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A corollary to a theorem of Laurent–Mignotte–Nesterenko

by

M. Mignotte (Strasbourg)

1. Introduction. For any algebraic number α of degree d on Q, whose
minimal polynomial over Z is a

∏d
i=1(X − α(i)) where the roots α(i) are

complex numbers, we define the absolute logarithmic height of α by

h(α) =
1
d

(
log |a|+

d∑

i=1

log max(1, |α(i)|)
)
.

Let α1, α2 be two non-zero algebraic numbers, and let logα1 and logα2

be any values of their logarithms. We consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Without loss of generality, we suppose
that |α1| and |α2| are ≥ 1. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

The main result of [LMN] is:

Theorem 1. Let K be an integer ≥ 3, L an integer ≥ 2, and R1, R2,
S1, S2 integers > 0. Let % be a real number > 1. Put R = R1 + R2 − 1,
S = S1 + S2 − 1, N = KL,

g =
1
4
− N

12RS
, b =

((R− 1)b2 + (S − 1)b1)
2

(K−1∏

k=1

k!
)−2/(K2−K)

.

Let a1, a2 be positive real numbers such that

ai ≥ %|logαi| − log |αi|+ 2Dh(αi),

for i = 1, 2. Suppose that

(1)
Card{αr1αs2 : 0 ≤ r < R1, 0 ≤ s < S1} ≥ L,
Card{rb2 + sb1 : 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L
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and that

(2) K(L− 1) log %− (D+ 1) logN −D(K − 1) log b− gL (Ra1 + Sa2) > 0.

Then

|Λ′| ≥ %−KL+1/2 with Λ′ = Λmax
{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
.

In the case when the numbers α1 and α2 are multiplicatively independent
we shall deduce from Theorem 1 the following result, which is a variant of
Théorème 2 of [LMN].

Theorem 1.5. Consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Suppose that α1 and α2 are multiplica-
tively independent. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Let a1, a2, h, k be real positive numbers, and % a real number > 1. Put
λ = log % and suppose that

h ≥ D
(

log
(
b1
a2

+
b2
a1

)
+ log λ+ f(K)

)
+ 0.023,(3)

ai ≥ max{1, %|logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),(4)

a1a2 ≥ λ2,(5)

where

f(x) = log
(1 +

√
x− 1)

√
x

x− 1
+

log x
6x(x− 1)

+
3
2

+ log
3
4

+
log x

x−1

x− 1

and

L = 2 + [2h/λ], K = 1 + [kLa1a2].

Then we have the lower bound

log |Λ| ≥ − λkL2a1a2

−max{λ(L− 0.5)+log((L3/2 +L2
√
k) max{a1, a2}+L), D log 2},

provided that k satisfies

kU − V
√
k −W ≥ 0

with

U = (L− 1)λ− h, V = L/3, W =
1
3

(
1
a1

+
1
a2

+ 2

√
L

a1a2

)
.
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Remark 1. Put ∆ = V 2 + 4UW . The condition on k implies k ≥ k0

where
√
k0 =

V +
√
∆

2U
, k0 =

V 2 +∆+ 2V
√
∆

4U2 =
V 2

2U2 +
W

U
+
V

2U

√
V 2

U2 +
4W
U

with
V

U
=

1
3
· L

λL− (h+ λ)
≥ 1

3
· λ−12(h+ λ)

2(h+ λ)− (h+ λ)
=

2
3λ
,

since ∂(V/U)/∂L < 0 and L ≤ 2(1 + h/λ), and

W =
1
3

(
1
a1

+
1
a2

+ 2

√
L

a1a2

)
≥ 2

3
√
a1a2

(1 +
√
L),

so that
W

U
≥ 2

3
√
a1a2

· 1 +
√
L

λL− (h+ λ)
≥ 4

3λ
√
a1a2

· 1 +
√
L

L
≥ 4

3λ2 ·
1 +
√
L

L
,

since a1a2 ≥ λ2. Hence k ≥ 4/(9λ2) and

kLa1a2 ≥ kLλ2 ≥ 2L
9

+
4
3

(1 +
√
L) +

L

3

√
4
9

+
16(1 +

√
L)

3L
= ψ(L) (say).

Clearly ψ increases with L and computation gives ψ(2) > 6.

2. Proof of Theorem 1.5. We suppose that α1 and α2 are multiplica-
tively independent, and we apply Theorem 1 with a suitable choice of the
parameters. The proof follows the proof of Théorème 2 of [LMN]. For the
convenience of the reader we keep the numbering of formulas of [LMN], ex-
cept that formula (5.i) in [LMN] is here formula (2.i); moreover, when there
is some change the new formula is denoted by (2.i)′.

Put

(2.1)

L = 2 + [2h/λ],

K = 1 + [kLa1a2],

R1 = 1 + [
√
La2/a1],

S1 = 1 + [
√
La1/a2],

R2 = 1 + [
√

(K − 1)La2/a1],

S2 = 1 + [
√

(K − 1)La1/a2].

Recall that

ai ≥ %|logαi| − log |αi|+ 2Dh(αi) for i = 1, 2.

By the Liouville inequality,

log |Λ| ≥ −D log 2−Db1h(α1)−Db2h(α2)

≥ −D log 2− 1
2 (b1a1 + b2a2) = −D log 2− 1

2b
′a1a2,

where

b′ =
b1
a2

+
b2
a1
.
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We consider two cases:

b′ ≤ 2λkL2 or b′ > 2λkL2.

In the first case, Liouville’s inequality implies

log |Λ| ≥ −D log 2− λkL2a1a2

and Theorem 1.5 holds.
Suppose now that b′ > 2λkL2. Then max{b1/a2, b2/a1} > λkL2, hence

b1 > λ
√
kL ·

√
(K − 1)La2/a1 or b2 > λ

√
kL ·

√
(K − 1)La1/a2.

Since k ≥ 4/(9λ2) and L ≥ 2, we have λ
√
kL > 1, which proves that

Card{rb2 + sb1 : 0 ≤ r < R2, 0 ≤ s < S2} = R2S2

and, by the choice of R2 and S2, this is > (K−1)L. Moreover, since α1 and
α2 are multiplicatively independent we have

Card{αr1αs2 : 0 ≤ r < R1, 0 ≤ s < S1} = R1S1 ≥ L.
This ends the verification of condition (1) of Theorem 1.

Remark 2. The condition b′ > 2kλL2 implies

λL/D ≥ 2h/D ≥ 2(log(2kλL2) + log λ+ f(K))

≥ 2
(

log(2Lψ(L)) + 3
2 + log 3

4

)
> 8.812,

by Remark 1 and L ≥ 2.

Suppose that (2) holds. Then Theorem 1 implies

log |Λ′| ≥ −KLλ+ λ/2,

where

Λ′ = Λmax
{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
.

Notice that

R = R1 +R2 − 1 ≤
√
La2/a1 +

√
(K − 1)La2/a1 + 1

≤ 1 +
√
La2 +

√
kLa2

≤ 1 + (1/
√
L+
√
k)La2 ≤ 1 + (1/

√
L+
√
k)LA,

where A = max{a1, a2} and, in the same way,

S = S1 + S2 − 1 ≤ 1 + (1/
√
L+
√
k)LA.

This shows that

max{LR,LS} ≤ L+ (1/
√
L+
√
k)L2A.
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As we may, suppose that log |Λ| ≤ −λkL2a1a2 − 4. Then

max
{
LR|Λ|

2b2
,
LS|Λ|

2b1

}
≤ (1.21 +

√
k)L2a1a2

2
e−λkL

2a1a2−4

≤
(

0.61 +
1

3λ

)
L2a1a2e

−4L2a1a2/(9λ)−4,

since k ≥ 4/(9λ2) and λkL2a1a2 > 1. The last term is an increasing function
of λ, thus for λ ≤ 1,

max
{
LR|Λ|

2b2
,
LS|Λ|

2b1

}
≤
(

0.61 +
1
3

)
L2a1a2e

−4L2a1a2/9−4 < 0.1

since L2a1a2 ≥ 4. For λ ≥ 1,

max
{
LR|Λ|

2b2
,
LS|Λ|

2b1

}
≤
(

0.61 +
1
3

)
L2a1a2e

−4L2a1a2/(9λ)−4

and, since a1a2 ≥ λ2, we get

max
{
LR|Λ|

2b2
,
LS|Λ|

2b1

}
≤
(

0.61 +
1
3

)
L2λ2e−4L2λ/9−4 < L2e−4L2/9−4 < 0.1.

In all cases,

|Λ′| ≤ |Λ|(L2(1/
√
L+
√
k) max{a1, a2}+ L),

which implies

log |Λ| ≥ −λkL2a1a2 − λ(L− 0.5)− log((L3/2 + L2
√
k) max{a1, a2}+ L)

and Theorem 1.5 follows.
Now we have to verify that condition (2) is satisfied: we have to prove

that

Φ0 = K(L− 1) log %− (D+ 1) logN −D(K − 1) log b− gL (Ra1 +Sa2) > 0,

when b′ > 2λkL2.
We replace this condition by the two conditions Φ > 0, Θ > 0, where

Φ0 ≥ Φ+Θ. The term Φ is the main one, Θ is a sum of residual terms. As
indicated in [LMN], the condition Φ > 0 leads to the choice of the parameters
(2.1), whereas Θ > 0 is a secondary condition, which leads to assuming some
technical hypotheses on h and a1, a2. Here, we follow the advice given in
[LMN]: for some applications one can modify these technical hypotheses.

As in [LMN] (Lemme 8) we get

log b ≤ log
(
b1
a2

+
b2
a1

)
+ log λ− log(2πK/

√
e)

K − 1
+ f(K)(2.17)

≤ h

D
− 0.023

D
− log(2πK/

√
e)

K − 1
,
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which follows from the condition

h ≥ D(log b′ + log λ+ f(K)) + 0.023.

Lemme 9 of [LMN] gives

gL(Ra1 + Sa2) ≤ 1
3
L3/2

√
(K − 1)a1a2(2.18)

+
2
3
L3/2√a1a2 +

1
3
L(a1 + a2)− L3/2√a1a2

6(1 +
√
K − 1)

.

Put

Φ = K(L− 1)λ−Kh− L3/2
√

(K − 1)a1a2

3
(2.21)

− 2L3/2√a1a2

3
− L(a1 + a2)

3
and

Θ = 0.023(K − 1) + h+
L3/2√a1a2

6(1 +
√
K − 1)

+D log
(

2πK√
e

)
(2.22)

− (D + 1) log(KL).

By (2.17) and (2.18) we see that Φ0 ≥ Φ + Θ, where kLa1a2 < K ≤ 1 +
kLa1a2, hence

Φ > kLa1a2((L− 1)λ− h)− L2a1a2
√
k

3
− 2L3/2√a1a2

3
− L(a1 + a2)

3
,

which implies
Φ

La1a2
> kU − V

√
k −W.

This proves that Φ > 0 provided that kU − V
√
k −W ≥ 0.

To prove that Θ ≥ 0, rewrite (2.22) as Θ = Θ0(D − 1) +Θ1, where

Θ0 = log(λb′) + f(K)− logL+ log
(

2π√
e

)
,

Θ1 = 0.023K − logK − 2 logL+ log
(

2π√
e

)

+ log(λb′) + f(K) +
L3/2√a1a2

6(1 +
√
K − 1)

.

We conclude by proving that Θ0 and Θ1 are both positive.
Since b′ > 2kλL2, by Remark 1 we have log(λb′) > 2Lψ(L), which shows

that Θ0 is positive.
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Notice that, by the proof of Remark 2,

L3/2√a1a2 = L
√
La1a2 ≥ L

√
1 + 2ha1a2/λ ≥ L

√
1 + 2h

> 2
√

1 + 2(log(2ψ(2)) + f(K) + 0.023) = φ(K) (say).

Thus,

Θ1 ≥ 0.023K − logK + log
(

16π
9
√
e

)
+ f(K) +

φ(K)
3(1 +

√
K − 1)

and an elementary numerical verification shows thatΘ1 is positive forK ≥ 4,
which holds by Remark 1.

3. A corollary of Theorem 1.5. Now we can apply Theorem 1.5 to
get a result closer to Théorème 2 of [LMN].

Theorem 2. Consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Suppose that α1 and α2 are multiplica-
tively independent. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Let a1, a2, h, k be real positive numbers, and % a real number > 1. Put
λ = log %, χ = h/λ and suppose that χ ≥ χ0 for some number χ0 ≥ 0 and
that

h ≥ D
(

log
(
b1
a2

+
b2
a1

)
+ log λ+ f(dK0e)

)
+ 0.023,(3)′

ai ≥ max{1, %|logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),(4)

a1a2 ≥ λ2,(5)

where

f(x) = log
(1 +

√
x− 1)

√
x

x− 1
+

log x
6x(x− 1)

+
3
2

+ log
3
4

+
log x

x−1

x− 1

and

K0 =
1
λ

(√
2 + 2χ0

3
+

√
2(1 + χ0)

9
+

2λ
3

(
1
a1

+
1
a2

)
+

4λ
√

2 + χ0

3
√
a1a2

)2

a1a2.

Put

v = 4χ+ 4 + 1/χ, m = max{25/2(1 + χ)3/2, (1 + 2χ)5/2/χ}.
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Then we have the lower bound

log |Λ| ≥ − 1
λ

(
v

6
+

1
2

√
v2

9
+

4λv
3

(
1
a1

+
1
a2

)
+

8λm
3
√
a1a2

)2

a1a2

−max{λ(1.5 + 2χ)

+ log(((2 + 2χ)3/2 + (2 + 2χ)2
√
k∗)A+ (2 + 2χ)), D log 2},

where

A = max{a1, a2} and k∗ =
1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
2

3χ
+

2
3
· (1 + 2χ)1/2

χ

)
.

4. Proof of Theorem 2. We apply Theorem 1.5 with k = k0.
First we estimate certain quantities of the form k0L

α. The formula

∂

∂x

xα

λx− (λ+ h)
=

xα−1

(λx− (λ+ h))2 ((α− 1)λx− α(λ+ h))

=
λxα−1

(λx− (λ+ h))2 ((α− 1)x− α(1 + χ))

shows that the functions L 7→ Lα/U are non-increasing in the interval I =
[1 + 2χ, 2 + 2χ] for α ≤ 2.

Hence,

L2

U
≤ (1 + 2χ)2

λχ
=

4χ+ 4 + 1/χ
λ

=
v

λ
.

Moreover, the previous formula also shows that the function L 7→ Lα/U
is unimodular for all α, which implies

L5/2

U
≤ 1
λ

max
{

(2 + 2χ)5/2

1 + χ
,

(1 + 2χ)5/2

χ

}

=
1
λ

max{25/2(1 + χ)3/2, (1 + 2χ)5/2/χ} =
m

λ
.

These remarks imply

λk0L
2a1a2 ≤ 1

λ

(
v

6
+

1
2

√
v2

9
+

4vλ
3

(
1
a1

+
1
a2

)
+

8λm
3
√
a1a2

)2

a1a2.

Besides,

k0 ≤ V 2

U2 + 2
W

U
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thus

k0 ≤ 1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
1

3χ

(
1
a1

+
1
a2

)
+

2
3
√
a1a2

· (1 + 2χ)1/2

χ

)

≤ 1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
2

3χ
+

2
3
· (1 + 2χ)1/2

χ

)
= k∗.

Since the function f(x) is decreasing for x > 1, the last step is to verify
that K ≥ K0 (with the notations of Theorem 1.5). We follow the proof of
Remark 1. We have

√
k0L =

V
√
L

2U
+

√
V 2L

4U2 +
WL

U

with

V
√
L

U
=

1
3
· L3/2

λ(L− (1 + χ))
≥ 2
√

2 + 2χ
3λ

and
WL

U
≥ 2

3λ

(
1
a1

+
1
a2

)
+

4
√

2 + 2χ
3λ
√
a1a2

so that

√
k0L ≥

√
2 + 2χ
3λ

+

√
2(1 + χ)

9λ2 +
2

3λ

(
1
a1

+
1
a2

)
+

4
√

2 + 2χ
3λ
√
a1a2

and since K = 1 + [λk0La1a2], we get K ≥ dK0e. [One may verify that
K0 > 4.]

Remark 3. The number m satisfies

m = λmax
L∈I

{
L5/2

U

}
≤ λmax

L∈I

{
L2

U

}
·max
L∈I

√
L ≤ λ(4χ+ 4 + 1/χ)

√
2 + 2χ.

It is possible to simplify some estimates in Theorem 2 without serious
loss. Consider first the term k∗ given by

k∗ =
1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
2

3χ
+

2
3
· (1 + 2χ)1/2

χ

)

=
1
9

(
2
λ

+
1
h

)2

+
2

3h
(1 +

√
1 + 2h/λ).

It is clear that ∂k∗/∂λ < 0. Also, ∂k∗/∂h < 0. Indeed,

∂k∗

∂h
= − 2

3h

(
2
λ

+
1

3h

)
− 2

3h2 (1 +
√

1 + 2h/λ) +
2

3h
· 1/λ

1 +
√

1 + 2h/λ
,
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which is

<
2

3h

(
−
√

1 + 2h/λ
h

+
1

λ
√

1 + 2h/λ

)
=

2
3h
· −λ(1 + 2h/λ) + h

λh
√

1 + 2h/λ
< 0.

Thus, for λ ≥ λ0 and h ≥ h0, we have

k∗ ≤ 1
9

(
2
λ0

+
1
h0

)2

+
2

3h0
(1 +

√
1 + 2h0/λ0).

In particular, when λ ≥ log 4 and h ≥ 3.5, we get k∗ ≤ 1.
Now we consider the term T := log((x2 + x3/2)A+ x)/ log(Ax2). Ele-

mentary computation shows that ∂T/∂A < 0 and ∂T/∂x < 0. When x ≥ 4
and A ≥ 4 we get T ≤ 1.11.

Concerning Theorem 2, when χ ≥ 1, % ≥ 4, h ≥ 3.5 and A ≥ 4, these
remarks imply the simplified estimate

log |Λ| ≥ −(C0 + c1 + c2)(λ+ h)2a1a2,

where

C0 =
1
λ3

(v/3 +
√

v2

9 + 4λv
3

(
1
a1

+ 1
a2

)
+ 8λm

3
√
a1a2

2(1 + χ)

)2

,

and

c1 =
λ(1.5λ+ 2h)
(λ+ h)2a1a2

, c2 =
1.11λ log(A(2λ+ 2h)2)

(λ+ h)2a1a2
.

When a1a2 ≥ 20, % ≥ 4 and h ≥ 3.5, one can prove that c2 ≤ 0.024. The
formula

c1 =
1.5 + 2χ

(1 + χ)2a1a2

shows that c1 is a decreasing function of χ and, for example, for χ ≥ 1.5
and a1a2 ≥ 20, we have c1 ≤ 0.036. To summarize, c1 + c2 < 0.06 when
a1a2 ≥ 20, % ≥ 4, h ≥ 3.5 and χ ≥ 1.5. Also notice that for χ ≥ 1, one has
m = 25/2(1 + χ)3/2.

This leads to the following result.

Corollary. Consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Suppose that α1 and α2 are multiplica-
tively independent. Define D, a1, a2, %, λ, h, χ as in Theorem 2. Let a1, a2,
h, k be real positive numbers, and % a real number > 1. Suppose that % ≥ 4
and that

(3)′′ h ≥ max
{

3.5, 1.5λ,D
(

log
(
b1
a2

+
b2
a1

)
+ log λ+ 1.377

)
+ 0.023

}
,

(4) ai ≥ max{1, % |logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),
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(5)′′ a1a2 ≥ max{20, 4λ2}.
Let v = 4χ+ 4 + 1/χ. Then we have the lower bound

log |Λ| ≥ −(C0 + 0.06)(λ+ h)2a1a2,

where

C0 =
1
λ3

{(
2+

1
2χ(χ+ 1)

)(
1
3

+

√
1
9

+
4λ
3v

(
1
a1

+
1
a2

)
+

32
√

2(1 + χ)3/2

3v2√a1a2

)}2

.

We apply Theorem 2. After the above preliminaries, we have just to
check that the present hypotheses imply K0 > 38 and use the fact that
f(39) < 1.377.

Remark 4. To get a comparison with the estimates of [LMN], we can
consider the Corollaire 2 of [LMN]. Thus we suppose also that α1 and α2

are both real. Then we get

log |Λ|

≥ −22D4
(

max
{

log
(

b1
D logA2

+
b2

D logA1

)
+ 0.06,

21
D

})2

logA1 logA2,

where A1 and A2 are real numbers > 1 such that

logAi ≥ max
{

h(αi),
|logαi|
D

,
1
D

}
.

This result is obtained with the choice % = 5.58 in the above Corollary
(except that we use the original definitions of c1 and c2, not the estimate
c1 + c2 < 0.06). In [LMN], with (very) slightly stronger hypotheses, the
constant obtained was 24.34.
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