\mathbb{Q}-linear relations of special values of the Estermann zeta function

by
Makoto Ishibashi (Kagoshima)

1. Introduction. Let $\sigma_{u}(n)=\sum_{d \mid n} d^{u}$, the sum of u th powers of divisors of n, and let $e(x)=e^{2 \pi i x}$. For given integers a and q with $(a, q)=1$, $q \geq 1$, the Estermann zeta function $E_{u}=E_{u}(\cdot, a / q)$ is defined by the Dirichlet series

$$
E_{u}\left(s, \frac{a}{q}\right)=\sum_{n=1}^{\infty} \sigma_{u}(n) e\left(\frac{a n}{q}\right) n^{-s}, \quad \operatorname{Re}(s)>\max \{0, \operatorname{Re}(u)+1\},
$$

and has an analytic continuation to the whole s-plane with possible poles at $s=1, u+1$. This function has its origin in Estermann's paper [1] and plays an important role in recent theory of divisor functions and allied problems ([6], [7], [9]).

In this paper we determine the linear relations among the values of E_{u} at negative integral arguments

$$
\left\{E_{u}(-j, a / q): 1 \leq a \leq q,(a, q)=1\right\}
$$

over the rational number field \mathbb{Q}, where $j \geq 1$ and $u \geq 0$ are rational integers, which extends our previous result [4]. Our main result is

Theorem. The numbers $E_{u}(-j, a / q), 1 \leq a \leq q,(a, q)=1$, belong to the qth cyclotomic field, in particular they vanish for any odd number u, and if q is a prime power, we have

$$
\sum_{(a, q)=1} c_{a} E_{u}(-j, a / q)=0 \text { if and only if } c_{a}=(-1)^{j} c_{q-a} \text { for } c_{a} \in \mathbb{Q}, u \text { even. }
$$

From this Theorem, we easily deduce

[^0]Corollary. If q is a prime power and u is even, then the numbers $E_{u}(-j, a / q), 1 \leq a \leq q / 2,(a, q)=1$, are linearly independent over \mathbb{Q}.

In Section 2, we prove the first part of the Theorem by evaluating these special values in terms of the cotangent function, and in Section 3, \mathbb{Q}-linear relations are determined by the method of K. Girstmair [2].
2. Special values. Let B_{m} and $B_{m}(x)$ be the m th Bernoulli number and the m th Bernoulli polynomial respectively, and let $\cot ^{(m)}(\pi x)$ be the m th derivative of $\cot (\pi x)$.

Proposition 1. Let $q \geq 2,1 \leq a \leq q,(a, q)=1, i=\sqrt{-1}$. Then

$$
\begin{align*}
E_{u}\left(-j, \frac{a}{q}\right)= & \frac{q^{j}}{j+1}\left(-\frac{i}{2}\right)^{j+u+1} \sum_{l=1}^{q-1} B_{j+1}\left(\frac{l}{q}\right) \cot ^{(j+u)}\left(\frac{\pi a l}{q}\right) \tag{1}\\
& +q^{j}(1+q)^{j} \frac{B_{j+1}}{j+1} \cdot \frac{B_{j+u+1}}{j+u+1}
\end{align*}
$$

for $u \geq 0, j \geq 1$. For $q=1$,

$$
E_{u}(-j, 1)=\frac{B_{j+1}}{j+1} \cdot \frac{B_{j+u+1}}{j+u+1} .
$$

In particular, for $q \geq 2$ the right hand side of (1) is 0 for u odd.
Proof. We can express the function $E_{u}(s, a / q)$ in terms of the Hurwitz zeta function

$$
\zeta(s, x)=\sum_{n=0}^{\infty}(n+x)^{-s}, \quad 0<x \leq 1
$$

with $\zeta(s, 1)=\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ the Riemann zeta function, as follows:
$E_{u}\left(s, \frac{a}{q}\right)=q^{u-2 s} \sum_{k, l=1}^{q} e\left(\frac{a k l}{q}\right) \zeta\left(s-u, \frac{k}{q}\right) \zeta\left(s, \frac{l}{q}\right), \quad \operatorname{Re}(s)>\operatorname{Re}(u)+1$
(cf. [4]). Since $\zeta(s, x)$ can be analytically continued to a meromorphic function with simple pole at $s=1$, this equation gives an analytic continuation of $E_{u}(s, a / q)$. To evaluate the values at negative integer points in terms of the cotangent function, we need

$$
\zeta(-j, a / q)=-\frac{1}{j+1} B_{j+1}(a / q), \quad j \geq 0
$$

and

$$
(j+1)\left(\frac{i}{2}\right)^{j+1} \cot ^{(j)}\left(\frac{\pi a}{q}\right)=q^{j} \sum_{k=1}^{q} e\left(-\frac{a k}{q}\right) B_{j+1}\left(\frac{k}{q}\right) \quad(\text { see }[2]) .
$$

Substituting these formulas for $E_{u}(-j, a / q)$, we have

$$
\begin{aligned}
E_{u}\left(-j, \frac{a}{q}\right)= & \frac{q^{j}}{j+1}\left(-\frac{i}{2}\right)^{j+u+1} \sum_{l=1}^{q-1} B_{j+1}\left(\frac{l}{q}\right) \cot ^{(j+u)}\left(\frac{\pi a l}{q}\right) \\
& +\frac{q^{2 j+u} B_{j+1}}{(j+1)(j+u+1)} \sum_{k=1}^{q-1} B_{j+u+1}\left(\frac{k}{q}\right) \\
& +\frac{q^{2 j+u} B_{j+u+1}}{(j+1)(j+u+1)} \sum_{l=1}^{q} B_{j+1}\left(\frac{l}{q}\right) \\
= & S_{1}+S_{2}+S_{3}, \quad \text { say. }
\end{aligned}
$$

Using the Fourier series of $\cot ^{(j+u)}(\pi x / q)$ and changing the order of summation, we see that the symmetric terms appearing in the innermost sum over the range from 1 to q will cancel out each other for odd u, so that $S_{1}=0 . S_{2}+S_{3}$ is evaluated by the distribution relation of the Bernoulli polynomial:

$$
B_{k}(x)=m^{k-1} \sum_{j=0}^{m-1} B_{k}\left(\frac{x+j}{m}\right),
$$

and we also have $S_{2}+S_{3}=0$ for odd u by the properties of Bernoulli numbers.

For $q=1$, the formula follows from

$$
E_{u}(s, 1)=\sum_{n=1}^{\infty} \frac{\sigma_{u}(n)}{n^{s}}=\zeta(s) \zeta(s-u)
$$

Thus the proposition is proved.
Since $i^{j+u+1} \cot ^{(j+u)}(\pi a l / q)$ belong to the q th cyclotomic field, the above proposition implies the first part of our Theorem.
3. \mathbb{Q}-linear relations. Let $\mathbb{Q}_{q}=\mathbb{Q}(\zeta)$ be the q th cyclotomic field with $\zeta=e(1 / q)$ and let $G=\operatorname{Gal}\left(\mathbb{Q}_{q} / \mathbb{Q}\right)$ be its Galois group. The \mathbb{Q}-linear relations of the conjugate numbers $\left\{\sigma(b): b \in \mathbb{Q}_{q}, \sigma \in G\right\}$ are determined by the annihilator ideal $W_{q}[b]$ in the group ring $\mathbb{Q} G$ defined by

$$
W_{q}[b]=\{\alpha \in \mathbb{Q} G: \alpha \circ b=0\},
$$

where the $\mathbb{Q} G$ action on \mathbb{Q}_{q} is defined by

$$
\alpha \circ b=\sum_{\sigma \in G} a_{\sigma} \sigma(b) \quad \text { for } \alpha=\sum_{\sigma \in G} a_{\sigma} \sigma \in \mathbb{Q} G .
$$

In [2], K. Girstmair proves that $W_{q}[b]$ is generated by the idempotent element $\varepsilon_{X}=\sum_{\chi \in X} \varepsilon_{\chi}$, with $\varepsilon_{\chi}=|G|^{-1} \sum_{\sigma \in G} \chi\left(\sigma^{-1}\right) \sigma$, attached to a certain subset X of the character group \widehat{G} of G determined by $X=\{\chi \in$ $\widehat{G}: y(\chi \mid b)=0\}$. Here, $y(\chi \mid b)$ are Leopoldt's character coordinates defined
by $y(\chi \mid b) \tau\left(\bar{\chi}_{f} \mid 1\right)=\sum_{\sigma \in G} \chi\left(\sigma^{-1}\right) \sigma(b)$, where f is the conductor of χ, χ_{f} is the primitive character modulo f attached to χ and $\tau(\chi \mid k)$ is the k th Gauss sum.

He also proves, for $q \geq 2$,
(2) $y\left(\chi \mid i^{j+1} \cot ^{(j)}(\pi / q)\right)$

$$
= \begin{cases}0, & \chi \text { principal, } j=0, \\ \left(\frac{2 q}{f}\right)^{j+1} \prod_{p \mid q}\left(1-\frac{\bar{\chi}_{f}(p)}{p^{j+1}}\right) \frac{B_{j+1, \chi_{f}}}{j+1}, & \text { otherwise },\end{cases}
$$

where $B_{j, \chi_{f}}$ is the generalized Bernoulli number attached to the character χ_{f}. Thus $W_{q}\left[i^{j+1} \cot ^{(j)}(\pi / q)\right]=\left\langle 1+(-1)^{j} \sigma_{-1}\right\rangle$, where $\sigma_{k} \in G$ are such that $\sigma_{k}(\zeta)=\zeta^{k},(k, q)=1$.

In our case $E_{u}(-j, a / q)=\sigma_{a}\left(E_{u}(-j, 1 / q)\right)$, and so we also have
Proposition 2. $W_{q}\left[E_{u}(-j, 1 / q)\right]=\left\langle 1+(-1)^{j} \sigma_{-1}\right\rangle$ for prime power q, $j \geq 1$, and u even.

Proof. Let $l=k d, d=(l, q)$ in the formula for $E_{u}(-j, 1 / q)$, which gives

$$
\begin{aligned}
& E_{u}(-j, 1 / q) \\
&=\frac{q^{j}}{j+1}\left(-\frac{1}{2}\right)^{j+u+1} \sum_{d \mid q} \sum_{\substack{k=1 \\
(k, d)=1}}^{d-1} B_{j+1}\left(\frac{k}{d}\right) i^{j+u+1} \cot ^{(j+u)}\left(\frac{\pi k}{d}\right) \\
&=\frac{q^{j}}{j+1}\left(-\frac{1}{2}\right)^{j+u+1} C_{j, u}, \quad \text { say. }
\end{aligned}
$$

By (2) and the $\mathbb{Q} G$-linearity of $y(\chi \mid-)$ with the reduction formula

$$
y(\chi \mid b)= \begin{cases}(\varphi(q) / \varphi(d)) \cdot y\left(\chi_{d} \mid b\right), & f \mid d, \\ 0, & \text { otherwise },\end{cases}
$$

for $b \in \mathbb{Q}_{d} \subset \mathbb{Q}_{q}$, where χ_{d} is the character mod d attached to χ (see [8]), we have

$$
\begin{align*}
y\left(\chi \mid C_{j, u}\right)= & \frac{\varphi(q)}{j+u+1}\left(\frac{2}{f}\right)^{j+u+1} \sum_{\substack{d \\
f|d| q}} \frac{d^{u+1}}{\varphi(d)} \tag{3}\\
& \times \prod_{p \mid d}\left(1-\frac{\bar{\chi}_{f}(p)}{p^{j+u+1}}\right) \prod_{p \mid d}\left(1-\chi_{f}(p) p^{j}\right) B_{j+1, \chi_{f}} B_{j+u+1, \chi_{f}}
\end{align*}
$$

$$
= \begin{cases}\frac{\varphi(q)}{j+u+1}\left(\frac{2}{f}\right)^{j+u+1} \sum_{\substack{d \\ f|d| q}} \frac{d^{u+1}}{\varphi(d)} B_{j+1, \chi_{f}} B_{j+u+1, \chi_{f}}, & \chi \neq 1, \\ \frac{\varphi(q)}{j+u+1}\left(\frac{2}{f}\right)^{j+u+1} \sum_{\substack{d|q \\ f| d \mid q}} \frac{d^{u+1}}{\varphi(d)} \prod_{p \mid d}\left(1-\frac{1}{p^{j+u+1}}\right) & \\ \times \prod_{p \mid d}\left(1-p^{j}\right) B_{j+1} B_{j+u+1}, & \chi=1 .\end{cases}
$$

Here

$$
B_{j+1, \chi_{d}}=d^{j} \sum_{k=1}^{d} \chi_{d}(k) B_{j+1}(k / d)
$$

and we have the formula

$$
B_{j+1, \chi_{d}}=\prod_{p \mid d}\left(1-\chi_{f}(p) p^{j}\right) \cdot B_{j+1, \chi_{f}}
$$

which is a generalization of Hasse's formula [3, p. 18], and can be proved in the same way, or instantly obtained by comparing both sides of the equality

$$
L\left(s, \chi_{d}\right)=\prod_{p \mid d}\left(1-\chi_{f}(p) p^{-s}\right) L\left(s, \chi_{f}\right)
$$

at negative integral arguments, where $L\left(s, \chi_{f}\right)$ denotes the Dirichlet L function.

In the case of a primitive character it is known that

$$
\begin{cases}B_{n+1, \chi} \neq 0, & n \not \equiv \delta_{\chi} \bmod 2, \\ B_{n+1, \chi}=0, & n \equiv \delta_{\chi} \bmod 2,\end{cases}
$$

for $n \geq 1$, where $\delta_{\chi}=0$ for even χ and 1 for odd $\chi([5])$. Further, for principal χ, we see that $B_{n+1, \chi_{f}}=B_{n+1}=0$ for even $n \geq 2$, and $B_{n+1, \chi_{d}} \neq 0$ for n odd.

Hence we get $X=\left\{\chi \in \widehat{G}: \chi\left(\sigma_{-1}\right)=(-1)^{j}\right\}$ from (3), so that $\varepsilon_{X}=$ $1+(-1)^{j} \sigma_{-1}$ generates $W_{q}\left[E_{u}(-j, 1 / q)\right]$.

This proposition implies the latter half of our Theorem.
Acknowledgements. The author is extremely grateful to the referee for some comments which helped the author to correct errors in the proof of the Theorem.

References

[1] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133.
[2] K. Girstmair, Character coordinates and annihilators of cyclotomic numbers, Manuscripta Math. 59 (1987), 375-389.
[3] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
[4] M. Ishibashi, The value of the Estermann zeta functions at $s=0$, Acta Arith. 73 (1995), 357-361.
[5] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, Princeton, N.J., 1972.
[6] M. Jutila, On exponential sums involving the divisor function, J. Reine Angew. Math. 355 (1985), 173-190.
[7] I. Kiuchi, On an exponential sum involving the arithmetic function $\sigma_{a}(n)$, Math. J. Okayama Univ. 29 (1987), 93-105.
[8] H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149.
[9] Y. Motohashi, Riemann-Siegel Formula, Lecture Notes, Univ. of Colorado, Boulder, 1987.

Department of Liberal Arts
Kagoshima National College of Technology
1460-1 Shinko, Hayato-cho, Aira-gun
Kagoshima 899-51, Japan
E-mail: isibasi@kctmgw.kagoshima-ct.ac.jp

Received on 13.10.1997
and in revised form on 29.4.1998

[^0]: 1991 Mathematics Subject Classification: Primary 11M41; Secondary 11J99.
 Key words and phrases: Estermann zeta function, \mathbb{Q}-linear relation, Leopoldt's character coordinate.

