9 of [LMN] gives

$$(2.18) \quad gL(Ra_1 + Sa_2) \le \frac{1}{3}L^{3/2}\sqrt{(K-1)a_1a_2} \\ + \frac{2}{3}L^{3/2}\sqrt{a_1a_2} + \frac{1}{3}L(a_1 + a_2) - \frac{L^{3/2}\sqrt{a_1a_2}}{6(1 + \sqrt{K-1})}.$$

Put

(2.21)
$$\Phi = K(L-1)\lambda - Kh - \frac{L^{3/2}\sqrt{(K-1)a_1a_2}}{3} - \frac{2L^{3/2}\sqrt{a_1a_2}}{3} - \frac{L(a_1+a_2)}{3}$$

and

(2.22)
$$\Theta = 0.023(K-1) + h + \frac{L^{3/2}\sqrt{a_1a_2}}{6(1+\sqrt{K-1})} + D\log\left(\frac{2\pi K}{\sqrt{e}}\right) - (D+1)\log(KL).$$

By (2.17) and (2.18) we see that $\Phi_0 \ge \Phi + \Theta$, where $kLa_1a_2 < K \le 1 + kLa_1a_2$, hence

$$\Phi > kLa_1a_2((L-1)\lambda - h) - \frac{L^2a_1a_2\sqrt{k}}{3} - \frac{2L^{3/2}\sqrt{a_1a_2}}{3} - \frac{L(a_1 + a_2)}{3},$$

which implies

$$\frac{\Phi}{La_1a_2} > kU - V\sqrt{k} - W.$$

This proves that $\Phi > 0$ provided that $kU - V\sqrt{k} - W \ge 0$.

To prove that $\Theta \ge 0$, rewrite (2.22) as $\Theta = \Theta_0(D-1) + \Theta_1$, where

$$\Theta_0 = \log(\lambda b') + f(K) - \log L + \log\left(\frac{2\pi}{\sqrt{e}}\right),$$

$$\Theta_1 = 0.023K - \log K - 2\log L + \log\left(\frac{2\pi}{\sqrt{e}}\right)$$

$$+ \log(\lambda b') + f(K) + \frac{L^{3/2}\sqrt{a_1a_2}}{6(1+\sqrt{K-1})}.$$

We conclude by proving that Θ_0 and Θ_1 are both positive.

Since $b' > 2k\lambda L^2$, by Remark 1 we have $\log(\lambda b') > 2L\psi(L)$, which shows that Θ_0 is positive.

106

Notice that, by the proof of Remark 2,

$$L^{3/2}\sqrt{a_1a_2} = L\sqrt{La_1a_2} \ge L\sqrt{1+2ha_1a_2/\lambda} \ge L\sqrt{1+2h}$$
$$> 2\sqrt{1+2(\log(2\psi(2)) + f(K) + 0.023)} = \phi(K) \quad (say)$$

Thus,

$$\Theta_1 \ge 0.023K - \log K + \log\left(\frac{16\pi}{9\sqrt{e}}\right) + f(K) + \frac{\phi(K)}{3(1+\sqrt{K-1})}$$

and an elementary numerical verification shows that Θ_1 is positive for $K \ge 4$, which holds by Remark 1.

3. A corollary of Theorem 1.5. Now we can apply Theorem 1.5 to get a result closer to Théorème 2 of [LMN].

THEOREM 2. Consider the linear form

$$\Lambda = b_2 \log \alpha_2 - b_1 \log \alpha_1,$$

where b_1 and b_2 are positive integers. Suppose that α_1 and α_2 are multiplicatively independent. Put

$$D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] / [\mathbb{R}(\alpha_1, \alpha_2) : \mathbb{R}].$$

Let a_1, a_2, h, k be real positive numbers, and ρ a real number > 1. Put $\lambda = \log \rho, \chi = h/\lambda$ and suppose that $\chi \ge \chi_0$ for some number $\chi_0 \ge 0$ and that

(3)'
$$h \ge D\left(\log\left(\frac{b_1}{a_2} + \frac{b_2}{a_1}\right) + \log\lambda + f(\lceil K_0 \rceil)\right) + 0.023,$$
(4)
$$h \ge \max\{1, \alpha\} = \log|\alpha| + 2Dh(\alpha|) = (i - 1, 2)$$

(4)
$$a_i \ge \max\{1, \varrho | \log \alpha_i | - \log |\alpha_i| + 2Dh(\alpha_i)\} \quad (i = 1, 2),$$

(5)
$$a_1 a_2 \ge \lambda^2$$
,

where

$$f(x) = \log \frac{(1 + \sqrt{x - 1})\sqrt{x}}{x - 1} + \frac{\log x}{6x(x - 1)} + \frac{3}{2} + \log \frac{3}{4} + \frac{\log \frac{x}{x - 1}}{x - 1}$$

and

$$K_0 = \frac{1}{\lambda} \left(\frac{\sqrt{2+2\chi_0}}{3} + \sqrt{\frac{2(1+\chi_0)}{9} + \frac{2\lambda}{3} \left(\frac{1}{a_1} + \frac{1}{a_2}\right) + \frac{4\lambda\sqrt{2+\chi_0}}{3\sqrt{a_1a_2}}} \right)^2 a_1 a_2.$$

Put

$$v = 4\chi + 4 + 1/\chi, \quad m = \max\{2^{5/2}(1+\chi)^{3/2}, (1+2\chi)^{5/2}/\chi\}$$

Then we have the lower bound

$$\begin{split} \log |A| &\geq -\frac{1}{\lambda} \left(\frac{v}{6} + \frac{1}{2} \sqrt{\frac{v^2}{9} + \frac{4\lambda v}{3} \left(\frac{1}{a_1} + \frac{1}{a_2} \right) + \frac{8\lambda m}{3\sqrt{a_1 a_2}}} \right)^2 a_1 a_2 \\ &- \max\{\lambda (1.5 + 2\chi) \\ &+ \log(((2 + 2\chi)^{3/2} + (2 + 2\chi)^2 \sqrt{k^*})A + (2 + 2\chi)), D \log 2\}, \end{split}$$

where

$$A = \max\{a_1, a_2\} \quad and \quad k^* = \frac{1}{\lambda^2} \left(\frac{1+2\chi}{3\chi}\right)^2 + \frac{1}{\lambda} \left(\frac{2}{3\chi} + \frac{2}{3} \cdot \frac{(1+2\chi)^{1/2}}{\chi}\right).$$

4. Proof of Theorem 2. We apply Theorem 1.5 with $k = k_0$.

First we estimate certain quantities of the form $k_0 L^{\alpha}$. The formula

$$\frac{\partial}{\partial x} \frac{x^{\alpha}}{\lambda x - (\lambda + h)} = \frac{x^{\alpha - 1}}{(\lambda x - (\lambda + h))^2} ((\alpha - 1)\lambda x - \alpha(\lambda + h))$$
$$= \frac{\lambda x^{\alpha - 1}}{(\lambda x - (\lambda + h))^2} ((\alpha - 1)x - \alpha(1 + \chi))$$

shows that the functions $L \mapsto L^{\alpha}/U$ are non-increasing in the interval $I = [1 + 2\chi, 2 + 2\chi]$ for $\alpha \leq 2$.

Hence,

$$\frac{L^2}{U} \le \frac{(1+2\chi)^2}{\lambda\chi} = \frac{4\chi + 4 + 1/\chi}{\lambda} = \frac{v}{\lambda}.$$

Moreover, the previous formula also shows that the function $L \mapsto L^{\alpha}/U$ is unimodular for all α , which implies

$$\frac{L^{5/2}}{U} \le \frac{1}{\lambda} \max\left\{\frac{(2+2\chi)^{5/2}}{1+\chi}, \frac{(1+2\chi)^{5/2}}{\chi}\right\}$$
$$= \frac{1}{\lambda} \max\{2^{5/2}(1+\chi)^{3/2}, (1+2\chi)^{5/2}/\chi\} = \frac{m}{\lambda}.$$

These remarks imply

$$\lambda k_0 L^2 a_1 a_2 \le \frac{1}{\lambda} \left(\frac{v}{6} + \frac{1}{2} \sqrt{\frac{v^2}{9} + \frac{4v\lambda}{3}} \left(\frac{1}{a_1} + \frac{1}{a_2} \right) + \frac{8\lambda m}{3\sqrt{a_1 a_2}} \right)^2 a_1 a_2.$$

Besides,

$$k_0 \le \frac{V^2}{U^2} + 2\frac{W}{U}$$

thus

$$k_{0} \leq \frac{1}{\lambda^{2}} \left(\frac{1+2\chi}{3\chi}\right)^{2} + \frac{1}{\lambda} \left(\frac{1}{3\chi} \left(\frac{1}{a_{1}} + \frac{1}{a_{2}}\right) + \frac{2}{3\sqrt{a_{1}a_{2}}} \cdot \frac{(1+2\chi)^{1/2}}{\chi}\right)$$
$$\leq \frac{1}{\lambda^{2}} \left(\frac{1+2\chi}{3\chi}\right)^{2} + \frac{1}{\lambda} \left(\frac{2}{3\chi} + \frac{2}{3} \cdot \frac{(1+2\chi)^{1/2}}{\chi}\right) = k^{*}.$$

Since the function f(x) is decreasing for x > 1, the last step is to verify that $K \ge K_0$ (with the notations of Theorem 1.5). We follow the proof of Remark 1. We have

$$\sqrt{k_0 L} = \frac{V\sqrt{L}}{2U} + \sqrt{\frac{V^2 L}{4U^2} + \frac{WL}{U}}$$

with

$$\frac{V\sqrt{L}}{U} = \frac{1}{3} \cdot \frac{L^{3/2}}{\lambda(L - (1 + \chi))} \ge \frac{2\sqrt{2 + 2\chi}}{3\lambda}$$

and

$$\frac{WL}{U} \ge \frac{2}{3\lambda} \left(\frac{1}{a_1} + \frac{1}{a_2} \right) + \frac{4\sqrt{2+2\chi}}{3\lambda\sqrt{a_1a_2}}$$

so that

$$\sqrt{k_0 L} \ge \frac{\sqrt{2+2\chi}}{3\lambda} + \sqrt{\frac{2(1+\chi)}{9\lambda^2} + \frac{2}{3\lambda} \left(\frac{1}{a_1} + \frac{1}{a_2}\right) + \frac{4\sqrt{2+2\chi}}{3\lambda\sqrt{a_1a_2}}}$$

and since $K = 1 + [\lambda k_0 L a_1 a_2]$, we get $K \ge \lceil K_0 \rceil$. [One may verify that $K_0 > 4$.]

REMARK 3. The number m satisfies

$$m = \lambda \max_{L \in I} \left\{ \frac{L^{5/2}}{U} \right\} \le \lambda \max_{L \in I} \left\{ \frac{L^2}{U} \right\} \cdot \max_{L \in I} \sqrt{L} \le \lambda (4\chi + 4 + 1/\chi) \sqrt{2 + 2\chi}$$

It is possible to simplify some estimates in Theorem 2 without serious loss. Consider first the term k^* given by

$$k^* = \frac{1}{\lambda^2} \left(\frac{1+2\chi}{3\chi} \right)^2 + \frac{1}{\lambda} \left(\frac{2}{3\chi} + \frac{2}{3} \cdot \frac{(1+2\chi)^{1/2}}{\chi} \right)$$
$$= \frac{1}{9} \left(\frac{2}{\lambda} + \frac{1}{h} \right)^2 + \frac{2}{3h} (1 + \sqrt{1+2h/\lambda}).$$

It is clear that $\partial k^* / \partial \lambda < 0$. Also, $\partial k^* / \partial h < 0$. Indeed,

$$\frac{\partial k^*}{\partial h} = -\frac{2}{3h} \left(\frac{2}{\lambda} + \frac{1}{3h}\right) - \frac{2}{3h^2} (1 + \sqrt{1 + 2h/\lambda}) + \frac{2}{3h} \cdot \frac{1/\lambda}{1 + \sqrt{1 + 2h/\lambda}}$$

M. Mignotte

which is

$$<\frac{2}{3h}\left(-\frac{\sqrt{1+2h/\lambda}}{h}+\frac{1}{\lambda\sqrt{1+2h/\lambda}}\right)=\frac{2}{3h}\cdot\frac{-\lambda(1+2h/\lambda)+h}{\lambda h\sqrt{1+2h/\lambda}}<0.$$

Thus, for $\lambda \geq \lambda_0$ and $h \geq h_0$, we have

$$k^* \le \frac{1}{9} \left(\frac{2}{\lambda_0} + \frac{1}{h_0} \right)^2 + \frac{2}{3h_0} (1 + \sqrt{1 + 2h_0/\lambda_0}).$$

In particular, when $\lambda \ge \log 4$ and $h \ge 3.5$, we get $k^* \le 1$.

Now we consider the term $T := \log((x^2 + x^{3/2})A + x)/\log(Ax^2)$. Elementary computation shows that $\partial T/\partial A < 0$ and $\partial T/\partial x < 0$. When $x \ge 4$ and $A \ge 4$ we get $T \le 1.11$.

Concerning Theorem 2, when $\chi \ge 1$, $\varrho \ge 4$, $h \ge 3.5$ and $A \ge 4$, these remarks imply the simplified estimate

$$\log |\Lambda| \ge -(C_0 + c_1 + c_2)(\lambda + h)^2 a_1 a_2$$

where

$$C_0 = \frac{1}{\lambda^3} \left(\frac{v/3 + \sqrt{\frac{v^2}{9} + \frac{4\lambda v}{3} \left(\frac{1}{a_1} + \frac{1}{a_2}\right) + \frac{8\lambda m}{3\sqrt{a_1 a_2}}}}{2(1+\chi)} \right)^2,$$

and

$$c_1 = \frac{\lambda(1.5\lambda + 2h)}{(\lambda + h)^2 a_1 a_2}, \quad c_2 = \frac{1.11\lambda \log(A(2\lambda + 2h)^2)}{(\lambda + h)^2 a_1 a_2}.$$

When $a_1a_2 \ge 20$, $\rho \ge 4$ and $h \ge 3.5$, one can prove that $c_2 \le 0.024$. The formula

$$c_1 = \frac{1.5 + 2\chi}{(1+\chi)^2 a_1 a_2}$$

shows that c_1 is a decreasing function of χ and, for example, for $\chi \geq 1.5$ and $a_1a_2 \geq 20$, we have $c_1 \leq 0.036$. To summarize, $c_1 + c_2 < 0.06$ when $a_1a_2 \geq 20, \ \rho \geq 4, \ h \geq 3.5$ and $\chi \geq 1.5$. Also notice that for $\chi \geq 1$, one has $m = 2^{5/2}(1+\chi)^{3/2}$.

This leads to the following result.

COROLLARY. Consider the linear form

$$\Lambda = b_2 \log \alpha_2 - b_1 \log \alpha_1,$$

where b_1 and b_2 are positive integers. Suppose that α_1 and α_2 are multiplicatively independent. Define D, a_1 , a_2 , ρ , λ , h, χ as in Theorem 2. Let a_1 , a_2 , h, k be real positive numbers, and ρ a real number > 1. Suppose that $\rho \ge 4$ and that

(3)"
$$h \ge \max\left\{3.5, 1.5\lambda, D\left(\log\left(\frac{b_1}{a_2} + \frac{b_2}{a_1}\right) + \log\lambda + 1.377\right) + 0.023\right\},\$$

(4)
$$a_i \ge \max\{1, \varrho |\log \alpha_i| - \log |\alpha_i| + 2Dh(\alpha_i)\} \quad (i = 1, 2),$$

110

$$(5)''$$
 $a_1 a_2 \ge \max\{20, 4\lambda^2\}.$

Let $v = 4\chi + 4 + 1/\chi$. Then we have the lower bound

$$\log |\Lambda| \ge -(C_0 + 0.06)(\lambda + h)^2 a_1 a_2,$$

where

$$C_0 = \frac{1}{\lambda^3} \left\{ \left(2 + \frac{1}{2\chi(\chi+1)} \right) \left(\frac{1}{3} + \sqrt{\frac{1}{9} + \frac{4\lambda}{3v}} \left(\frac{1}{a_1} + \frac{1}{a_2} \right) + \frac{32\sqrt{2}(1+\chi)^{3/2}}{3v^2\sqrt{a_1a_2}} \right) \right\}^2.$$

We apply Theorem 2. After the above preliminaries, we have just to check that the present hypotheses imply $K_0 > 38$ and use the fact that f(39) < 1.377.

REMARK 4. To get a comparison with the estimates of [LMN], we can consider the Corollaire 2 of [LMN]. Thus we suppose also that α_1 and α_2 are both real. Then we get

 $\log |\Lambda|$

$$\geq -22D^4 \left(\max\left\{ \log\left(\frac{b_1}{D\log A_2} + \frac{b_2}{D\log A_1}\right) + 0.06, \frac{21}{D} \right\} \right)^2 \log A_1 \log A_2,$$

where A_1 and A_2 are real numbers > 1 such that

$$\log A_i \ge \max\left\{\mathbf{h}(\alpha_i), \frac{|\log \alpha_i|}{D}, \frac{1}{D}\right\}$$

This result is obtained with the choice $\rho = 5.58$ in the above Corollary (except that we use the original definitions of c_1 and c_2 , not the estimate $c_1 + c_2 < 0.06$). In [LMN], with (very) slightly stronger hypotheses, the constant obtained was 24.34.

References

[LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.

Département de Mathématique et Informatique Université Louis Pasteur 7, rue René Descartes 67084 Strasbourg Cedex, France E-mail: mignotte@math.u-strasbg.fr

> Received on 7.12.1996 and in revised form on 10.3.1998

(3101)