On Waring's problem with polynomial summands II

by

Hong Bing Yu (Hefei)

1. Introduction. Let $f_k(x)$ be an integral-valued polynomial of degree k with positive leading coefficient, $f_k(0) = 0$ and satisfying the condition that there do not exist integers c and q > 1 such that $f_k(x) \equiv c \pmod{q}$ identically. It is known that $f_k(x)$ is of the form

(1.1)
$$f_k(x) = a_k F_k(x) + \ldots + a_1 F_1(x)$$

where $F_i(x) = x(x-1)\dots(x-i+1)/i!$ $(1 \le i \le k)$, and a_1,\dots,a_k are integers satisfying

(1.2)
$$(a_1, \ldots, a_k) = 1 \text{ and } a_k > 0.$$

Let $G(f_k)$ be the least s such that the equation

(1.3)
$$f_k(x_1) + \ldots + f_k(x_s) = n, \quad x_i \ge 0,$$

is soluble for all sufficiently large integers n. The problem of estimation for $G(f_k)$ has been investigated by many authors (see Wooley [6] for references). Here we remark only that Hua [3] has shown that $G(f_k) \leq (k-1)2^{k+1}$; and, if

(1.4) $H_k(x) = 2^{k-1}F_k(x) - 2^{k-2}F_{k-1}(x) + \ldots + (-1)^{k-1}F_1(x), \quad k \ge 4,$ then $G(H_k) = 2^k - \frac{1}{2}(1 - (-1)^k)$. In [3] Hua conjectured further that generally

(1.5)
$$G(f_k) \le 2^k - \frac{1}{2}(1 - (-1)^k).$$

This was confirmed in [7] for k = 4, 5 and 6. The purpose of this paper is to prove that (1.5) is true for all $k \ge 7$. In fact, we prove the following slightly more precise result.

THEOREM 1. Let $H_k(x)$ be as in (1.4). For $k \ge 6$, if $f_k(x)$ satisfies (1.6) $2 \nmid f_k(1)$ and $f_k(x) \equiv (-1)^{k-1} f_k(1) H_k(x) \pmod{2^k}$ for any x,

¹⁹⁹¹ Mathematics Subject Classification: Primary 11P05.

Project supported by the National Natural Science Foundation of China.

^[245]

H. B. Yu

then $G(f_k) = 2^k - 1$ for odd k and $2^k - 1$ or 2^k for even k; otherwise,

$$G(f_k) \le 2^{k-1} + 4(k-1).$$

In order to investigate the solubility of (1.3), we define $\mathfrak{S}^*(f_k)$ to be the least number such that if $s \geq \mathfrak{S}^*(f_k)$ then $\mathfrak{S}_s(f_k, n) \geq c$ for some positive cindependent of n, where $\mathfrak{S}_s(f_k, n)$ is the singular series corresponding to the equation (1.3) (see Hua [2] and the remark of Wooley [6]). We also define $G^*(f_k)$ to be the least number s with the property that all sufficiently large numbers n with $\mathfrak{S}_s(f_k, n) \geq c$ are represented in the form (1.3). From earlier works on $G^*(f_k)$ (see Hua [4]) we have, in particular,

(1.7)
$$G^*(f_k) < 2^{k-1} + 4(k-1) \quad \text{for } k \ge 6$$

(We remark that very sharp estimates on $G^*(f_k)$ for large k have recently been obtained by Wooley [6].) Therefore, in view of (1.7) and (2.9) below, to prove Theorem 1 it suffices to prove the following result.

THEOREM 2. For $k \ge 6$, if $f_k(x)$ satisfies (1.6), then $\mathfrak{S}^*(f_k) \le 2^k - \frac{1}{2}(1-(-1)^k)$; otherwise, $\mathfrak{S}^*(f_k) \le 2^{k-1} + 4(k-1)$.

We note that, for quartic and quintic polynomials, more precise results on $\mathfrak{S}^*(f_k)$ have been established in [7] and [8]:

If
$$f_k(x)$$
 $(k = 4 \text{ and } 5)$ does not satisfy (1.6), then

$$\max_{f_4} \mathfrak{S}^*(f_4) = 11 \quad \text{and} \quad \max_{f_5} \mathfrak{S}^*(f_5) = 16.$$

2. Notation and preliminary results. Let $f_k(x)$ be as in (1.1), and let d be the least common denominator of the coefficients of $f_k(x)$. For each prime p, we define $t = t(f_k, p)$ by $p^t || d$. Let $\theta = \theta(f_k, p)$ be the greatest integer such that

(2.1)
$$p^t f'_k(x) \equiv 0 \pmod{p^{\theta}}$$
 for any x ,

and let $f_k^*(x) = p^{-\theta}(p^t f_k'(x))$. Define the integer $\delta = \delta(p,k)$ by

(2.2)
$$p^{\delta} \le k - 1 < p^{\delta+1},$$

and let

(2.3)
$$\gamma = \gamma(f_k, p) = \begin{cases} \theta - t + \delta + 2 & \text{for } p = 2, \\ \theta - t + \delta + 1 & \text{for } p > 2. \end{cases}$$

We record for later use that (see Hua [3, Lemma 3.3])

(2.4)
$$\gamma \le k + \delta + 1 \text{ for } p = 2 \text{ and } \gamma \le \left[\frac{k}{p-1}\right] + \delta + 1 \text{ for } p \ge 3$$

Let $M_s(f_k, p^l, n)$ denote the number of solutions of the congruence (2.5) $f_k(x_1) + \ldots + f_k(x_s) \equiv n \pmod{p^l}, \quad 0 \le x_i < p^{l+t},$ and let $\Gamma(f_k, p^l)$ be the least value of s for which (2.5) is soluble for every n. From Hua [2, Section 7] we see that, if $s \ge 2k + 1$, to establish $\mathfrak{S}^*(f_k) \le s$ it suffices to show that for all primes p and any integers n and $l \ge c$,

(2.6)
$$M_s(f_k, p^l, n) \ge p^{(s-1)(l-c)},$$

where c is a positive constant depending only on $f_k(x)$. Since a direct treatment of (2.6) presents certain technical difficulties, we define $N_s(f_k, p^l, n)$ to be the number of solutions of the congruence (2.5) with the $f_k^*(x_i)$ not all divisible by p. Then (see [2, Lemma 7.6])

(2.7)
$$N_s(f_k, p^l, n) = p^{(s-1)(l-\gamma)} N_s(f_k, p^{\gamma}, n) \text{ for } l \ge \gamma.$$

Let $\Gamma^*(f_k, p^{\gamma}, n)$ be the least s such that $N_s(f_k, p^{\gamma}, n) \geq 1$. Then, by (2.7) and $M_s(f_k, p^l, n) \geq N_s(f_k, p^l, n)$, (2.6) holds (with $c = \gamma$) when $s = \Gamma^*(f_k, p^{\gamma}, n)$. Moreover, we define $\Gamma^*(f_k, p^{\gamma}) = \max_n \Gamma^*(f_k, p^{\gamma}, n)$. Then, in particular, when $s = \Gamma^*(f_k, p^{\gamma})$ the congruence (2.5) is soluble for any n and $l \geq 1$. Also, by the definition, we have

(2.8)
$$\Gamma(f_k, p^{\gamma}) \le \Gamma^*(f_k, p^{\gamma}) \le \Gamma(f_k, p^{\gamma}) + 1.$$

Now we see that to prove Theorem 2, it suffices to establish the following two results.

THEOREM 3. Suppose $k \ge 6$.

(i) If $f_k(x)$ satisfies (1.6), then

(2.9)
$$\Gamma(f_k, 2^k) = 2^k - 1;$$

and, when $s = 2^k - \frac{1}{2}(1 - (-1)^k)$, we have

$$M_s(f_k, 2^l, n) \ge 2^{(s-1)(l-2k)}$$
 for all *n* and $l \ge 2k$.

(ii) Otherwise, we have $\Gamma^*(f_k, 2^{\gamma}) \le 2^{k-1} + 4(k-1)$.

THEOREM 4. For $k \ge 6$ and prime $p \ge 3$, we have

$$\Gamma^*(f_k, p^{\gamma}) \le 2^{k-1} + 4(k-1).$$

Our proof of Theorems 3 and 4 is motivated by Hua [3] and Yu [7] (see Sections 3 to 5 of this paper). Before proceeding further we record two lemmas. Lemma 2.1 (below) may be compared with Hua [3, Lemmas 4.4 and 4.5]. It follows from (1.1) and a simple calculation. Lemma 2.2 can be seen from the proof of Hua [3, Lemma 3.2] (see also Lovász [5, Problem 1.43(e)]).

LEMMA 2.1. Let $f_k(x)$ be as in (1.1). Then

(i) $f_k(x+2) - f_k(x) = 2a_k F_{k-1}(x) + \sum_{i=1}^{k-1} (2a_i + a_{i+1}) F_{i-1}(x)$ with $F_0(x)$ being interpreted as 1.

(ii) $f_k(x+1) + f_k(x) - f_k(1) = 2a_k F_k(x) + \sum_{i=1}^{k-1} (2a_i + a_{i+1}) F_i(x).$

LEMMA 2.2. Let

$$P_m(x) = \sum_{i=1}^m \alpha_i F_i(x)$$

and write $P'_m(x) = \sum_{i=0}^{m-1} \beta_i F_i(x)$. Then $\beta_i \ (0 \le i \le m-1)$ are given by

$$\beta_i = (-1)^{m-i-1} \left(\frac{\alpha_m}{m-i} - \frac{\alpha_{m-1}}{m-i+1} + \dots + (-1)^{m-i-1} \alpha_{i+1} \right).$$

3. Proof of Theorem 3(i). In this section, we will use the notation introduced in Section 2 for p = 2 only. Moreover, for an integral-valued polynomial Q(x), we will define (for p = 2) $t(Q), \theta(Q), \gamma(Q)$ and $Q^*(x)$ in the same way as $t = t(f_k, 2), \theta = \theta(f_k, 2), \gamma = \gamma(f_k, 2)$ and $f_k^*(x)$ for $f_k(x)$ in Section 2.

Suppose that $f_k(x)$ satisfies (1.6). Without loss of generality we may assume that $a_1 = f_k(1) = (-1)^{k-1}$. Then, by (1.1) and (1.6),

(3.1)
$$a_i \equiv (-1)^{k-i} 2^{i-1} \pmod{2^k} \quad (2 \le i \le k).$$

It follows that

(3.2)
$$2^k \parallel 2a_k \text{ and } 2^k \mid (2a_i + a_{i+1}) \quad (1 \le i \le k - 1).$$

By Lemma 2.1(i) and (3.2), we have

(3.3)
$$f_k(x+2) - f_k(x) \equiv 0 \pmod{2^k}$$
 for any x

Thus $f_k(x)$ takes only two different values, 0 and $(-1)^{k-1}$, mod 2^k , and then (2.9) follows.

Let

(3.4)
$$G_k(x) = 2^{-k} (f_k(x+1) + f_k(x) - (-1)^{k-1})$$

and write

(3.5)
$$G_k(x) = \sum_{i=1}^k b_i F_i(x)$$

By Lemma 2.1(ii) and (3.2), b_i $(1 \le i \le k)$ are integers and $2 \nmid b_k$.

Define integers τ and σ by $2^{\tau} || k!$ and $2^{\sigma} \leq k < 2^{\sigma+1}$. Since $2 \nmid b_k$, we have $t(G_k) = \tau$, and hence $\theta(G_k) = \tau - \sigma$ by Lemma 2.2. Thus $G_k^*(x) = 2^{\sigma}G_k'(x)$, and so

(3.6)
$$G_k^*(x) = 2^{-(k-\sigma)} (f_k'(x+1) + f_k'(x))$$

by (3.4). Furthermore, writing

(3.7)
$$G_k^*(x) = \sum_{i=0}^{k-1} c_i F_i(x)$$

with 2-adic integral c_i $(0 \le i \le k - 1)$, we see from Lemma 2.2 that

(3.8)
$$c_{i} \equiv \begin{cases} 0 \pmod{2} & \text{for } i > k - 2^{\sigma}, \\ b_{i+2^{\sigma}} \pmod{2} & \text{for } 0 \le i \le k - 2^{\sigma} \end{cases}$$

The following result is an analogue of Hua [3, Theorem 4].

LEMMA 3.1. (i) The congruence

$$G_k(x) \equiv A \pmod{2^l}, \quad 2 \nmid G_k^*(x),$$

is soluble for any A and $l \geq 1$.

(ii) If $2 \nmid G_k^*(x_0)$ for some x_0 , then either $2 \nmid f_k^*(x_0)$ or $2 \nmid f_k^*(x_0+1)$.

Proof. We prove that, for any integers x, y and $m \ge 0$,

(3.9)
$$G_k(x+2^{m+\sigma}y) - G_k(x) \equiv 2^m y G_k^*(x) \pmod{2^{m+1}}$$

and

(3.10)
$$G_k^*(x+2^{m+\sigma}y) \equiv G_k^*(x) \pmod{2^{m+1}}.$$

This suffices to prove part (i) by induction on l (when l = 1 the result follows immediately from (3.9) and (3.10) with m = 0).

We now prove (3.9). By Vandermonde's identity (see Lovász [5, Problem 1.45]), we have for $1 \le i \le k$,

$$F_i(x+2^{m+\sigma}y) - F_i(x) = \sum_{j=1}^i \binom{2^{m+\sigma}y}{j} F_{i-j}(x).$$

It is easily seen that, for any integer y,

$$\binom{2^{m+\sigma}y}{2^{\sigma}} \equiv 2^m y \pmod{2^{m+1}}$$

and

$$\binom{2^{m+\sigma}y}{j} \equiv 0 \pmod{2^{m+1}} \quad \text{for } j \neq 2^{\sigma}$$

(note $j \leq k < 2^{\sigma+1}$). Hence

$$F_i(x+2^{m+\sigma}y) - F_i(x) \equiv 2^m y F_{i-2^{\sigma}}(x) \pmod{2^{m+1}}$$

for any integers x and y (where $F_j(x)$ with j < 0 is interpreted to be 0). From this, (3.5), (3.7) and (3.8) we have

$$G_k(x+2^{m+\sigma}y) - G_k(x) \equiv \sum_{i=1}^k 2^m y b_i F_{i-2^\sigma}(x) \equiv \sum_{i=0}^{k-2^\sigma} 2^m y b_{i+2^\sigma} F_i(x)$$
$$\equiv \sum_{i=0}^{k-2^\sigma} 2^m y c_i F_i(x) \equiv 2^m y G_k^*(x) \pmod{2^{m+1}},$$

as required. (3.10) can be proved similarly.

To prove (ii), we note that now t = 0, so (3.6) implies that $\theta \leq k - \sigma$. If $\theta = k - \sigma$, then $G_k^*(x) = f_k^*(x+1) + f_k^*(x)$, and the result follows at once. Suppose that $\theta \leq k - \sigma - 1$. By (3.2), Lemmas 2.1(i) and 2.2 we have

(3.11)
$$f'_k(x+2) - f'_k(x) \equiv 0 \pmod{2^{k-\delta}}$$
 for any x .

(Recall that in this section δ satisfies $2^{\delta} \leq k - 1 < 2^{\delta+1}$.) Clearly $\delta \leq \sigma$, so that $2^{\theta+1} | 2^{k-\delta}$. It follows from (3.11) that $2 \nmid f_k^*(x)$ either for all odd x or for all even x, and therefore the desired result also follows.

Our next step is to establish the results analogous to Hua [3, Lemmas 4.6–4.8]. We define

(3.12)
$$E_k(x) = 2^{-k} f_k(2x)$$
 and $O_k(x) = 2^{-k} (f_k(2x+1) - (-1)^{k-1})$

By (3.3), both $E_k(x)$ and $O_k(x)$ are integral-valued polynomials. We write

(3.13)
$$E_k(x) = \sum_{i=1}^k d_i F_i(x) \text{ and } O_k(x) = \sum_{i=1}^k d'_i F_i(x)$$

LEMMA 3.2. (i) If $k \ge 7$ is odd, then neither $E_k(x)$ nor $O_k(x)$ is constant modulo 2, and $\gamma(E_k) \le (k-1)/2 + \delta$ and $\gamma(O_k) \le (k-1)/2 + \delta$.

(ii) If $k \ge 8$ is even, then either $E_k(x)$ is not constant modulo 2 and $\gamma(E_k) \le k/2 + \delta$ or $O_k(x)$ is not constant modulo 2 and $\gamma(O_k) \le k/2 + \delta$.

 $\Pr{\rm o\,o\,f.}$ From Kemmer's identity (see Gupta [1, Chapter 8, §9.2]) it follows that

$$F_l(2x) = \sum_{i \le l} 2^{2i-l} \binom{i}{l-i} F_i(x) \quad \text{for any } x.$$

Then by (1.1) we have

(3.14)
$$f_k(2x) = \sum_{i=1}^k F_i(x) \sum_{l=i}^{\min(2i,k)} a_l 2^{2i-l} \binom{i}{l-i}$$

This, together with $F_l(2x+1) = F_l(2x) + F_{l-1}(2x)$, gives (3.15) $f_k(2x+1) - (-1)^{k-1}$

$$= f_k(2x) + \sum_{i=1}^{k-1} F_i(x) \sum_{l=i}^{\min(2i,k-1)} a_{l+1} 2^{2i-l} \binom{i}{l-i}.$$

Now by (3.1) and (3.12) to (3.15) we see that

(3.16)
$$2^{k-1} | (d_k, d'_k) \text{ and } 2^{k-3} | (d_{k-1}, d'_{k-1}).$$

Also, we have $2 \nmid d_{(k+1)/2}$ and $2 \nmid d'_{(k+1)/2}$ for odd k, thus the first assertion of (i) follows. Further, by $2 \nmid d_{(k+1)/2}$, (3.16) and Lemma 2.2, it can be proved easily that $\theta(E_k) \leq k - (k+1)/2 - 2 + t(E_k)$ for $k \geq 7$ (cf. the proof of Hua

[3, Lemma 3.2]). Thus $\gamma(E_k) \leq (k-1)/2 + \delta$ (cf. (2.3)). The same argument gives $\gamma(O_k) \leq (k-1)/2 + \delta$.

If k is even, then either $2 \nmid d_{k/2}$ or $2 \nmid d'_{k/2}$. The assertions of (ii) follow as above.

We are now in a position to prove the second assertion of Theorem 3(i).

(I) k is odd. Let $s = 2^k - 1$, and for any n let r_n be the integer satisfying $n \equiv r_n \pmod{2^k}$ and $0 \leq r_n < 2^k$. We consider several cases. (i) $1 \leq r_n \leq 2^k - 2$. By Lemma 3.1(i) the congruence

$$G_k(x) + \sum_{i=2}^{r_n} O_k(y_i) \equiv m \pmod{2^l}, \quad 2 \nmid G_k^*(x),$$

is soluble for any $m, y_i \ (2 \le i \le r_n)$ and $l \ge 1$. Hence in case (i) we have, by (3.4), (3.12) and Lemma 3.1(ii),

$$\Gamma^*(f_k, 2^{\gamma}, n) \le r_n + 1 \le 2^k - 1,$$

which implies that $N_s(f_k, 2^{\gamma}, n) \ge 1$, and the result follows immediately (cf. Section 2 and note that $\gamma < 2k$ by (2.4) for p = 2).

(ii) $r_n = 0$. We note that, by Lemma 3.2(i), $s > 2^{\gamma(E_k)}$ for $k \ge 7$. Thus, by the Davenport–Chowla lemma (cf. [7, Lemma 2.2]), for $l = \gamma(E_k)$ the congruence

(3.17)
$$\sum_{i=1}^{s} E_k(x_i) \equiv m \pmod{2^l}$$

has a solution with $2 \nmid E_k^*(x_1)$, i.e. $N_s(E_k, 2^{\gamma(E_k)}, m) \ge 1$, for any m. Thus the number $M_s(E_k, 2^l, m)$ of solutions of the congruence (3.17) is at least $2^{(s-1)(l-\gamma(E_k))}$ for all m and $l \ge k > \gamma(E_k)$ (cf. Section 2). Hence, in view of (3.12), the result holds in case (ii).

(iii) $r_n = 2^k - 1$. The same argument as in (ii) with $E_k(x)$ replaced by $O_k(x)$ shows that $N_s(O_k, 2^{\gamma(O_k)}, m) \ge 1$ for all m, and the result also follows in case (iii).

(II) k is even. When k = 6 the result has been proved in [7]. For $k \ge 8$ let $s = 2^k$, and for any n let r_n be the integer satisfying $n \equiv -r_n \pmod{2^k}$ and $0 \le r_n < 2^k$.

When $1 \leq r_n \leq 2^k - 1$, in a similar way to (I)(i), we have $\Gamma^*(f_k, 2^{\gamma}, n) \leq r_n + 1 \leq 2^k$ and hence the result. Moreover, by Lemma 3.2(ii) and a similar argument to (I)(ii), it is easily seen that either $N_s(E_k, 2^{\gamma(E_k)}, m) \geq 1$ or $N_s(O_k, 2^{\gamma(O_k)}, m) \geq 1$, for all m. Thus for $r_n = 0$ the desired result also holds.

The proof of Theorem 3(i) is now complete.

4. Proof of Theorem 3(ii). We need the following simple lemma.

LEMMA 4.1. Let λ be the greatest integer such that

$$f_k(x+2) - f_k(x) \equiv 0 \pmod{2^{\lambda}}$$
 for any x

Then $\lambda \leq k$, and equality holds if and only if $f_k(x)$ satisfies (1.6).

Proof. By Lemma 2.1(i), we have

(4.1) $2a_k \equiv 0 \pmod{2^{\lambda}}$ and $2a_i + a_{i+1} \equiv 0 \pmod{2^{\lambda}}$ $(1 \le i \le k-1).$

Then by contradiction and (1.2) it follows that $\lambda \leq k$. Further, if $\lambda = k$, then it is easily seen by (4.1) and induction on *i* that $a_i \equiv (-2)^{i-1}a_1 \pmod{2^k}$ for $2 \leq i \leq k$. Hence (1.6) follows. The converse result has already been proved in Section 3 (cf. (3.3)).

We now prove Theorem 3(ii) by induction. We note that by Yu [7, Section 5] both (i) and (ii) of Theorem 3 hold for k = 5. Suppose that $k \ge 6$ and that Theorem 3(ii) is true for polynomials of degree k - 1. We then prove

(4.2)
$$\Gamma(f_k, 2^{\gamma}) \le 2^{k-1} + 4(k-1) - 1$$

for any $f_k(x)$ not satisfying (1.6), which, in view of (2.8), completes our proof.

Since $f_k(x)$ does not satisfy (1.6), we have $\lambda \leq k-1$ by Lemma 4.1. If $\gamma \leq \lambda$ the result is trivial. Thus we may assume that $\gamma > \lambda$. By the definition of λ , there exists an integer x_0 such that $f_k(x_0+2) - f_k(x_0) \neq 0$ (mod $2^{\lambda+1}$). By the Davenport–Chowla lemma we see that, when $l = 2^{\lambda} - 1$, the congruence

(4.3)
$$f_k(x_1) + \ldots + f_k(x_l) \equiv n - m f_k(x_0) \pmod{2^{\lambda}}$$

is soluble for any m and n.

The next step is to consider the solubility of the congruence

(4.4)
$$f_k(x_0 + 2y_1) + \ldots + f_k(x_0 + 2y_m) \equiv mf_k(x_0) + 2^{\lambda}A \pmod{2^{\gamma}}$$

for any A. We write

(4.5)
$$g_k(y) = 2^{-\lambda} (f_k(x_0 + 2y) - f_k(x_0));$$

then (4.4) is equivalent to

(4.6)
$$g_k(y_1) + \ldots + g_k(y_m) \equiv A \pmod{2^{\gamma-\lambda}}.$$

Note that $g_k(y)$ is an integral-valued polynomial. Also, $g_k(0) = 0$ and $g_k(1) \neq 0 \pmod{2}$, so that $g_k(y) \mod 2$ is not constant. Thus, when $m = 2^{\gamma-\lambda} - 1$ the congruence (4.6) is soluble for any A. Then, by (4.3) and (4.4) we have (cf. [7, Lemma 2.3])

(4.7)
$$\Gamma(f_k, 2^{\gamma}) \le (2^{\lambda} - 1) + (2^{\gamma - \lambda} - 1) = 2^{\lambda} + 2^{\gamma - \lambda} - 2.$$

Waring's problem

On the other hand, by (1.1), (4.5) and Taylor's expansion we see that the coefficient of y^k in $g_k(y)$ is $a_k \cdot 2^{k-\lambda}/k!$. Then, writing $g_k(y) = \sum_{i=1}^k a'_i F_i(y)$, we have $a'_k = 2^{k-\lambda}a_k$. We define μ by $2^{\mu} \parallel a_k$. By (2.1) and Lemma 2.2, $2^{\theta} \mid 2^t a_k$, and so $\theta \leq t + \mu$. Thus a'_k is divisible by 2 to the power $k - \lambda + \theta - t$, which is greater than or equal to $\gamma - \lambda$ by (2.2) and (2.3) (for p = 2). Thus $g_k(y) \mod 2^{\gamma-\lambda}$ is a polynomial of degree at most k - 1. Then, by the induction hypothesis and the second assertion of Theorem 3(i), we see that when $m = 2^{k-1}$ the congruence (4.6) is soluble. Hence

(4.8)
$$\Gamma(f_k, 2^{\gamma}) \le (2^{\lambda} - 1) + 2^{k-1}$$

Now (4.2) can be proved easily. Recall $\lambda \leq k-1$. If $\lambda \geq \delta + 2$, then the function $2^{\lambda} + 2^{\gamma-\lambda}$ of λ has a maximum value at $\lambda = \delta + 2$ or $\lambda = k-1$. It follows from (4.7), (2.2) and (2.4) (for p = 2) that

$$\Gamma(f_k, 2^{\gamma}) \le 2^{k-1} + 2^{\delta+2} - 2 \le 2^{k-1} + 4(k-1) - 2,$$

as required. If $\lambda < \delta + 2$, then (4.8) gives the result at once.

5. Proof of Theorem 4. We note that the case p > k of Theorem 4 follows readily from Hua [3, Lemma 2.3]. Thus, to prove Theorem 4 it suffices to consider the cases when $3 \le p \le k$. We proceed by induction on $k \ge 5$. When k = 5 the result has been proved in Yu [7, Section 6]. Suppose that the assertion of Theorem 4 is true for polynomials of degree k - 1 ($k \ge 6$). We then prove

(5.1)
$$\Gamma(f_k, p^{\gamma}) \le 2^{k-1} + 4(k-1) - 1 \quad \text{for } 3 \le p \le k,$$

and hence complete the proof. Since the argument of (5.1) is the same as that used in Section 4, we only give a brief sketch.

For $3 \le p \le k$, define λ to be the greatest integer such that

$$f_k(x+p) - f_k(x) \equiv 0 \pmod{p^{\lambda}}$$
 for any x .

By Vandermonde's identity, we have

$$f_k(x+p) - f_k(x) = \sum_{i=0}^{k-1} F_i(x) \sum_{j=1}^{k-i} a_{i+j} {p \choose j}.$$

From this it can be proved that

(5.2)
$$\lambda \le \left[\frac{k-1}{p-1}\right] + 1.$$

When $\gamma \leq \lambda$ the result is trivial. We thus assume that $\gamma > \lambda$. In analogy to (4.7) and (4.8) we have

(5.3)
$$\Gamma(f_k, p^{\gamma}) \le p^{\lambda} + p^{\gamma - \lambda} - 2$$

and (by the induction hypothesis, and using Hua's result mentioned above if $p=k)\,$

(5.4)
$$\Gamma(f_k, p^{\gamma}) \le (p^{\lambda} - 1) + (2^{k-2} + 4(k-2)).$$

If $\lambda \geq \delta + 1$, then the function $p^{\lambda} + p^{\gamma-\lambda}$ of λ has a maximum value at $\lambda = \delta + 1$ or $\lambda = \left[\frac{k-1}{p-1}\right] + 1$ (cf. (5.2)). Then, by (5.3), (2.2) and (2.4) (for $p \geq 3$), it is easily verified that (5.1) holds for $6 \leq k \leq 10$ and

$$\Gamma(f_k, p^{\gamma}) < p^{\left[\frac{k-1}{p-1}\right]+1} + p^{\delta+1} \le p^{\frac{k-1}{p-1}+1} + k(k-1) < 2^{k-1} + 4(k-1) - 1$$

for $k \ge 11$. If $\lambda < \delta + 1$, then (5.1) follows readily from (5.4).

Acknowledgements. The author is grateful to Professor M. G. Lu for suggesting this problem and for his encouragement.

References

- [1] H. Gupta, Selected Topics in Number Theory, Abacus Press, 1980.
- [2] L. K. Hua, On a generalized Waring problem, Proc. London Math. Soc. (2) 43 (1937), 161–182.
- [3] —, On a generalized Waring problem, II, J. Chinese Math. Soc. 2 (1940), 175–191; see also L. K. Hua, Selected Papers, H. Halberstam (ed.), Springer, 1983, 61–73.
- [4] —, Additive Theory of Prime Numbers, Providence, R.I., 1965.
- [5] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
- T. D. Wooley, On exponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997), 79–140.
- H. B. Yu, On Waring's problem with polynomial summands, Acta Arith. 76 (1996), 131–144.
- [8] —, On Waring's problem with quartic polynomial summands, ibid. 80 (1997), 77–82.

Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026 The People's Republic of China E-mail: yuhb@math.ustc.edu.cn

Received on 1.12.1997

(3312)