A corollary to a theorem of Laurent-Mignotte-Nesterenko

by
M. Mignotte (Strasbourg)

1. Introduction. For any algebraic number α of degree d on \mathbb{Q}, whose minimal polynomial over \mathbb{Z} is $a \prod_{i=1}^{d}\left(X-\alpha^{(i)}\right)$ where the roots $\alpha^{(i)}$ are complex numbers, we define the absolute logarithmic height of α by

$$
\mathrm{h}(\alpha)=\frac{1}{d}\left(\log |a|+\sum_{i=1}^{d} \log \max \left(1,\left|\alpha^{(i)}\right|\right)\right)
$$

Let α_{1}, α_{2} be two non-zero algebraic numbers, and let $\log \alpha_{1}$ and $\log \alpha_{2}$ be any values of their logarithms. We consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

where b_{1} and b_{2} are positive integers. Without loss of generality, we suppose that $\left|\alpha_{1}\right|$ and $\left|\alpha_{2}\right|$ are ≥ 1. Put

$$
D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right]
$$

The main result of [LMN] is:
Theorem 1. Let K be an integer $\geq 3, L$ an integer ≥ 2, and R_{1}, R_{2}, S_{1}, S_{2} integers >0. Let ϱ be a real number >1. Put $R=R_{1}+R_{2}-1$, $S=S_{1}+S_{2}-1, N=K L$,

$$
g=\frac{1}{4}-\frac{N}{12 R S}, \quad b=\frac{\left((R-1) b_{2}+(S-1) b_{1}\right)}{2}\left(\prod_{k=1}^{K-1} k!\right)^{-2 /\left(K^{2}-K\right)}
$$

Let a_{1}, a_{2} be positive real numbers such that

$$
a_{i} \geq \varrho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D \mathrm{~h}\left(\alpha_{i}\right)
$$

for $i=1,2$. Suppose that

$$
\begin{align*}
& \operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s}: 0 \leq r<R_{1}, 0 \leq s<S_{1}\right\} \geq L \\
& \operatorname{Card}\left\{r b_{2}+s b_{1}: 0 \leq r<R_{2}, 0 \leq s<S_{2}\right\}>(K-1) L \tag{1}
\end{align*}
$$

1991 Mathematics Subject Classification: Primary 11J86.
and that
(2) $K(L-1) \log \varrho-(D+1) \log N-D(K-1) \log b-g L\left(R a_{1}+S a_{2}\right)>0$.

Then

$$
\left|\Lambda^{\prime}\right| \geq \varrho^{-K L+1 / 2} \quad \text { with } \quad \Lambda^{\prime}=\Lambda \max \left\{\frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}, \frac{L R e^{L R|\Lambda| /\left(2 b_{1}\right)}}{2 b_{1}}\right\}
$$

In the case when the numbers α_{1} and α_{2} are multiplicatively independent we shall deduce from Theorem 1 the following result, which is a variant of Théorème 2 of [LMN].

Theorem 1.5. Consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1},
$$

where b_{1} and b_{2} are positive integers. Suppose that α_{1} and α_{2} are multiplicatively independent. Put

$$
D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right] .
$$

Let a_{1}, a_{2}, h, k be real positive numbers, and ϱ a real number >1. Put $\lambda=\log \varrho$ and suppose that

$$
\begin{gather*}
h \geq D\left(\log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda+f(K)\right)+0.023, \tag{3}\\
a_{i} \geq \max \left\{1, \varrho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D \mathrm{~h}\left(\alpha_{i}\right)\right\} \quad(i=1,2), \tag{4}\\
a_{1} a_{2} \geq \lambda^{2}, \tag{5}
\end{gather*}
$$

where

$$
f(x)=\log \frac{(1+\sqrt{x-1}) \sqrt{x}}{x-1}+\frac{\log x}{6 x(x-1)}+\frac{3}{2}+\log \frac{3}{4}+\frac{\log \frac{x}{x-1}}{x-1}
$$

and

$$
L=2+[2 h / \lambda], \quad K=1+\left[k L a_{1} a_{2}\right] .
$$

Then we have the lower bound
$\log |\Lambda| \geq-\lambda k L^{2} a_{1} a_{2}$

$$
-\max \left\{\lambda(L-0.5)+\log \left(\left(L^{3 / 2}+L^{2} \sqrt{k}\right) \max \left\{a_{1}, a_{2}\right\}+L\right), D \log 2\right\},
$$

provided that k satisfies

$$
k U-V \sqrt{k}-W \geq 0
$$

with

$$
U=(L-1) \lambda-h, \quad V=L / 3, \quad W=\frac{1}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+2 \sqrt{\frac{L}{a_{1} a_{2}}}\right) .
$$

Remark 1. Put $\Delta=V^{2}+4 U W$. The condition on k implies $k \geq k_{0}$ where
$\sqrt{k_{0}}=\frac{V+\sqrt{\Delta}}{2 U}, \quad k_{0}=\frac{V^{2}+\Delta+2 V \sqrt{\Delta}}{4 U^{2}}=\frac{V^{2}}{2 U^{2}}+\frac{W}{U}+\frac{V}{2 U} \sqrt{\frac{V^{2}}{U^{2}}+\frac{4 W}{U}}$ with

$$
\frac{V}{U}=\frac{1}{3} \cdot \frac{L}{\lambda L-(h+\lambda)} \geq \frac{1}{3} \cdot \frac{\lambda^{-1} 2(h+\lambda)}{2(h+\lambda)-(h+\lambda)}=\frac{2}{3 \lambda}
$$

since $\partial(V / U) / \partial L<0$ and $L \leq 2(1+h / \lambda)$, and

$$
W=\frac{1}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+2 \sqrt{\frac{L}{a_{1} a_{2}}}\right) \geq \frac{2}{3 \sqrt{a_{1} a_{2}}}(1+\sqrt{L})
$$

so that

$$
\frac{W}{U} \geq \frac{2}{3 \sqrt{a_{1} a_{2}}} \cdot \frac{1+\sqrt{L}}{\lambda L-(h+\lambda)} \geq \frac{4}{3 \lambda \sqrt{a_{1} a_{2}}} \cdot \frac{1+\sqrt{L}}{L} \geq \frac{4}{3 \lambda^{2}} \cdot \frac{1+\sqrt{L}}{L}
$$

since $a_{1} a_{2} \geq \lambda^{2}$. Hence $k \geq 4 /\left(9 \lambda^{2}\right)$ and
$k L a_{1} a_{2} \geq k L \lambda^{2} \geq \frac{2 L}{9}+\frac{4}{3}(1+\sqrt{L})+\frac{L}{3} \sqrt{\frac{4}{9}+\frac{16(1+\sqrt{L})}{3 L}}=\psi(L) \quad$ (say).
Clearly ψ increases with L and computation gives $\psi(2)>6$.
2. Proof of Theorem 1.5. We suppose that α_{1} and α_{2} are multiplicatively independent, and we apply Theorem 1 with a suitable choice of the parameters. The proof follows the proof of Théorème 2 of [LMN]. For the convenience of the reader we keep the numbering of formulas of [LMN], except that formula (5.i) in [LMN] is here formula (2.i); moreover, when there is some change the new formula is denoted by $(2 . i)^{\prime}$.

Put

$$
\begin{align*}
L & =2+[2 h / \lambda], & & S_{1}=1+\left[\sqrt{L a_{1} / a_{2}}\right] \\
K & =1+\left[k L a_{1} a_{2}\right], & & R_{2}=1+\left[\sqrt{(K-1) L a_{2} / a_{1}}\right] \tag{2.1}\\
R_{1} & =1+\left[\sqrt{L a_{2} / a_{1}}\right], & & S_{2}=1+\left[\sqrt{(K-1) L a_{1} / a_{2}}\right] .
\end{align*}
$$

Recall that

$$
a_{i} \geq \varrho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D \mathrm{~h}\left(\alpha_{i}\right) \quad \text { for } i=1,2
$$

By the Liouville inequality,

$$
\begin{aligned}
\log |\Lambda| & \geq-D \log 2-D b_{1} \mathrm{~h}\left(\alpha_{1}\right)-D b_{2} \mathrm{~h}\left(\alpha_{2}\right) \\
& \geq-D \log 2-\frac{1}{2}\left(b_{1} a_{1}+b_{2} a_{2}\right)=-D \log 2-\frac{1}{2} b^{\prime} a_{1} a_{2}
\end{aligned}
$$

where

$$
b^{\prime}=\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}} .
$$

We consider two cases:

$$
b^{\prime} \leq 2 \lambda k L^{2} \quad \text { or } \quad b^{\prime}>2 \lambda k L^{2} .
$$

In the first case, Liouville's inequality implies

$$
\log |\Lambda| \geq-D \log 2-\lambda k L^{2} a_{1} a_{2}
$$

and Theorem 1.5 holds.
Suppose now that $b^{\prime}>2 \lambda k L^{2}$. Then $\max \left\{b_{1} / a_{2}, b_{2} / a_{1}\right\}>\lambda k L^{2}$, hence

$$
b_{1}>\lambda \sqrt{k} L \cdot \sqrt{(K-1) L a_{2} / a_{1}} \quad \text { or } \quad b_{2}>\lambda \sqrt{k} L \cdot \sqrt{(K-1) L a_{1} / a_{2}} .
$$

Since $k \geq 4 /\left(9 \lambda^{2}\right)$ and $L \geq 2$, we have $\lambda \sqrt{k} L>1$, which proves that

$$
\operatorname{Card}\left\{r b_{2}+s b_{1}: 0 \leq r<R_{2}, 0 \leq s<S_{2}\right\}=R_{2} S_{2}
$$

and, by the choice of R_{2} and S_{2}, this is $>(K-1) L$. Moreover, since α_{1} and α_{2} are multiplicatively independent we have

$$
\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s}: 0 \leq r<R_{1}, 0 \leq s<S_{1}\right\}=R_{1} S_{1} \geq L .
$$

This ends the verification of condition (1) of Theorem 1.
Remark 2. The condition $b^{\prime}>2 k \lambda L^{2}$ implies

$$
\begin{aligned}
\lambda L / D & \geq 2 h / D \geq 2\left(\log \left(2 k \lambda L^{2}\right)+\log \lambda+f(K)\right) \\
& \geq 2\left(\log (2 L \psi(L))+\frac{3}{2}+\log \frac{3}{4}\right)>8.812,
\end{aligned}
$$

by Remark 1 and $L \geq 2$.
Suppose that (2) holds. Then Theorem 1 implies

$$
\log \left|\Lambda^{\prime}\right| \geq-K L \lambda+\lambda / 2,
$$

where

$$
\Lambda^{\prime}=\Lambda \max \left\{\frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}, \frac{L R e^{L R|\Lambda| /\left(2 b_{1}\right)}}{2 b_{1}}\right\} .
$$

Notice that

$$
\begin{aligned}
R & =R_{1}+R_{2}-1 \leq \sqrt{L a_{2} / a_{1}}+\sqrt{(K-1) L a_{2} / a_{1}}+1 \\
& \leq 1+\sqrt{L a_{2}}+\sqrt{k} L a_{2} \\
& \leq 1+(1 / \sqrt{L}+\sqrt{k}) L a_{2} \leq 1+(1 / \sqrt{L}+\sqrt{k}) L A,
\end{aligned}
$$

where $A=\max \left\{a_{1}, a_{2}\right\}$ and, in the same way,

$$
S=S_{1}+S_{2}-1 \leq 1+(1 / \sqrt{L}+\sqrt{k}) L A .
$$

This shows that

$$
\max \{L R, L S\} \leq L+(1 / \sqrt{L}+\sqrt{k}) L^{2} A .
$$

As we may, suppose that $\log |\Lambda| \leq-\lambda k L^{2} a_{1} a_{2}-4$. Then

$$
\begin{aligned}
\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\} & \leq \frac{(1.21+\sqrt{k}) L^{2} a_{1} a_{2}}{2} e^{-\lambda k L^{2} a_{1} a_{2}-4} \\
& \leq\left(0.61+\frac{1}{3 \lambda}\right) L^{2} a_{1} a_{2} e^{-4 L^{2} a_{1} a_{2} /(9 \lambda)-4}
\end{aligned}
$$

since $k \geq 4 /\left(9 \lambda^{2}\right)$ and $\lambda k L^{2} a_{1} a_{2}>1$. The last term is an increasing function of λ, thus for $\lambda \leq 1$,

$$
\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\} \leq\left(0.61+\frac{1}{3}\right) L^{2} a_{1} a_{2} e^{-4 L^{2} a_{1} a_{2} / 9-4}<0.1
$$

since $L^{2} a_{1} a_{2} \geq 4$. For $\lambda \geq 1$,

$$
\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\} \leq\left(0.61+\frac{1}{3}\right) L^{2} a_{1} a_{2} e^{-4 L^{2} a_{1} a_{2} /(9 \lambda)-4}
$$

and, since $a_{1} a_{2} \geq \lambda^{2}$, we get
$\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\} \leq\left(0.61+\frac{1}{3}\right) L^{2} \lambda^{2} e^{-4 L^{2} \lambda / 9-4}<L^{2} e^{-4 L^{2} / 9-4}<0.1$.
In all cases,

$$
\left|\Lambda^{\prime}\right| \leq|\Lambda|\left(L^{2}(1 / \sqrt{L}+\sqrt{k}) \max \left\{a_{1}, a_{2}\right\}+L\right)
$$

which implies

$$
\log |\Lambda| \geq-\lambda k L^{2} a_{1} a_{2}-\lambda(L-0.5)-\log \left(\left(L^{3 / 2}+L^{2} \sqrt{k}\right) \max \left\{a_{1}, a_{2}\right\}+L\right)
$$

and Theorem 1.5 follows.
Now we have to verify that condition (2) is satisfied: we have to prove that
$\Phi_{0}=K(L-1) \log \varrho-(D+1) \log N-D(K-1) \log b-g L\left(R a_{1}+S a_{2}\right)>0$, when $b^{\prime}>2 \lambda k L^{2}$.

We replace this condition by the two conditions $\Phi>0, \Theta>0$, where $\Phi_{0} \geq \Phi+\Theta$. The term Φ is the main one, Θ is a sum of residual terms. As indicated in [LMN], the condition $\Phi>0$ leads to the choice of the parameters (2.1), whereas $\Theta>0$ is a secondary condition, which leads to assuming some technical hypotheses on h and a_{1}, a_{2}. Here, we follow the advice given in [LMN]: for some applications one can modify these technical hypotheses.

As in [LMN] (Lemme 8) we get

$$
\begin{align*}
\log b & \leq \log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda-\frac{\log (2 \pi K / \sqrt{e})}{K-1}+f(K) \tag{2.17}\\
& \leq \frac{h}{D}-\frac{0.023}{D}-\frac{\log (2 \pi K / \sqrt{e})}{K-1}
\end{align*}
$$

which follows from the condition

$$
h \geq D\left(\log b^{\prime}+\log \lambda+f(K)\right)+0.023
$$

Lemme 9 of [LMN] gives
(2.18) $g L\left(R a_{1}+S a_{2}\right) \leq \frac{1}{3} L^{3 / 2} \sqrt{(K-1) a_{1} a_{2}}$

$$
+\frac{2}{3} L^{3 / 2} \sqrt{a_{1} a_{2}}+\frac{1}{3} L\left(a_{1}+a_{2}\right)-\frac{L^{3 / 2} \sqrt{a_{1} a_{2}}}{6(1+\sqrt{K-1})} .
$$

Put

$$
\begin{align*}
\Phi= & K(L-1) \lambda-K h-\frac{L^{3 / 2} \sqrt{(K-1) a_{1} a_{2}}}{3} \tag{2.21}\\
& -\frac{2 L^{3 / 2} \sqrt{a_{1} a_{2}}}{3}-\frac{L\left(a_{1}+a_{2}\right)}{3}
\end{align*}
$$

and

$$
\begin{align*}
\Theta= & 0.023(K-1)+h+\frac{L^{3 / 2} \sqrt{a_{1} a_{2}}}{6(1+\sqrt{K-1})}+D \log \left(\frac{2 \pi K}{\sqrt{e}}\right) \tag{2.22}\\
& -(D+1) \log (K L) .
\end{align*}
$$

By (2.17) and (2.18) we see that $\Phi_{0} \geq \Phi+\Theta$, where $k L a_{1} a_{2}<K \leq 1+$ $k L a_{1} a_{2}$, hence

$$
\Phi>k L a_{1} a_{2}((L-1) \lambda-h)-\frac{L^{2} a_{1} a_{2} \sqrt{k}}{3}-\frac{2 L^{3 / 2} \sqrt{a_{1} a_{2}}}{3}-\frac{L\left(a_{1}+a_{2}\right)}{3},
$$

which implies

$$
\frac{\Phi}{L a_{1} a_{2}}>k U-V \sqrt{k}-W .
$$

This proves that $\Phi>0$ provided that $k U-V \sqrt{k}-W \geq 0$.
To prove that $\Theta \geq 0$, rewrite (2.22) as $\Theta=\Theta_{0}(D-1)+\Theta_{1}$, where

$$
\begin{aligned}
\Theta_{0}= & \log \left(\lambda b^{\prime}\right)+f(K)-\log L+\log \left(\frac{2 \pi}{\sqrt{e}}\right), \\
\Theta_{1}= & 0.023 K-\log K-2 \log L+\log \left(\frac{2 \pi}{\sqrt{e}}\right) \\
& +\log \left(\lambda b^{\prime}\right)+f(K)+\frac{L^{3 / 2} \sqrt{a_{1} a_{2}}}{6(1+\sqrt{K-1})} .
\end{aligned}
$$

We conclude by proving that Θ_{0} and Θ_{1} are both positive.
Since $b^{\prime}>2 k \lambda L^{2}$, by Remark 1 we have $\log \left(\lambda b^{\prime}\right)>2 L \psi(L)$, which shows that Θ_{0} is positive.

Notice that, by the proof of Remark 2,

$$
\begin{aligned}
L^{3 / 2} \sqrt{a_{1} a_{2}} & =L \sqrt{L a_{1} a_{2}} \geq L \sqrt{1+2 h a_{1} a_{2} / \lambda} \geq L \sqrt{1+2 h} \\
& >2 \sqrt{1+2(\log (2 \psi(2))+f(K)+0.023)}=\phi(K) \quad(\text { say })
\end{aligned}
$$

Thus,

$$
\Theta_{1} \geq 0.023 K-\log K+\log \left(\frac{16 \pi}{9 \sqrt{e}}\right)+f(K)+\frac{\phi(K)}{3(1+\sqrt{K-1})}
$$

and an elementary numerical verification shows that Θ_{1} is positive for $K \geq 4$, which holds by Remark 1.
3. A corollary of Theorem 1.5. Now we can apply Theorem 1.5 to get a result closer to Théorème 2 of [LMN].

Theorem 2. Consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

where b_{1} and b_{2} are positive integers. Suppose that α_{1} and α_{2} are multiplicatively independent. Put

$$
D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right]
$$

Let a_{1}, a_{2}, h, k be real positive numbers, and ϱ a real number >1. Put $\lambda=\log \varrho, \chi=h / \lambda$ and suppose that $\chi \geq \chi_{0}$ for some number $\chi_{0} \geq 0$ and that

$$
\begin{gather*}
h \geq D\left(\log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda+f\left(\left\lceil K_{0}\right\rceil\right)\right)+0.023 \tag{3}\\
a_{i} \geq \max \left\{1, \varrho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D h\left(\alpha_{i}\right)\right\} \quad(i=1,2), \\
a_{1} a_{2} \geq \lambda^{2}
\end{gather*}
$$

where

$$
f(x)=\log \frac{(1+\sqrt{x-1}) \sqrt{x}}{x-1}+\frac{\log x}{6 x(x-1)}+\frac{3}{2}+\log \frac{3}{4}+\frac{\log \frac{x}{x-1}}{x-1}
$$

and

$$
K_{0}=\frac{1}{\lambda}\left(\frac{\sqrt{2+2 \chi_{0}}}{3}+\sqrt{\frac{2\left(1+\chi_{0}\right)}{9}+\frac{2 \lambda}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{4 \lambda \sqrt{2+\chi_{0}}}{3 \sqrt{a_{1} a_{2}}}}\right)^{2} a_{1} a_{2} .
$$

Put

$$
v=4 \chi+4+1 / \chi, \quad m=\max \left\{2^{5 / 2}(1+\chi)^{3 / 2},(1+2 \chi)^{5 / 2} / \chi\right\}
$$

Then we have the lower bound

$$
\begin{aligned}
\log |\Lambda| \geq & -\frac{1}{\lambda}\left(\frac{v}{6}+\frac{1}{2} \sqrt{\frac{v^{2}}{9}+\frac{4 \lambda v}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{8 \lambda m}{3 \sqrt{a_{1} a_{2}}}}\right)^{2} a_{1} a_{2} \\
& -\max \{\lambda(1.5+2 \chi) \\
& \left.+\log \left(\left((2+2 \chi)^{3 / 2}+(2+2 \chi)^{2} \sqrt{k^{*}}\right) A+(2+2 \chi)\right), D \log 2\right\}
\end{aligned}
$$

where

$$
A=\max \left\{a_{1}, a_{2}\right\} \quad \text { and } \quad k^{*}=\frac{1}{\lambda^{2}}\left(\frac{1+2 \chi}{3 \chi}\right)^{2}+\frac{1}{\lambda}\left(\frac{2}{3 \chi}+\frac{2}{3} \cdot \frac{(1+2 \chi)^{1 / 2}}{\chi}\right)
$$

4. Proof of Theorem 2. We apply Theorem 1.5 with $k=k_{0}$.

First we estimate certain quantities of the form $k_{0} L^{\alpha}$. The formula

$$
\begin{aligned}
\frac{\partial}{\partial x} \frac{x^{\alpha}}{\lambda x-(\lambda+h)} & =\frac{x^{\alpha-1}}{(\lambda x-(\lambda+h))^{2}}((\alpha-1) \lambda x-\alpha(\lambda+h)) \\
& =\frac{\lambda x^{\alpha-1}}{(\lambda x-(\lambda+h))^{2}}((\alpha-1) x-\alpha(1+\chi))
\end{aligned}
$$

shows that the functions $L \mapsto L^{\alpha} / U$ are non-increasing in the interval $I=$ $[1+2 \chi, 2+2 \chi]$ for $\alpha \leq 2$.

Hence,

$$
\frac{L^{2}}{U} \leq \frac{(1+2 \chi)^{2}}{\lambda \chi}=\frac{4 \chi+4+1 / \chi}{\lambda}=\frac{v}{\lambda}
$$

Moreover, the previous formula also shows that the function $L \mapsto L^{\alpha} / U$ is unimodular for all α, which implies

$$
\begin{aligned}
\frac{L^{5 / 2}}{U} & \leq \frac{1}{\lambda} \max \left\{\frac{(2+2 \chi)^{5 / 2}}{1+\chi}, \frac{(1+2 \chi)^{5 / 2}}{\chi}\right\} \\
& =\frac{1}{\lambda} \max \left\{2^{5 / 2}(1+\chi)^{3 / 2},(1+2 \chi)^{5 / 2} / \chi\right\}=\frac{m}{\lambda}
\end{aligned}
$$

These remarks imply

$$
\lambda k_{0} L^{2} a_{1} a_{2} \leq \frac{1}{\lambda}\left(\frac{v}{6}+\frac{1}{2} \sqrt{\frac{v^{2}}{9}+\frac{4 v \lambda}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{8 \lambda m}{3 \sqrt{a_{1} a_{2}}}}\right)^{2} a_{1} a_{2}
$$

Besides,

$$
k_{0} \leq \frac{V^{2}}{U^{2}}+2 \frac{W}{U}
$$

thus

$$
\begin{aligned}
k_{0} & \leq \frac{1}{\lambda^{2}}\left(\frac{1+2 \chi}{3 \chi}\right)^{2}+\frac{1}{\lambda}\left(\frac{1}{3 \chi}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{2}{3 \sqrt{a_{1} a_{2}}} \cdot \frac{(1+2 \chi)^{1 / 2}}{\chi}\right) \\
& \leq \frac{1}{\lambda^{2}}\left(\frac{1+2 \chi}{3 \chi}\right)^{2}+\frac{1}{\lambda}\left(\frac{2}{3 \chi}+\frac{2}{3} \cdot \frac{(1+2 \chi)^{1 / 2}}{\chi}\right)=k^{*}
\end{aligned}
$$

Since the function $f(x)$ is decreasing for $x>1$, the last step is to verify that $K \geq K_{0}$ (with the notations of Theorem 1.5). We follow the proof of Remark 1. We have

$$
\sqrt{k_{0} L}=\frac{V \sqrt{L}}{2 U}+\sqrt{\frac{V^{2} L}{4 U^{2}}+\frac{W L}{U}}
$$

with

$$
\frac{V \sqrt{L}}{U}=\frac{1}{3} \cdot \frac{L^{3 / 2}}{\lambda(L-(1+\chi))} \geq \frac{2 \sqrt{2+2 \chi}}{3 \lambda}
$$

and

$$
\frac{W L}{U} \geq \frac{2}{3 \lambda}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{4 \sqrt{2+2 \chi}}{3 \lambda \sqrt{a_{1} a_{2}}}
$$

so that

$$
\sqrt{k_{0} L} \geq \frac{\sqrt{2+2 \chi}}{3 \lambda}+\sqrt{\frac{2(1+\chi)}{9 \lambda^{2}}+\frac{2}{3 \lambda}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{4 \sqrt{2+2 \chi}}{3 \lambda \sqrt{a_{1} a_{2}}}}
$$

and since $K=1+\left[\lambda k_{0} L a_{1} a_{2}\right]$, we get $K \geq\left\lceil K_{0}\right\rceil$. [One may verify that $K_{0}>4$.]

Remark 3. The number m satisfies

$$
m=\lambda \max _{L \in I}\left\{\frac{L^{5 / 2}}{U}\right\} \leq \lambda \max _{L \in I}\left\{\frac{L^{2}}{U}\right\} \cdot \max _{L \in I} \sqrt{L} \leq \lambda(4 \chi+4+1 / \chi) \sqrt{2+2 \chi}
$$

It is possible to simplify some estimates in Theorem 2 without serious loss. Consider first the term k^{*} given by

$$
\begin{aligned}
k^{*} & =\frac{1}{\lambda^{2}}\left(\frac{1+2 \chi}{3 \chi}\right)^{2}+\frac{1}{\lambda}\left(\frac{2}{3 \chi}+\frac{2}{3} \cdot \frac{(1+2 \chi)^{1 / 2}}{\chi}\right) \\
& =\frac{1}{9}\left(\frac{2}{\lambda}+\frac{1}{h}\right)^{2}+\frac{2}{3 h}(1+\sqrt{1+2 h / \lambda})
\end{aligned}
$$

It is clear that $\partial k^{*} / \partial \lambda<0$. Also, $\partial k^{*} / \partial h<0$. Indeed,

$$
\frac{\partial k^{*}}{\partial h}=-\frac{2}{3 h}\left(\frac{2}{\lambda}+\frac{1}{3 h}\right)-\frac{2}{3 h^{2}}(1+\sqrt{1+2 h / \lambda})+\frac{2}{3 h} \cdot \frac{1 / \lambda}{1+\sqrt{1+2 h / \lambda}}
$$

which is

$$
<\frac{2}{3 h}\left(-\frac{\sqrt{1+2 h / \lambda}}{h}+\frac{1}{\lambda \sqrt{1+2 h / \lambda}}\right)=\frac{2}{3 h} \cdot \frac{-\lambda(1+2 h / \lambda)+h}{\lambda h \sqrt{1+2 h / \lambda}}<0
$$

Thus, for $\lambda \geq \lambda_{0}$ and $h \geq h_{0}$, we have

$$
k^{*} \leq \frac{1}{9}\left(\frac{2}{\lambda_{0}}+\frac{1}{h_{0}}\right)^{2}+\frac{2}{3 h_{0}}\left(1+\sqrt{1+2 h_{0} / \lambda_{0}}\right) .
$$

In particular, when $\lambda \geq \log 4$ and $h \geq 3.5$, we get $k^{*} \leq 1$.
Now we consider the term $T:=\log \left(\left(x^{2}+x^{3 / 2}\right) A+x\right) / \log \left(A x^{2}\right)$. Elementary computation shows that $\partial T / \partial A<0$ and $\partial T / \partial x<0$. When $x \geq 4$ and $A \geq 4$ we get $T \leq 1.11$.

Concerning Theorem 2, when $\chi \geq 1, \varrho \geq 4, h \geq 3.5$ and $A \geq 4$, these remarks imply the simplified estimate

$$
\log |\Lambda| \geq-\left(C_{0}+c_{1}+c_{2}\right)(\lambda+h)^{2} a_{1} a_{2}
$$

where

$$
C_{0}=\frac{1}{\lambda^{3}}\left(\frac{v / 3+\sqrt{\frac{v^{2}}{9}+\frac{4 \lambda v}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)+\frac{8 \lambda m}{3 \sqrt{a_{1} a_{2}}}}}{2(1+\chi)}\right)^{2}
$$

and

$$
c_{1}=\frac{\lambda(1.5 \lambda+2 h)}{(\lambda+h)^{2} a_{1} a_{2}}, \quad c_{2}=\frac{1.11 \lambda \log \left(A(2 \lambda+2 h)^{2}\right)}{(\lambda+h)^{2} a_{1} a_{2}} .
$$

When $a_{1} a_{2} \geq 20, \varrho \geq 4$ and $h \geq 3.5$, one can prove that $c_{2} \leq 0.024$. The formula

$$
c_{1}=\frac{1.5+2 \chi}{(1+\chi)^{2} a_{1} a_{2}}
$$

shows that c_{1} is a decreasing function of χ and, for example, for $\chi \geq 1.5$ and $a_{1} a_{2} \geq 20$, we have $c_{1} \leq 0.036$. To summarize, $c_{1}+c_{2}<0.06$ when $a_{1} a_{2} \geq 20, \varrho \geq 4, h \geq 3.5$ and $\chi \geq 1.5$. Also notice that for $\chi \geq 1$, one has $m=\overline{2^{5 / 2}}(1+\chi)^{3 / 2}$.

This leads to the following result.
Corollary. Consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1},
$$

where b_{1} and b_{2} are positive integers. Suppose that α_{1} and α_{2} are multiplicatively independent. Define $D, a_{1}, a_{2}, \varrho, \lambda, h, \chi$ as in Theorem 2. Let a_{1}, a_{2}, h, k be real positive numbers, and ϱ a real number >1. Suppose that $\varrho \geq 4$ and that
$(3)^{\prime \prime} \quad h \geq \max \left\{3.5,1.5 \lambda, D\left(\log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda+1.377\right)+0.023\right\}$,

$$
\begin{equation*}
a_{i} \geq \max \left\{1, \varrho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D h\left(\alpha_{i}\right)\right\} \quad(i=1,2) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{1} a_{2} \geq \max \left\{20,4 \lambda^{2}\right\} \tag{5}
\end{equation*}
$$

Let $v=4 \chi+4+1 / \chi$. Then we have the lower bound

$$
\log |\Lambda| \geq-\left(C_{0}+0.06\right)(\lambda+h)^{2} a_{1} a_{2}
$$

where

We apply Theorem 2. After the above preliminaries, we have just to check that the present hypotheses imply $K_{0}>38$ and use the fact that $f(39)<1.377$.

REmark 4. To get a comparison with the estimates of [LMN], we can consider the Corollaire 2 of [LMN]. Thus we suppose also that α_{1} and α_{2} are both real. Then we get
$\log |\Lambda|$

$$
\geq-22 D^{4}\left(\max \left\{\log \left(\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}\right)+0.06, \frac{21}{D}\right\}\right)^{2} \log A_{1} \log A_{2}
$$

where A_{1} and A_{2} are real numbers >1 such that

$$
\log A_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right), \frac{\left|\log \alpha_{i}\right|}{D}, \frac{1}{D}\right\}
$$

This result is obtained with the choice $\varrho=5.58$ in the above Corollary (except that we use the original definitions of c_{1} and c_{2}, not the estimate $c_{1}+c_{2}<0.06$). In [LMN], with (very) slightly stronger hypotheses, the constant obtained was 24.34.

References

[LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.

Département de Mathématique et Informatique
Université Louis Pasteur
7, rue René Descartes
67084 Strasbourg Cedex, France
E-mail: mignotte@math.u-strasbg.fr

