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On Waring’s problem with polynomial summands II

by

Hong Bing Yu (Hefei)

1. Introduction. Let fk(x) be an integral-valued polynomial of degree
k with positive leading coefficient, fk(0) = 0 and satisfying the condition
that there do not exist integers c and q > 1 such that fk(x) ≡ c (mod q)
identically. It is known that fk(x) is of the form

(1.1) fk(x) = akFk(x) + . . .+ a1F1(x),

where Fi(x) = x(x − 1) . . . (x − i + 1)/i! (1 ≤ i ≤ k), and a1, . . . , ak are
integers satisfying

(1.2) (a1, . . . , ak) = 1 and ak > 0.

Let G(fk) be the least s such that the equation

(1.3) fk(x1) + . . .+ fk(xs) = n, xi ≥ 0,

is soluble for all sufficiently large integers n. The problem of estimation for
G(fk) has been investigated by many authors (see Wooley [6] for references).
Here we remark only that Hua [3] has shown that G(fk) ≤ (k − 1)2k+1;
and, if

(1.4) Hk(x) = 2k−1Fk(x)− 2k−2Fk−1(x) + . . .+ (−1)k−1F1(x), k ≥ 4,

thenG(Hk) = 2k− 1
2 (1−(−1)k). In [3] Hua conjectured further that generally

(1.5) G(fk) ≤ 2k − 1
2

(1− (−1)k).

This was confirmed in [7] for k = 4, 5 and 6. The purpose of this paper is to
prove that (1.5) is true for all k ≥ 7. In fact, we prove the following slightly
more precise result.

Theorem 1. Let Hk(x) be as in (1.4). For k ≥ 6, if fk(x) satisfies

(1.6) 2 - fk(1) and fk(x) ≡ (−1)k−1fk(1)Hk(x) (mod 2k) for any x,
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then G(fk) = 2k − 1 for odd k and 2k − 1 or 2k for even k; otherwise,

G(fk) ≤ 2k−1 + 4(k − 1).

In order to investigate the solubility of (1.3), we define S∗(fk) to be the
least number such that if s ≥ S∗(fk) then Ss(fk, n) ≥ c for some positive c
independent of n, where Ss(fk, n) is the singular series corresponding to the
equation (1.3) (see Hua [2] and the remark of Wooley [6]). We also define
G∗(fk) to be the least number s with the property that all sufficiently large
numbers n with Ss(fk, n) ≥ c are represented in the form (1.3). From earlier
works on G∗(fk) (see Hua [4]) we have, in particular,

(1.7) G∗(fk) < 2k−1 + 4(k − 1) for k ≥ 6.

(We remark that very sharp estimates on G∗(fk) for large k have recently
been obtained by Wooley [6].) Therefore, in view of (1.7) and (2.9) below,
to prove Theorem 1 it suffices to prove the following result.

Theorem 2. For k ≥ 6, if fk(x) satisfies (1.6), then S∗(fk) ≤ 2k −
1
2 (1− (−1)k); otherwise, S∗(fk) ≤ 2k−1 + 4(k − 1).

We note that, for quartic and quintic polynomials, more precise results
on S∗(fk) have been established in [7] and [8]:

If fk(x) (k = 4 and 5) does not satisfy (1.6), then

max
f4

S∗(f4) = 11 and max
f5

S∗(f5) = 16.

2. Notation and preliminary results. Let fk(x) be as in (1.1), and
let d be the least common denominator of the coefficients of fk(x). For each
prime p, we define t = t(fk, p) by pt ‖ d. Let θ = θ(fk, p) be the greatest
integer such that

(2.1) ptf ′k(x) ≡ 0 (mod pθ) for any x,

and let f∗k (x) = p−θ(ptf ′k(x)). Define the integer δ = δ(p, k) by

(2.2) pδ ≤ k − 1 < pδ+1,

and let

(2.3) γ = γ(fk, p) =
{
θ − t+ δ + 2 for p = 2,
θ − t+ δ + 1 for p > 2.

We record for later use that (see Hua [3, Lemma 3.3])

(2.4) γ ≤ k + δ + 1 for p = 2 and γ ≤
[

k

p− 1

]
+ δ + 1 for p ≥ 3.

Let Ms(fk, pl, n) denote the number of solutions of the congruence

(2.5) fk(x1) + . . .+ fk(xs) ≡ n (mod pl), 0 ≤ xi < pl+t,
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and let Γ (fk, pl) be the least value of s for which (2.5) is soluble for every n.
From Hua [2, Section 7] we see that, if s ≥ 2k + 1, to establish S∗(fk) ≤ s
it suffices to show that for all primes p and any integers n and l ≥ c,
(2.6) Ms(fk, pl, n) ≥ p(s−1)(l−c),

where c is a positive constant depending only on fk(x). Since a direct treat-
ment of (2.6) presents certain technical difficulties, we define Ns(fk, pl, n)
to be the number of solutions of the congruence (2.5) with the f∗k (xi) not
all divisible by p. Then (see [2, Lemma 7.6])

(2.7) Ns(fk, pl, n) = p(s−1)(l−γ)Ns(fk, pγ , n) for l ≥ γ.
Let Γ ∗(fk, pγ , n) be the least s such that Ns(fk, pγ , n) ≥ 1. Then, by
(2.7) and Ms(fk, pl, n) ≥ Ns(fk, pl, n), (2.6) holds (with c = γ) when
s = Γ ∗(fk, pγ , n). Moreover, we define Γ ∗(fk, pγ) = maxn Γ ∗(fk, pγ , n).
Then, in particular, when s = Γ ∗(fk, pγ) the congruence (2.5) is soluble
for any n and l ≥ 1. Also, by the definition, we have

(2.8) Γ (fk, pγ) ≤ Γ ∗(fk, pγ) ≤ Γ (fk, pγ) + 1.

Now we see that to prove Theorem 2, it suffices to establish the following
two results.

Theorem 3. Suppose k ≥ 6.

(i) If fk(x) satisfies (1.6), then

(2.9) Γ (fk, 2k) = 2k − 1;

and , when s = 2k − 1
2 (1− (−1)k), we have

Ms(fk, 2l, n) ≥ 2(s−1)(l−2k) for all n and l ≥ 2k.

(ii) Otherwise, we have Γ ∗(fk, 2γ) ≤ 2k−1 + 4(k − 1).

Theorem 4. For k ≥ 6 and prime p ≥ 3, we have

Γ ∗(fk, pγ) ≤ 2k−1 + 4(k − 1).

Our proof of Theorems 3 and 4 is motivated by Hua [3] and Yu [7]
(see Sections 3 to 5 of this paper). Before proceeding further we record two
lemmas. Lemma 2.1 (below) may be compared with Hua [3, Lemmas 4.4
and 4.5]. It follows from (1.1) and a simple calculation. Lemma 2.2 can be
seen from the proof of Hua [3, Lemma 3.2] (see also Lovász [5, Problem
1.43(e)]).

Lemma 2.1. Let fk(x) be as in (1.1). Then

(i) fk(x + 2) − fk(x) = 2akFk−1(x) +
∑k−1
i=1 (2ai + ai+1)Fi−1(x) with

F0(x) being interpreted as 1.
(ii) fk(x+ 1) + fk(x)− fk(1) = 2akFk(x) +

∑k−1
i=1 (2ai + ai+1)Fi(x).
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Lemma 2.2. Let

Pm(x) =
m∑

i=1

αiFi(x)

and write P ′m(x) =
∑m−1
i=0 βiFi(x). Then βi (0 ≤ i ≤ m− 1) are given by

βi = (−1)m−i−1
(

αm
m− i −

αm−1

m− i+ 1
+ . . .+ (−1)m−i−1αi+1

)
.

3. Proof of Theorem 3(i). In this section, we will use the notation
introduced in Section 2 for p = 2 only. Moreover, for an integral-valued
polynomial Q(x), we will define (for p = 2) t(Q), θ(Q), γ(Q) and Q∗(x) in
the same way as t = t(fk, 2), θ = θ(fk, 2), γ = γ(fk, 2) and f∗k (x) for fk(x)
in Section 2.

Suppose that fk(x) satisfies (1.6). Without loss of generality we may
assume that a1 = fk(1) = (−1)k−1. Then, by (1.1) and (1.6),

(3.1) ai ≡ (−1)k−i2i−1 (mod 2k) (2 ≤ i ≤ k).

It follows that

(3.2) 2k ‖ 2ak and 2k | (2ai + ai+1) (1 ≤ i ≤ k − 1).

By Lemma 2.1(i) and (3.2), we have

(3.3) fk(x+ 2)− fk(x) ≡ 0 (mod 2k) for any x.

Thus fk(x) takes only two different values, 0 and (−1)k−1, mod 2k, and then
(2.9) follows.

Let

(3.4) Gk(x) = 2−k(fk(x+ 1) + fk(x)− (−1)k−1)

and write

(3.5) Gk(x) =
k∑

i=1

biFi(x).

By Lemma 2.1(ii) and (3.2), bi (1 ≤ i ≤ k) are integers and 2 - bk.
Define integers τ and σ by 2τ ‖ k! and 2σ ≤ k < 2σ+1. Since 2 - bk, we have

t(Gk) = τ , and hence θ(Gk) = τ−σ by Lemma 2.2. Thus G∗k(x) = 2σG′k(x),
and so

(3.6) G∗k(x) = 2−(k−σ)(f ′k(x+ 1) + f ′k(x))

by (3.4). Furthermore, writing

(3.7) G∗k(x) =
k−1∑

i=0

ciFi(x)
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with 2-adic integral ci (0 ≤ i ≤ k − 1), we see from Lemma 2.2 that

(3.8) ci ≡
{

0 (mod 2) for i > k − 2σ,
bi+2σ (mod 2) for 0 ≤ i ≤ k − 2σ.

The following result is an analogue of Hua [3, Theorem 4].

Lemma 3.1. (i) The congruence

Gk(x) ≡ A (mod 2l), 2 -G∗k(x),

is soluble for any A and l ≥ 1.
(ii) If 2 -G∗k(x0) for some x0, then either 2 - f∗k (x0) or 2 - f∗k (x0 + 1).

P r o o f. We prove that, for any integers x, y and m ≥ 0,

(3.9) Gk(x+ 2m+σy)−Gk(x) ≡ 2myG∗k(x) (mod 2m+1)

and

(3.10) G∗k(x+ 2m+σy) ≡ G∗k(x) (mod 2m+1).

This suffices to prove part (i) by induction on l (when l = 1 the result follows
immediately from (3.9) and (3.10) with m = 0).

We now prove (3.9). By Vandermonde’s identity (see Lovász [5, Prob-
lem 1.45]), we have for 1 ≤ i ≤ k,

Fi(x+ 2m+σy)− Fi(x) =
i∑

j=1

(
2m+σy

j

)
Fi−j(x).

It is easily seen that, for any integer y,(
2m+σy

2σ

)
≡ 2my (mod 2m+1)

and (
2m+σy

j

)
≡ 0 (mod 2m+1) for j 6= 2σ

(note j ≤ k < 2σ+1). Hence

Fi(x+ 2m+σy)− Fi(x) ≡ 2myFi−2σ (x) (mod 2m+1)

for any integers x and y (where Fj(x) with j < 0 is interpreted to be 0).
From this, (3.5), (3.7) and (3.8) we have

Gk(x+ 2m+σy)−Gk(x) ≡
k∑

i=1

2mybiFi−2σ (x) ≡
k−2σ∑

i=0

2mybi+2σFi(x)

≡
k−2σ∑

i=0

2myciFi(x) ≡ 2myG∗k(x) (mod 2m+1),

as required. (3.10) can be proved similarly.
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To prove (ii), we note that now t = 0, so (3.6) implies that θ ≤ k− σ. If
θ = k − σ, then G∗k(x) = f∗k (x+ 1) + f∗k (x), and the result follows at once.
Suppose that θ ≤ k − σ − 1. By (3.2), Lemmas 2.1(i) and 2.2 we have

(3.11) f ′k(x+ 2)− f ′k(x) ≡ 0 (mod 2k−δ) for any x.

(Recall that in this section δ satisfies 2δ ≤ k − 1 < 2δ+1.) Clearly δ ≤ σ, so
that 2θ+1 | 2k−δ. It follows from (3.11) that 2 - f∗k (x) either for all odd x or
for all even x, and therefore the desired result also follows.

Our next step is to establish the results analogous to Hua [3, Lem-
mas 4.6–4.8]. We define

(3.12) Ek(x) = 2−kfk(2x) and Ok(x) = 2−k(fk(2x+ 1)− (−1)k−1).

By (3.3), both Ek(x) and Ok(x) are integral-valued polynomials. We write

(3.13) Ek(x) =
k∑

i=1

diFi(x) and Ok(x) =
k∑

i=1

d′iFi(x).

Lemma 3.2. (i) If k ≥ 7 is odd , then neither Ek(x) nor Ok(x) is constant
modulo 2, and γ(Ek) ≤ (k − 1)/2 + δ and γ(Ok) ≤ (k − 1)/2 + δ.

(ii) If k ≥ 8 is even, then either Ek(x) is not constant modulo 2 and
γ(Ek) ≤ k/2 + δ or Ok(x) is not constant modulo 2 and γ(Ok) ≤ k/2 + δ.

P r o o f. From Kemmer’s identity (see Gupta [1, Chapter 8, §9.2]) it fol-
lows that

Fl(2x) =
∑

i≤l
22i−l

(
i

l − i
)
Fi(x) for any x.

Then by (1.1) we have

(3.14) fk(2x) =
k∑

i=1

Fi(x)
min(2i,k)∑

l=i

al22i−l
(

i

l − i
)
.

This, together with Fl(2x+ 1) = Fl(2x) + Fl−1(2x), gives

(3.15) fk(2x+ 1)− (−1)k−1

= fk(2x) +
k−1∑

i=1

Fi(x)
min(2i,k−1)∑

l=i

al+122i−l
(

i

l − i
)
.

Now by (3.1) and (3.12) to (3.15) we see that

(3.16) 2k−1 | (dk, d′k) and 2k−3 | (dk−1, d
′
k−1).

Also, we have 2 - d(k+1)/2 and 2 - d′(k+1)/2 for odd k, thus the first assertion of
(i) follows. Further, by 2 - d(k+1)/2, (3.16) and Lemma 2.2, it can be proved
easily that θ(Ek) ≤ k− (k+ 1)/2− 2 + t(Ek) for k ≥ 7 (cf. the proof of Hua
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[3, Lemma 3.2]). Thus γ(Ek) ≤ (k−1)/2+ δ (cf. (2.3)). The same argument
gives γ(Ok) ≤ (k − 1)/2 + δ.

If k is even, then either 2 - dk/2 or 2 - d′k/2. The assertions of (ii) follow as
above.

We are now in a position to prove the second assertion of Theorem 3(i).

(I) k is odd. Let s = 2k−1, and for any n let rn be the integer satisfying
n ≡ rn (mod 2k) and 0 ≤ rn < 2k. We consider several cases.

(i) 1 ≤ rn ≤ 2k − 2. By Lemma 3.1(i) the congruence

Gk(x) +
rn∑

i=2

Ok(yi) ≡ m (mod 2l), 2 -G∗k(x),

is soluble for any m, yi (2 ≤ i ≤ rn) and l ≥ 1. Hence in case (i) we have,
by (3.4), (3.12) and Lemma 3.1(ii),

Γ ∗(fk, 2γ , n) ≤ rn + 1 ≤ 2k − 1,

which implies that Ns(fk, 2γ , n) ≥ 1, and the result follows immediately
(cf. Section 2 and note that γ < 2k by (2.4) for p = 2).

(ii) rn = 0. We note that, by Lemma 3.2(i), s > 2γ(Ek) for k ≥ 7. Thus,
by the Davenport–Chowla lemma (cf. [7, Lemma 2.2]), for l = γ(Ek) the
congruence

(3.17)
s∑

i=1

Ek(xi) ≡ m (mod 2l)

has a solution with 2 -E∗k(x1), i.e. Ns(Ek, 2γ(Ek),m) ≥ 1, for any m. Thus
the number Ms(Ek, 2l,m) of solutions of the congruence (3.17) is at least
2(s−1)(l−γ(Ek)) for all m and l ≥ k > γ(Ek) (cf. Section 2). Hence, in view
of (3.12), the result holds in case (ii).

(iii) rn = 2k − 1. The same argument as in (ii) with Ek(x) replaced by
Ok(x) shows that Ns(Ok, 2γ(Ok),m) ≥ 1 for all m, and the result also follows
in case (iii).

(II) k is even. When k = 6 the result has been proved in [7]. For k ≥ 8
let s = 2k, and for any n let rn be the integer satisfying n ≡ −rn (mod 2k)
and 0 ≤ rn < 2k.

When 1 ≤ rn ≤ 2k−1, in a similar way to (I)(i), we have Γ ∗(fk, 2γ , n) ≤
rn + 1 ≤ 2k and hence the result. Moreover, by Lemma 3.2(ii) and a similar
argument to (I)(ii), it is easily seen that either Ns(Ek, 2γ(Ek),m) ≥ 1 or
Ns(Ok, 2γ(Ok),m) ≥ 1, for all m. Thus for rn = 0 the desired result also
holds.

The proof of Theorem 3(i) is now complete.
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4. Proof of Theorem 3(ii). We need the following simple lemma.

Lemma 4.1. Let λ be the greatest integer such that

fk(x+ 2)− fk(x) ≡ 0 (mod 2λ) for any x.

Then λ ≤ k, and equality holds if and only if fk(x) satisfies (1.6).

P r o o f. By Lemma 2.1(i), we have

(4.1) 2ak ≡ 0 (mod 2λ) and 2ai+ai+1 ≡ 0 (mod 2λ) (1 ≤ i ≤ k−1).

Then by contradiction and (1.2) it follows that λ ≤ k. Further, if λ = k, then
it is easily seen by (4.1) and induction on i that ai ≡ (−2)i−1a1 (mod 2k)
for 2 ≤ i ≤ k. Hence (1.6) follows. The converse result has already been
proved in Section 3 (cf. (3.3)).

We now prove Theorem 3(ii) by induction. We note that by Yu [7, Section
5] both (i) and (ii) of Theorem 3 hold for k = 5. Suppose that k ≥ 6 and
that Theorem 3(ii) is true for polynomials of degree k − 1. We then prove

(4.2) Γ (fk, 2γ) ≤ 2k−1 + 4(k − 1)− 1

for any fk(x) not satisfying (1.6), which, in view of (2.8), completes our
proof.

Since fk(x) does not satisfy (1.6), we have λ ≤ k − 1 by Lemma 4.1.
If γ ≤ λ the result is trivial. Thus we may assume that γ > λ. By the
definition of λ, there exists an integer x0 such that fk(x0 + 2)− fk(x0) 6≡ 0
(mod 2λ+1). By the Davenport–Chowla lemma we see that, when l = 2λ−1,
the congruence

(4.3) fk(x1) + . . .+ fk(xl) ≡ n−mfk(x0) (mod 2λ)

is soluble for any m and n.
The next step is to consider the solubility of the congruence

(4.4) fk(x0 + 2y1) + . . .+ fk(x0 + 2ym) ≡ mfk(x0) + 2λA (mod 2γ)

for any A. We write

(4.5) gk(y) = 2−λ(fk(x0 + 2y)− fk(x0));

then (4.4) is equivalent to

(4.6) gk(y1) + . . .+ gk(ym) ≡ A (mod 2γ−λ).

Note that gk(y) is an integral-valued polynomial. Also, gk(0) = 0 and
gk(1) 6≡ 0 (mod 2), so that gk(y) mod 2 is not constant. Thus, when m =
2γ−λ− 1 the congruence (4.6) is soluble for any A. Then, by (4.3) and (4.4)
we have (cf. [7, Lemma 2.3])

(4.7) Γ (fk, 2γ) ≤ (2λ − 1) + (2γ−λ − 1) = 2λ + 2γ−λ − 2.
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On the other hand, by (1.1), (4.5) and Taylor’s expansion we see that the
coefficient of yk in gk(y) is ak ·2k−λ/k!. Then, writing gk(y) =

∑k
i=1 a

′
iFi(y),

we have a′k = 2k−λak. We define µ by 2µ ‖ ak. By (2.1) and Lemma 2.2,
2θ | 2tak, and so θ ≤ t+µ. Thus a′k is divisible by 2 to the power k−λ+θ−t,
which is greater than or equal to γ − λ by (2.2) and (2.3) (for p = 2). Thus
gk(y) mod 2γ−λ is a polynomial of degree at most k − 1. Then, by the
induction hypothesis and the second assertion of Theorem 3(i), we see that
when m = 2k−1 the congruence (4.6) is soluble. Hence

(4.8) Γ (fk, 2γ) ≤ (2λ − 1) + 2k−1.

Now (4.2) can be proved easily. Recall λ ≤ k − 1. If λ ≥ δ + 2, then the
function 2λ + 2γ−λ of λ has a maximum value at λ = δ + 2 or λ = k − 1. It
follows from (4.7), (2.2) and (2.4) (for p = 2) that

Γ (fk, 2γ) ≤ 2k−1 + 2δ+2 − 2 ≤ 2k−1 + 4(k − 1)− 2,

as required. If λ < δ + 2, then (4.8) gives the result at once.

5. Proof of Theorem 4. We note that the case p > k of Theorem 4
follows readily from Hua [3, Lemma 2.3]. Thus, to prove Theorem 4 it suffices
to consider the cases when 3 ≤ p ≤ k. We proceed by induction on k ≥ 5.
When k = 5 the result has been proved in Yu [7, Section 6]. Suppose that
the assertion of Theorem 4 is true for polynomials of degree k − 1 (k ≥ 6).
We then prove

(5.1) Γ (fk, pγ) ≤ 2k−1 + 4(k − 1)− 1 for 3 ≤ p ≤ k,
and hence complete the proof. Since the argument of (5.1) is the same as
that used in Section 4, we only give a brief sketch.

For 3 ≤ p ≤ k, define λ to be the greatest integer such that

fk(x+ p)− fk(x) ≡ 0 (mod pλ) for any x.

By Vandermonde’s identity, we have

fk(x+ p)− fk(x) =
k−1∑

i=0

Fi(x)
k−i∑

j=1

ai+j

(
p

j

)
.

From this it can be proved that

(5.2) λ ≤
[
k − 1
p− 1

]
+ 1.

When γ ≤ λ the result is trivial. We thus assume that γ > λ. In analogy to
(4.7) and (4.8) we have

(5.3) Γ (fk, pγ) ≤ pλ + pγ−λ − 2
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and (by the induction hypothesis, and using Hua’s result mentioned above
if p = k)

(5.4) Γ (fk, pγ) ≤ (pλ − 1) + (2k−2 + 4(k − 2)).

If λ ≥ δ + 1, then the function pλ + pγ−λ of λ has a maximum value at
λ = δ + 1 or λ =

[
k−1
p−1

]
+ 1 (cf. (5.2)). Then, by (5.3), (2.2) and (2.4) (for

p ≥ 3), it is easily verified that (5.1) holds for 6 ≤ k ≤ 10 and

Γ (fk, pγ) < p[ k−1
p−1 ]+1 + pδ+1 ≤ p k−1

p−1 +1 + k(k − 1) < 2k−1 + 4(k − 1)− 1

for k ≥ 11. If λ < δ + 1, then (5.1) follows readily from (5.4).
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